1
|
Tatara Y, Nakao KI, Shimada R, Kibayashi K. Mechanism of exacerbation of traumatic brain injury under warfarin anticoagulation in male mice. PLoS One 2024; 19:e0314765. [PMID: 39636946 PMCID: PMC11620684 DOI: 10.1371/journal.pone.0314765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is exacerbated in patients on antithrombotic medications, with warfarin leading to increased bleeding in some cases. However, the extent to which this bleeding increases lethality and its long-term effects remain unclear. This study aimed to investigate the exacerbation of TBI by warfarin treatment and comprehensively evaluate the impact of TBI on the anticoagulant effects of warfarin. METHODS We induced TBI in mice after pre-treatment with warfarin and analyzed TBI exacerbation based on the prothrombin time-international normalized ratio (PT-INR) value, brain hemorrhage volume, blood warfarin and 7-hydroxywarfarin levels, and cytochrome P450 2C9 (CYP2C9) protein expression. C57BL/6J mice fed with a vitamin K-deficient diet received oral warfarin (low dose, 0.35 mg/kg/24 h; high dose, 0.70 mg/kg/24 h), and focal brain damage was induced in the cerebral cortices using a brain contusion device. Warfarin-treated injured mice were compared with sham-treated mice (scalp incision alone or scalp incision + bone window formation). RESULTS When warfarin was administered, the PT-INR value and brain hemorrhage volume associated with cerebral contusion increased on the first day post-injury. High blood warfarin and 7-hydroxywarfarin levels were observed. However, no significant differences in CYP2C9 expression were observed between the groups. DISCUSSION Elevated warfarin levels post-injury can increase cerebral hemorrhage risk, possibly worsening TBI. TBI might also elevate warfarin levels, heightening its anticoagulant effects. Therefore, assessing injury severity levels and PT-INR values in patients with TBI on warfarin is crucial to anticipate delayed bleeding risks.
Collapse
Affiliation(s)
- Yuki Tatara
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ken-ichiro Nakao
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ryo Shimada
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazuhiko Kibayashi
- Department of Forensic Medicine, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Khoshkroodian B, Javid H, Pourbadie HG, Sayyah M. Toll-Like Receptor 1/2 Postconditioning by the Ligand Pam3cys Tempers Posttraumatic Hyperexcitability, Neuroinflammation, and Microglial Response: A Potential Candidate for Posttraumatic Epilepsy. Inflammation 2024:10.1007/s10753-024-02109-z. [PMID: 39044002 DOI: 10.1007/s10753-024-02109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.
Collapse
Affiliation(s)
- Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Hanieh Javid
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
- Department of Neuroscience and Addition, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Street, Tehran, 13169455, Iran.
| |
Collapse
|
3
|
Wang J, Wang L, Wu Q, Cai Y, Cui C, Yang M, Sun B, Mao L, Wang Y. Interleukin-4 Modulates Neuroinflammation by Inducing Phenotypic Transformation of Microglia Following Subarachnoid Hemorrhage. Inflammation 2024; 47:390-403. [PMID: 37898992 PMCID: PMC10799105 DOI: 10.1007/s10753-023-01917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Neuroinflammation, a key pathological feature following subarachnoid hemorrhage (SAH), can be therapeutically targeted by inhibiting microglia M1 polarization and promoting phenotypic transformation to M2 microglia. Interleukin-4 (IL-4) is a pleiotropic cytokine known to its regulation of physiological functions of the central nervous system (CNS) and mediate neuroinflammatory processes. However, its specific role in neuroinflammation and microglia responses following SAH remains unexplored. In this investigation, we established both in vivo and in vitro SAH models and employed a comprehensive array of assessments, including ELISA, neurofunctional profiling, immunofluorescence staining, qRT-PCR, determination of phagocytic capacity, and RNA-Seq analyses. The findings demonstrate an elevated expression of IL-4 within cerebrospinal fluid (CSF) subsequent to SAH. Furthermore, exogenous administration of IL-4 ameliorates post-SAH neurofunctional deficits, attenuates cellular apoptosis, fosters M2 microglia phenotype conversion, and mitigates neuroinflammatory responses. The RNA-Seq analysis signifies that IL-4 governs the modulation of neuroinflammation in microglia within an in vitro SAH model through intricate cascades of signaling pathways, encompassing interactions between cytokines and cytokine receptors. These discoveries not only augment comprehension of the neuropathogenesis associated with post-SAH neuroinflammation but also present novel therapeutic targets for the management thereof.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Lili Wang
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China
| | - Yichen Cai
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Chengfu Cui
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Ming Yang
- Department of Ultrasonic Diagnosis and Treatment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China.
