1
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Hayat S, Asad A, Hasan I, Jahan I, Papri N, Howlader ZH, Islam Z. Nucleotide oligomerization domain polymorphism confers no risk to Guillain-Barré syndrome. Acta Neurol Scand 2022; 146:177-185. [PMID: 35652365 DOI: 10.1111/ane.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Nucleotide oligomerization domain (NOD) proteins are cytoplasmic receptors that play important roles in host innate immune responses to pathogens by recognizing self or non-self-molecules and have been implicated in many autoimmune diseases including Guillain-Barré syndrome (GBS). The current study investigated whether NOD polymorphisms (NOD1-Glu266Lys, rs2075820, and NOD2- [Arg702Trp, rs2066844 and Gly908Arg, rs2066845]) contribute to ligand sensing and thus affect the susceptibility and/or severity of GBS. MATERIALS AND METHODS We determined single nucleotide polymorphisms (SNPs) of NOD gene (NOD1-Glu266Lys and NOD2-[Arg702Trp; Gly908Ar]) in 303 patients with GBS and 303 healthy controls from Bangladesh by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing. Genotypes and allele frequencies were compared by performing chi-squared or Fisher's exact test with Yates' continuity correction. Serology for Campylobacter jejuni and anti-GM1 antibodies were determined by enzyme-linked immunosorbent assay (ELISA) techniques. RESULTS NOD variants (NOD1-Glu266Lys and NOD2- [Arg702Trp; Gly908Arg]) were not associated with susceptibility and severity of GBS when compared with healthy controls and mild or severe form of disease. Moreover, NOD2 polymorphisms showed wild-type NOD2 C2104 and NOD2 G2722, respectively, with homozygous Arg/Arg genotype of NOD2 (Arg702Trp) polymorphism and homozygous Gly/Gly genotype of NOD2 (Gly908Arg) for all study subjects in Bangladesh. Homogenous distribution of NOD1 genotypes was observed in patients with axonal and demyelinating form of GBS. CONCLUSIONS NOD variants confer no risk to the susceptibility and severity of GBS. Moreover, NOD2 polymorphism is rare or absent in patients with GBS as well as in the healthy individuals of Bangladesh.
Collapse
Affiliation(s)
- Shoma Hayat
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Asaduzzaman Asad
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Imran Hasan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Israt Jahan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Nowshin Papri
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | | | - Zhahirul Islam
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| |
Collapse
|
3
|
Genetic basis of Guillain-Barre syndrome. J Neuroimmunol 2021; 358:577651. [PMID: 34246981 DOI: 10.1016/j.jneuroim.2021.577651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 01/13/2023]
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune disease in which the peripheral nerves are affected. GBS has different subtypes, such as acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). Infections, e.g. Campylobacter jejuni, influenza, etc., can lead to GBS. Both environmental and genetic factors play a major role in the occurrence of GBS. Several studies have investigated the genetic basis of GBS. Human leukocyte antigens (HLA) genes, Cluster of Differentiation (CD) 1A, FAS, Fc gamma receptors (FcGR), Intercellular adhesion molecule-1 (ICAM1), different interleukins, Nucleotide oligomerization domain (NOD), Toll-like receptor 4 (TLR4), Tumor necrosis factor-α (TNF-α) are among the genes reported to be involved in susceptibility to the disease. Dysregulation and dysfunction of the mentioned gene products, even though their role in the pathogenesis of GBS is controversial, play a role in inflammatory pathways, regulation of immune cells and system, antigen presentation, axonal degeneration, apoptosis, and cross-reaction. This review aims to summarize associated genes with GBS to contribute to better understanding of GBS pathogenesis and discover the gene pathways that play role in GBS occurrence.
Collapse
|
4
|
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders. J Physiol 2021; 599:1379-1389. [PMID: 33404072 DOI: 10.1113/jp279771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the gut microbiota has been increasingly implicated in the development of many extraintestinal disorders, including neurodevelopmental and neurodegenerative disorders. Despite this growing connection, our understanding of the precise mechanisms behind these effects is currently lacking. Pattern recognition receptors (PRRs) are important innate immune proteins expressed on the surface and within the cytoplasm of a multitude of cells, both immune and otherwise, including epithelial, endothelial and neuronal. PRRs comprise four major subfamilies: the Toll-like receptors (TLRs), the nucleotide-binding oligomerization domain leucine rich repeats-containing receptors (NLRs), the retinoic acid inducible gene 1-like receptors and the C-type lectin receptors. Recognition of commensal bacteria by PRRs is critical for maintaining host-microbe interactions and homeostasis, including behaviour. The expression of PRRs on multiple cell types makes them a highly interesting and novel target for regulation of host-microbe signalling, which may lead to gut-brain signalling. Emerging evidence indicates that two of the four known families of PRRs (the NLRs and the TLRs) are involved in the pathogenesis of neurodevelopmental and neurodegenerative disorders via the gut-brain axis. Taken together, increasing evidence supports a role for these PRRs in the development of neurological disorders, including Alzheimer's disease, Parkinson's disease and multiple sclerosis, via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Zhao Y, Zhu R, Tian D, Liu X. Genetic polymorphisms in Guillain-Barré Syndrome: A field synopsis and systematic meta-analysis. Autoimmun Rev 2020; 19:102665. [PMID: 32949724 DOI: 10.1016/j.autrev.2020.102665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Guillain-Barré Syndrome (GBS) is considered to be a complex immune-mediated neuropathy. In the past few years, numerous studies were performed to detect the association between genetic polymorphisms and GBS risk. However, the findings of these studies were controversial. Thus, we conducted this field synopsis and systematic meta-analysis for further evaluating the possible associations between all available genetic polymorphisms and GBS susceptibility. METHODS Relevant studies focusing on the association between all genetic polymorphisms and GBS risk were obtained by a comprehensive literature search. The pooled odds ratios (ORs) as well as 95% confidence intervals (CIs) were used for assessing the strength of association. Subgroup analyses stratified by ethnicity and GBS subtype were further performed. Moreover, sensitive analysis and publication bias were conducted for evaluating the reliability of the results. RESULTS Among the initial identified 333 articles, 41 articles reporting on 220 genetic polymorphisms were extracted for conducting this systematic review. Then, we performed 95 primary and 94 subgroup meta-analyses for 59 variants with at least three independent studies available. The results showed significant association between four variants (FcγR IIA rs1801274, TNF-α rs1800629, HLA DRB1*0401 and HLA DRB1*1301) and GBS susceptibility. In the subgroup analysis, three (TNF-α rs1800629, TNF-α rs1800630 and TLR4 rs4986790) and two (FcγR IIA rs1801274, HLA DRB1*14) variants showed association with increased GBS risk in Asian and Caucasian population, respectively. Also, TNF-α rs1800629 was significant associated with AMAN subtypes of GBS. Furthermore, sensitivity analysis, funnel plots and Egger's test displayed robust results, except for FcγR IIA rs1801274. Additionally, for 161 variants with less than three studies, 17 genetic variants have been found to be significantly related with GBS risk in our systematic review. INTERPRETATION In our study, we assessed the association between all available genetic polymorphisms and GBS susceptibility. We hope our findings would be helpful for identifying novel genetic biomarkers and potential therapeutic targets for GBS.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
6
|
Belhaj R, Kaabachi W, Khalfallah I, Hamdi B