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Leilei Mao
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Hirano Y, Nakagomi T, Nakano-Doi A, Kubo S, Minato Y, Sawano T, Sakagami M, Tsuzuki K. Microglia Negatively Regulate the Proliferation and Neuronal Differentiation of Neural Stem/Progenitor Cells Isolated from Poststroke Mouse Brains. Cells 2023; 12:2040. [PMID: 37626850 PMCID: PMC10453473 DOI: 10.3390/cells12162040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
We previously demonstrated that neural stem/progenitor cells (NSPCs) were induced within and around the ischemic areas in a mouse model of ischemic stroke. These injury/ischemia-induced NSPCs (iNSPCs) differentiated to electrophysiologically functional neurons in vitro, indicating the presence of a self-repair system following injury. However, during the healing process after stroke, ischemic areas were gradually occupied by inflammatory cells, mainly microglial cells/macrophages (MGs/MΦs), and neurogenesis rarely occurred within and around the ischemic areas. Therefore, to achieve neural regeneration by utilizing endogenous iNSPCs, regulation of MGs/MΦs after an ischemic stroke might be necessary. To test this hypothesis, we used iNSPCs isolated from the ischemic areas after a stroke in our mouse model to investigate the role of MGs/MΦs in iNSPC regulation. In coculture experiments, we show that the presence of MGs/MΦs significantly reduces not only the proliferation but also the differentiation of iNSPCs toward neuronal cells, thereby preventing neurogenesis. These effects, however, are mitigated by MG/MΦ depletion using clodronate encapsulated in liposomes. Additionally, gene ontology analysis reveals that proliferation and neuronal differentiation are negatively regulated in iNSPCs cocultured with MGs/MΦs. These results indicate that MGs/MΦs negatively impact neurogenesis via iNSPCs, suggesting that the regulation of MGs/MΦs is essential to achieve iNSPC-based neural regeneration following an ischemic stroke.
Collapse
Affiliation(s)
- Yoshinobu Hirano
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
| | - Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Masafumi Sakagami
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| | - Kenzo Tsuzuki
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| |
Collapse
|
5
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Usmanov ES, Chubarova MA, Saidov SK. Emerging Trends in the Use of Therapeutic Hypothermia as a Method for Neuroprotection in Brain Damage (Review). Sovrem Tekhnologii Med 2021; 12:94-104. [PMID: 34796010 PMCID: PMC8596265 DOI: 10.17691/stm2020.12.5.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.
Collapse
Affiliation(s)
- E Sh Usmanov
- Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - M A Chubarova
- Junior Researcher, Laboratory of Clinical Neurophysiology; Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| | - Sh Kh Saidov
- Senior Researcher, Laboratory of Clinical Neurophysiology Federal Clinical Research Centre for Intensive Care Medicine and Rehabilitology, 777 Lytkino Village, Solnechnogorsk District, Moscow Region, 141534, Russia
| |
Collapse
|
7
|
Teng SW, Sung HY, Wen YC, Chen SY, Lovel R, Chang WY, Wu TBC, Hsuan YCY, Lin W. Potential surrogate quantitative immunomodulatory potency assay for monitoring human umbilical cord-derived mesenchymal stem cells production. Cell Biol Int 2021; 45:1072-1081. [PMID: 33470478 DOI: 10.1002/cbin.11553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 11/11/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role as immune modulator through interaction with several immune cells, including macrophages. In this study, the immunomodulatory potency of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) was demonstrated in the in vivo middle cerebral artery occlusion (MCAo)-induced brain injury rat model and in vitro THP-1-derived macrophages model. At 24 h after induction of MCAo, hUC-MSCs was administered via tail vein as a single dose. Remarkably, hUC-MSCs could inhibit M1 polarization and promote M2 polarization of microglia in vivo after 14 days induction of MCAo. Compared with THP-1-derived macrophages which had been stimulated by lipopolysaccharide, the secretion of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ inducible protein (IP-10), were significantly reduced in the presence of hUC-MSCs. Moreover, the secretion of anti-inflammatory cytokine, interleukin-10 (IL-10), was significantly increased after cocultured with hUC-MSCs. Prostaglandins E2 (PGE2), secreted by hUC-MSCs, is one of the crucial immunomodulatory factors and could be inhibited in the presence of COX2 inhibitor, NS-398. PGE2 inhibition suppressed hUC-MSCs immunomodulatory capability, which was restored after addition of synthetic PGE2, establishing the minimum amount of PGE2 required for immunomodulation. In conclusion, our data suggested that PGE2 is a crucial potency marker involved in the therapeutic activity of hUC-MSCs through macrophages immune response modulation and cytokines regulation. This study provides the model for the development of a surrogate quantitative potency assay of immunomodulation in stem cells production.
Collapse
Affiliation(s)
- Sen-Wen Teng
- Department of Obstetrics and Gynecology, Cardinal Tien Hospital, New Taipei, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | | | | | | | | | | | | | - Yogi Cheng-Yo Hsuan
- Meribank Biotech Co., Ltd., Taipei, Taiwan.,Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| |
Collapse
|
8
|
Han M, Cao Y, Guo X, Chu X, Li T, Xue H, Xin D, Yuan L, Ke H, Li G, Wang Z. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother 2021; 133:111048. [PMID: 33378955 DOI: 10.1016/j.biopha.2020.111048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an acute and severe disease with high disability and mortality. Inflammatory reactions have been proven to occur throughout SAH. Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have shown broad potential for the treatment of brain dysfunction and neuroprotective effects through neurogenesis and angiogenesis after stroke. However, the mechanisms of EVs in neuroinflammation during the acute phase of SAH are not well known. Our present study was designed to investigate the effects of MSCs-EVs on neuroinflammation and the polarization regulation of microglia to the M2 phenotype and related signaling pathways after SAH in rats. The SAH model was induced by an improved method of intravascular perforation, and MSCs-EVs were injected via the tail vein. Post-SAH assessments included neurobehavioral tests as well as brain water content, immunohistochemistry, PCR and Western blot analyses. Our results showed that MSCs-EVs alleviated the expression of inflammatory cytokines in the parietal cortex and hippocampus 24 h and 48 h after SAH and that MSCs-EVs inhibited NF-κB and activated AMPK to reduce inflammation after SAH. Furthermore, MSC-EVs regulated the polarization of microglia toward the M2 phenotype by downregulating interleukin-1β, cluster of differentiation 16, cluster of differentiation 11b, and inducible nitric oxide synthase and upregulating the expression of cluster of differentiation 206 and arginase-1. Additionally, MSCs-EVs inhibited the neuroinflammatory response and had neuroprotective effects in the brain tissues of rats after SAH. This study may support their use as a potential treatment strategy for early SAH in the future.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ying Cao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaofan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lin Yuan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
9
|
Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L. Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:4231-4239. [PMID: 33170612 DOI: 10.1021/acschemneuro.0c00517] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The newly highlighted research into programmed cell death (PCD), autophagy dependent cell death and pyroptotic cell death, has shown that these processes are both strongly correlated with the pathological progression of traumatic brain injury (TBI). However, their cross-talk in TBI remains unclear. Here, a moderate TBI model was established to explore the relationship between autophagy and pyroptosis. Rapamycin was used to activate the process of autophagy, which was impaired in the moderate TBI model, and this treatment reversed the expression of pyroptosis associated proteins, interleukin-13 (IL-13) and the pJAK-1 pathway, which were upregulated significantly after TBI. The level of IL-13 was downregulated, and the JAK-1 pathway was blocked to reveal the molecular mechanisms by which autophagy inhibits pyroptosis; these two treatments reduced the expression levels of pyroptosis associated proteins. In addition, these three interventions reduced the formation of neuronal NLRP3, the extent of brain edema, and the degree of cortical neuron degeneration. Furthermore, the deficit in motor function post-TBI was also markedly alleviated. Collectively, our results demonstrated that autophagy activation exerts a neuroprotective effect by inhibiting pyroptotic cell death in the moderate TBI model, and the inhibitory effect was dependent on the downregulation of IL-13 and repression of the JAK-1-STAT-1 signaling pathway.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Ya’nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, China
| |
Collapse
|
10
|
Chen G, Gao C, Yan Y, Wang T, Luo C, Zhang M, Chen X, Tao L. Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model. Mol Neurobiol 2020; 57:5324-5335. [PMID: 32880859 DOI: 10.1007/s12035-020-02097-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) is a form of stroke, characterized by high morbidity and mortality and currently lacks specific therapy. ICH leads to endoplasmic reticulum (ER) stress, which can induce neurological impairment through crosstalk with programmed cell death (PCD). Pyroptosis, a newly discovered form of PCD, has received attention because of its close relationship with some certain diseases, such as traumatic brain injury and ischemic and hemorrhagic stroke. However, the relationship between ER stress and pyroptosis in ICH remains unclear. In this study, we investigated the role of ER stress in evoking neuronal pyroptosis and related mechanisms in a mouse ICH model. We used tauroursodeoxycholic acid (TUDCA) to inhibit ER stress and observed that TUDCA reduces neuronal pyroptosis and has a neuroprotective role. We explored the potential mechanisms underlying the regulation of neuronal pyroptosis by ER stress through testing the expression of interleukin-13 (IL-13). We found that ER stress inhibition alleviates neuronal pyroptosis through decreasing the expression of IL-13 after ICH. In summary, this study revealed that IL-13 is involved in ER stress-induced neuronal pyroptosis after ICH, pointing to IL-13 as a novel therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Ya'nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| |
Collapse
|
11
|
Nicolas S, Léime CSÓ, Hoban AE, Hueston CM, Cryan JF, Nolan YM. Enduring effects of an unhealthy diet during adolescence on systemic but not neurobehavioural measures in adult rats. Nutr Neurosci 2020; 25:657-669. [PMID: 32723167 DOI: 10.1080/1028415x.2020.1796041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Adolescence is an important stage of maturation for various brain structures. It is during this time therefore that the brain may be more vulnerable to environmental factors such as diet that may influence mood and memory. Diets high in fat and sugar (termed a cafeteria diet) during adolescence have been shown to negatively impact upon cognitive performance, which may be reversed by switching to a standard diet during adulthood. Consumption of a cafeteria diet increases both peripheral and central levels of interleukin-1β (IL-1β), a pro-inflammatory cytokine which is also implicated in cognitive impairment during the ageing process. It is unknown whether adolescent exposure to a cafeteria diet potentiates the negative effects of IL-1β on cognitive function during adulthood.Methods: Male Sprague-Dawley rats consumed a cafeteria diet during adolescence after which time they received a lentivirus injection in the hippocampus to induce chronic low-grade overexpression of IL-1β. After viral integration, metabolic parameters, circulating and central pro-inflammatory cytokine levels, and cognitive behaviours were assessed.Results: Our data demonstrate that rats fed the cafeteria diet exhibit metabolic dysregulations in adulthood, which were concomitant with low-grade peripheral and central inflammation. Overexpression of hippocampal IL-1β in adulthood impaired spatial working memory. However, adolescent exposure to a cafeteria diet, combined with or without hippocampal IL-1β in adulthood did not induce any lasting cognitive deficits when the diet was replaced with a standard diet in adulthood. Discussion: These data demonstrate that cafeteria diet consumption during adolescence induces metabolic and inflammatory changes, but not behavioural changes in adulthood.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ciarán S Ó Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Miao W, Zhao Y, Huang Y, Chen D, Luo C, Su W, Gao Y. IL-13 Ameliorates Neuroinflammation and Promotes Functional Recovery after Traumatic Brain Injury. THE JOURNAL OF IMMUNOLOGY 2020; 204:1486-1498. [PMID: 32034062 DOI: 10.4049/jimmunol.1900909] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Microglia play essential roles in neuroinflammatory responses after traumatic brain injury (TBI). Our previous studies showed that phenotypes of microglia, as well as infiltrating macrophages, altered at different stages after CNS injury, which was correlated to functional outcomes. IL-13 is an anti-inflammatory cytokine that has been reported to protect against demyelination and spinal cord injury through immunomodulation. The effects of IL-13 in microglia/macrophage-mediated immune responses after TBI remain unknown. In this study, we showed that intranasal administration of IL-13 in male C57BL/6J mice accelerated functional recovery in the controlled cortical impact model of TBI. IL-13 treatment increased the time to fall off in the Rotarod test, reduced the number of foot faults in the foot fault test, and improved the score in the wire hang test up to 28 d after TBI. Consistent with functional improvement, IL-13 reduced neuronal tissue loss and preserved white matter integrity 6 d after TBI. Furthermore, IL-13 ameliorated the elevation of proinflammatory factors and reduced the number of proinflammatory microglia/macrophages 6 d after TBI. Additionally, IL-13 enhanced microglia/macrophage phagocytosis of damaged neurons in the peri-lesion areas. In vitro studies confirmed that IL-13 treatment inhibited the production of proinflammatory cytokines in rat primary microglia in response to LPS or dead neuron stimulation and increased the ability of microglia to engulf fluorophore-labeled latex beads or dead neurons. Collectively, we demonstrated that IL-13 treatment improved neurologic outcomes after TBI through adjusting microglia/macrophage phenotypes and inhibiting inflammatory responses. IL-13 may represent a potential immunotherapy to promote long-term recovery from TBI.
Collapse
Affiliation(s)
- Wanying Miao
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| | - Yongfang Zhao
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| | - Di Chen
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| | - Chen Luo
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| | - Wei Su
- Department of Neurosurgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; .,Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China; and
| |
Collapse
|
13
|
Carpenter JM, Gordon HE, Ludwig HD, Wagner JJ, Harn DA, Norberg T, Filipov NM. Neurochemical and neuroinflammatory perturbations in two Gulf War Illness models: Modulation by the immunotherapeutic LNFPIII. Neurotoxicology 2019; 77:40-50. [PMID: 31866310 DOI: 10.1016/j.neuro.2019.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
Abstract
Gulf War Illness (GWI) manifests a multitude of symptoms, including neurological and immunological, and approximately a third of the 1990-1991 Gulf War (GW) veterans suffer from it. This study sought to characterize the acute neurochemical (monoamine) and neuroinflammatory profiles of two established GWI animal models and examine the potential modulatory effects of the novel immunotherapeutic Lacto-N-fucopentaose III (LNFPIII). In Model 1, male C57BL/6 J mice were treated for 10 days with pyridostigmine bromide (PB) and permethrin (PM). In Model 2, a separate cohort of mice were treated for 14 days with PB and N,N-Diethyl-methylbenzamide (DEET), plus corticosterone (CORT) via drinking water on days 8-14 and diisopropylfluorophosphate (DFP) on day 15. LNFPIII was administered concurrently with GWI chemicals treatments. Brain and spleen monoamines and hippocampal inflammatory marker expression were examined by, respectively, HPLC-ECD and qPCR, 6 h post treatment cessation. Serotonergic (5-HT) and dopaminergic (DA) dyshomeostasis caused by GWI chemicals was apparent in multiple brain regions, primarily in the nucleus accumbens (5-HT) and hippocampus (5-HT, DA) for both models. Splenic levels of 5-HT (both models) and norepinephrine (Model 2) were also disrupted by GWI chemicals. LNFPIII treatment prevented many of the GWI chemicals induced monoamine alterations. Hippocampal inflammatory cytokines were increased in both models, but the magnitude and spread of inflammation was greater in Model 2; LNFPIII was anti-inflammatory, more so in the apparently milder Model 1. Overall, in both models, GWI chemicals led to monoamine disbalance and neuroinflammation. LNFPIII co-treatment prevented many of these disruptions in both models, which is indicative of its promise as a potential GWI therapeutic.
Collapse
Affiliation(s)
- J M Carpenter
- Department of Physiology and Pharmacology, Athens, GA, United States
| | - H E Gordon
- Department of Physiology and Pharmacology, Athens, GA, United States
| | - H D Ludwig
- Department of Physiology and Pharmacology, Athens, GA, United States
| | - J J Wagner
- Department of Physiology and Pharmacology, Athens, GA, United States
| | - D A Harn
- Department of Infectious Diseases, Athens, GA, United States; Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, GA, United States
| | - T Norberg
- Department of Chemistry, University of Uppsala, Uppsala, Sweden
| | - N M Filipov
- Department of Physiology and Pharmacology, Athens, GA, United States.
| |
Collapse
|
14
|
Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg 2019; 131:126-132. [PMID: 31301445 DOI: 10.1016/j.wneu.2019.07.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Traumatic brain injury (TBI) refers to any insult to the brain resulting in primary (direct) and secondary (indirect) damage to the brain parenchyma. Secondary damage is often linked to the molecular mechanisms that occur post TBI and result in excitotoxicity, neuroinflammation and cytokine damage, oxidative damage, and eventual cell death as prominent mechanisms of cell damage. We present a review highlighting the relation of each of these mechanisms with TBI, their mode of damaging brain tissue, and therapeutic correlation. We also mention the long-term sequelae and their pathophysiology in relation to TBI focusing on Parkinson disease, Alzheimer disease, epilepsy, and chronic traumatic encephalopathy. Understanding of the molecular mechanisms is important in order to realize the secondary and long-term sequelae that follow primary TBI and to devise targeted therapy for quick recovery accordingly.
Collapse
Affiliation(s)
- Asma Akbar Ladak
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| | | |
Collapse
|
15
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Xue WK, Zhao WJ, Meng XH, Shen HF, Huang PZ. Spinal cord injury induced Neuregulin 1 signaling changes in mouse prefrontal cortex and hippocampus. Brain Res Bull 2019; 144:180-186. [PMID: 30529367 DOI: 10.1016/j.brainresbull.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
|
17
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018; 9:964. [PMID: 30498469 PMCID: PMC6249371 DOI: 10.3389/fneur.2018.00964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
18
|
Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases. Int J Mol Sci 2018; 19:ijms19082208. [PMID: 30060570 PMCID: PMC6121620 DOI: 10.3390/ijms19082208] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Macrophages can polarize into two different states (M1 and M2), which play contrasting roles during pathogenesis or tissue damage. M1 polarized macrophages produce pro-inflammatory cytokines and mediators resulting in inflammation, while M2 macrophages have an anti-inflammatory effect. Secretion of appropriate cytokines and chemokines from macrophages can lead to the modification of the microenvironment for bridging innate and adaptive immune responses. Increasing evidence suggests that polarized macrophages are pivotal for disease progression, and the regulation of macrophage polarization may provide a new approach in therapeutic treatment of inflammation-related diseases, including cancer, obesity and metabolic diseases, fibrosis in organs, brain damage and neuron injuries, and colorectal disease. Polarized macrophages affect the microenvironment by secreting cytokines and chemokines while cytokines or mediators that are produced by resident cells or tissues may also influence macrophages behavior. The interplay of macrophages and other cells can affect disease progression, and therefore, understanding the activation of macrophages and the interaction between polarized macrophages and disease progression is imperative prior to taking therapeutic or preventive actions. Manipulation of macrophages can be an entry point for disease improvement, but the mechanism and potential must be understood. In this review, some advanced studies regarding the role of macrophages in different diseases, potential mechanisms involved, and intervention of drugs or phytochemicals, which are effective on macrophage polarization, will be discussed.
Collapse
|
19
|
Wen L, You W, Wang H, Meng Y, Feng J, Yang X. Polarization of Microglia to the M2 Phenotype in a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Manner Attenuates Axonal Injury Induced by Traumatic Brain Injury in Mice. J Neurotrauma 2018; 35:2330-2340. [PMID: 29649924 DOI: 10.1089/neu.2017.5540] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence indicates that activated microglia play an important role in the inflammatory response following traumatic brain injury (TBI). Inhibiting M1 and stimulating M2 activated microglia have demonstrated protective effects in several animal models of central nervous system diseases. However, it is not clear whether the polarization of microglia to M2 attenuates axonal injury following TBI. In this study, we used a lateral fluid percussion injury device to induce axonal injury in mice. Mice were randomly assigned to the sham, TBI, TBI + rosiglitazone (peroxisome proliferator-activated receptor gamma [PPAR-γ] agonist), and TBI + GW9662 (PPAR-γ antagonist) groups. Axonal injury was assessed using immunohistochemical staining for beta amyloid precursor protein. The inflammatory response was assessed by enzyme-linked immunosorbent assay, microglia polarization was assessed using specific markers of M1 and M2 microglia, and neurological function was assessed using the neurological severity score. Following TBI, microglia of the M1 phenotype increased significantly, while those of the M2 phenotype decreased. Rosiglitazone-induced PPAR-γ activation promoted microglia polarization to the M2 phenotype, which reduced the inflammatory response, attenuated axonal injury in the cerebral cortex, and improved neurological function. Conversely, GW9662 inhibited the polarization of microglia to M2 and aggravated inflammation and axonal injury. Our in vitro findings in lipopolysaccharide-induced microglia were consistent with those of our in vivo experiments. In conclusion, the polarization of microglia to the M2 phenotype via PPAR-γ activation attenuated axonal injury following TBI in mice, which may be a potential therapeutic approach for TBI-induced axonal injury.
Collapse
Affiliation(s)
- Liang Wen
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Wendong You
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Hao Wang
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Yuanyuan Meng
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | - Junfeng Feng
- 2 Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Xiaofeng Yang
- 1 Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
21
|
Abstract
Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.
Collapse
|
22
|
Truettner JS, Bramlett HM, Dietrich WD. Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the Cerebral Vasculature. J Neurotrauma 2018; 35:940-952. [PMID: 29108477 DOI: 10.1089/neu.2017.5303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion represents the majority of brain trauma in the United States. The pathophysiology of mTBI is complex and may include both focal and diffuse injury patterns. In addition to altered circuit dysfunction and traumatic axonal injury (TAI), chronic neuroinflammation has also been implicated in the pathophysiology of mTBI. Recently, our laboratory has reported the detrimental effects of mild hyperthermic mTBI in terms of worsening histopathological and behavioral outcomes. To clarify the role of temperature-sensitive neuroinflammatory processes on these consequences, we evaluated the effects of elevated brain temperature (39°C) on altered microglia/macrophage phenotype patterns after mTBI, changes in leukocyte recruitment, and TAI. Sprague-Dawley male rats underwent mild parasagittal fluid-percussion injury under normothermic (37°C) or hyperthermic (39°C) conditions. Cortical and hippocampal regions were analyzed using several cellular and molecular outcome measures. At 24 h, the ratio of iNOS-positive (M1 type phenotype) to arginase-positive (M2 type phenotype) cells after hyperthermic mTBI showed an increase compared with normothermia by flow cytometry. Inflammatory response gene arrays also demonstrated a significant increase in several classes of pro-inflammatory genes with hyperthermia treatment over normothermia. The injury-induced expression of chemokine ligand 2 (Ccl2) and alpha-2-macroglobulin were also increased with hyperthermic mTBI. With western blot analysis, an increase in CD18 and intercellular cell adhesion molecule-1 (ICAM-1) with hyperthermia and a significant increase in Iba1 reactive microglia are reported in the cerebral cortex. Together, these results demonstrate significant differences in the cellular and molecular consequences of raised brain temperature at the time of mTBI. The observed polarization toward a M1-phenotype with mild hyperthermia would be expected to augment chronic inflammatory cascades, sustained functional deficits, and increased vulnerability to secondary insults. Mild elevations in brain temperature may contribute to the more severe and longer lasting consequences of mTBI or concussion reported in some patients.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018. [PMID: 30498469 DOI: 10.3389/fneur.2018.00964/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
24
|
Truettner JS, Bramlett HM, Dietrich WD. Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J Cereb Blood Flow Metab 2017; 37:2952-2962. [PMID: 27864465 PMCID: PMC5536802 DOI: 10.1177/0271678x16680003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Posttraumatic inflammatory processes contribute to pathological and reparative processes observed after traumatic brain injury (TBI). Recent findings have emphasized that these divergent effects result from subsets of proinflammatory (M1) or anti-inflammatory (M2) microglia and macrophages. Therapeutic hypothermia has been tested in preclinical and clinical models of TBI to limit secondary injury mechanisms including proinflammatory processes. This study evaluated the effects of posttraumatic hypothermia (PTH) on phenotype patterns of microglia/macrophages. Sprague-Dawley rats underwent moderate fluid percussion brain injury with normothermia (37℃) or hypothermia (33℃). Cortical and hippocampal regions were analyzed using flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR) at several periods after injury. Compared to normothermia, PTH attenuated infiltrating cortical macrophages positive for CD11b+ and CD45high. At 24 h, the ratio of iNOS+ (M1) to arginase+ (M2) cells after hypothermia showed a decrease compared to normothermia. RT-PCR of M1-associated genes including iNOS and IL-1β was significantly reduced with hypothermia while M2-associated genes including arginase and CD163 were significantly increased compared to normothermic conditions. The injury-induced increased expression of the chemokine Ccl2 was also reduced with PTH. These studies provide a link between temperature-sensitive alterations in macrophage/microglia activation and polarization toward a M2 phenotype that could be permissive for cell survival and repair.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
25
|
Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 2017; 62:29-40. [PMID: 28755749 DOI: 10.1016/j.alcohol.2017.02.175] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
Microglia activation and neuroinflammation are common features of neurodegenerative conditions, including alcohol use disorders (AUDs). When activated, microglia span a continuum of diverse phenotypes ranging from classically activated, pro-inflammatory (M1) microglia/macrophages to alternatively activated, growth-promoting (M2) microglia/macrophages. Identifying microglia phenotypes is critical for understanding the role of microglia in the pathogenesis of AUDs. Therefore, male rats were gavaged with 25% (w/v) ethanol or isocaloric control diet every 8 h for 4 days and sacrificed at 0, 2, 4, and 7 days after alcohol exposure (e.g., T0, T2, etc.). Microglia were isolated from hippocampus and entorhinal cortices by Percoll density gradient centrifugation. Cells were labeled with microglia surface antigens and analyzed by flow cytometry. Consistent with prior studies, isolated cells yielded a highly enriched population of brain macrophages/microglia (>95% pure), evidenced by staining for the macrophage/microglia antigen CD11b. Polarization states of CD11b+CD45low microglia were evaluated by expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, CD86, and M2 surface marker, CD206 (mannose receptor). Ethanol-treated animals begin to show increased expression of M1 and M2 markers at T0 (p = n.s.), with significant changes at the T2 time point. At T2, expression of M1 markers, MHC-II, CD86, and CD32 were increased (p < 0.05) in hippocampus and entorhinal cortices, while M2 marker, CD206, was increased significantly only in entorhinal cortices (p < 0.05). All effects resolved to control levels by T4. In summary, four-day binge alcohol exposure produces a transient increase in both M1 (MHC-II, CD32, and CD86) and M2 (CD206) populations of microglia isolated from the entorhinal cortex and hippocampus. Thus, these findings that both pro-inflammatory and potentially beneficial, recovery-promoting microglia phenotypes can be observed after a damaging exposure of alcohol are critically important to our understanding of the role of microglia in the pathogenesis of AUDs.
Collapse
|
26
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
27
|
Prieto GA, Cotman CW. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev 2017; 34:27-33. [PMID: 28377062 PMCID: PMC5491344 DOI: 10.1016/j.cytogfr.2017.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA.
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
28
|
Zhao D, Mokhtari R, Pedrosa E, Birnbaum R, Zheng D, Lachman HM. Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress. Mol Autism 2017; 8:17. [PMID: 28367307 PMCID: PMC5372344 DOI: 10.1186/s13229-017-0134-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2+/-; Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Rayna Birnbaum
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| |
Collapse
|
29
|
Littlefield A, Kohman RA. Differential response to intrahippocampal interleukin-4/interleukin-13 in aged and exercise mice. Neuroscience 2016; 343:106-114. [PMID: 27916728 DOI: 10.1016/j.neuroscience.2016.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/28/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Normal aging is associated with low-grade neuroinflammation that results from age-related priming of microglial cells. Further, aging alters the response to several anti-inflammatory factors, including interleukin (IL)-4 and IL-13. One intervention that has been shown to modulate microglia activation in the aged brain, both basally and following an immune challenge, is exercise. However, whether engaging in exercise can improve responsiveness to anti-inflammatory cytokines is presently unknown. The current study evaluated whether prior exercise training increases sensitivity to anti-inflammatory cytokines that promote the M2 (alternative) microglia phenotype in adult (5-month-old) and aged (23-month-old) C57BL/6J mice. After 8weeks of exercise or control housing, mice received bilateral hippocampal injections of an IL-4/IL-13 cocktail or vehicle. Twenty-four hours later hippocampal samples were collected and analyzed for expression of genes associated with the M1 (inflammatory) and M2 microglia phenotypes. Results show that IL-4/IL-13 administration increased expression of the M2-associated genes found in inflammatory zone 1 (Fizz1), chitinase-like 3 (Ym1), Arginase-1 (Arg1), SOCS1, IL-1ra, and CD206. In response to IL-4/IL-13 administration, aged mice showed increased hippocampal expression of the M2-related genes Arg1, SOCS1, Ym1, and CD206 relative to adult mice. Aged mice also showed increased expression of IL-1β relative to adults, which was unaffected by wheel running or IL-4/IL-13. Wheel running was found to have modest effects on expression of Ym1 and Fizz1 in aged and adult mice. Collectively, our findings indicate that aged mice show a differential response to anti-inflammatory cytokines relative to adult mice and that exercise has limited effects on modulating this response.
Collapse
Affiliation(s)
- Alyssa Littlefield
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA; Rosalind Franklin University of Medicine and Science, Department of Neuroscience, North Chicago, IL, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
30
|
Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production. PLoS One 2016; 11:e0162497. [PMID: 27598576 PMCID: PMC5012572 DOI: 10.1371/journal.pone.0162497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology.
Collapse
|
31
|
Simon-O'Brien E, Gauthier D, Riban V, Verleye M. Etifoxine improves sensorimotor deficits and reduces glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury. J Neuroinflammation 2016; 13:203. [PMID: 27565146 PMCID: PMC5002207 DOI: 10.1186/s12974-016-0687-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in important neurological impairments which occur through a cascade of deleterious physiological events over time. There are currently no effective treatments to prevent these consequences. TBI is followed not only by an inflammatory response but also by a profound reorganization of the GABAergic system and a dysregulation of translocator protein 18 kDa (TSPO). Etifoxine is an anxiolytic compound that belongs to the benzoxazine family. It potentiates GABAergic neurotransmission, either through a positive allosteric effect or indirectly, involving the activation of TSPO that leads to an increase in neurosteroids synthesis. In several models of peripheral nerve injury, etifoxine has been demonstrated to display potent regenerative and anti-inflammatory properties and to promote functional recovery. Prior study also showed etifoxine efficacy in reducing brain edema in rats. In light of these positive results, we used a rat model of TBI to explore etifoxine treatment effects in a central nervous system injury, from functional outcomes to the underlying mechanisms. Methods Male Sprague-Dawley rats received contusion (n = 18) or sham (n = 19) injuries centered laterally to bregma over the left sensorimotor cortex. They were treated with etifoxine (50 mg/kg, i.p.) or its vehicle 30 min following injury and every day during 7 days. Rats underwent behavioral testing to assess sensorimotor function. In another experiment, injured rats (n = 10) or sham rats (n = 10) received etifoxine (EFX) (50 mg/kg, i.p.) or its vehicle 30 min post-surgery. Brains were then dissected for analysis of neuroinflammation markers, glial activation, and neuronal degeneration. Results Brain-injured rats exhibited significant sensorimotor function deficits compared to sham-injured rats in the bilateral tactile adhesive removal test, the beam walking test, and the limb-use asymmetry test. After 2 days of etifoxine treatment, behavioral impairments were significantly reduced. Etifoxine treatment reduced pro-inflammatory cytokines levels without affecting anti-inflammatory cytokines levels in injured rats, reduced macrophages and glial activation, and reduced neuronal degeneration. Conclusions Our results showed that post-injury treatment with etifoxine improved functional recovery and reduced neuroinflammation in a rat model of TBI. These findings suggest that etifoxine may have a therapeutic potential in the treatment of TBI.
Collapse
Affiliation(s)
| | - Delphine Gauthier
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| | - Véronique Riban
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| | - Marc Verleye
- Pharmacology Department, Biocodex, Chemin d'Armancourt, 60200, Compiègne, France
| |
Collapse
|
32
|
Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 2016; 13:117. [PMID: 27220367 PMCID: PMC4879757 DOI: 10.1186/s12974-016-0581-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
Background Macrophage polarization programs, commonly referred to as “classical” and “alternative” activation, are widely considered as distinct states that are exclusive of one another and are associated with different functions such as inflammation and wound healing, respectively. In a number of disease contexts, such as traumatic brain injury (TBI), macrophage polarization influences the extent of pathogenesis, and efforts are underway to eliminate pathogenic subsets. However, previous studies have not distinguished whether the simultaneous presence of both classical and alternative activation signatures represents the admixture of differentially polarized macrophages or if they have adopted a unique state characterized by components of both classical and alternative activation. Methods We analyzed the gene expression profiles of individual monocyte-derived brain macrophages responding to TBI using single-cell RNA sequencing. RNA flow cytometry was used as another single-cell analysis technique to validate the single-cell RNA sequencing results. Results The analysis of signature polarization genes by single-cell RNA sequencing revealed the presence of diverse activation states, including M(IL4), M(IL10), and M(LPS, IFNγ). However, the expression of a given polarization marker was no more likely than at random to predict simultaneous expression or repression of markers of another polarization program within the same cell, suggesting a lack of exclusivity in macrophage polarization states in vivo in TBI. Also unexpectedly, individual TBI macrophages simultaneously expressed high levels of signature polarization genes across two or three different polarization states and in several distinct and seemingly incompatible combinations. Conclusions Single-cell gene expression profiling demonstrated that monocytic macrophages in TBI are not comprised of distinctly polarized subsets but are uniquely and broadly activated. TBI macrophage activation in vivo is deeply complex, with individual cells concurrently adopting both inflammatory and reparative features with a lack of exclusivity. These data provide physiologically relevant evidence that the early macrophage response to TBI is comprised of novel activation states that are discordant with the current paradigm of macrophage polarization—a key consideration for therapeutic modulation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0581-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles C Kim
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, 1001 Potrero Avenue, Building 3, Room 603, Box 1234, San Francisco, CA, 94143-1234, USA.,Current address: Verily, Mountain View, CA, 94043, USA
| | - Mary C Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 4150 Clement St. 111R, San Francisco, CA, 94121, USA.,Research Department, Immunology Section, San Francisco VA Medical Center, 4150 Clement St. 111R, San Francisco, CA, 94121, USA
| | - Christine L Hsieh
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 4150 Clement St. 111R, San Francisco, CA, 94121, USA. .,Research Department, Immunology Section, San Francisco VA Medical Center, 4150 Clement St. 111R, San Francisco, CA, 94121, USA.
| |
Collapse
|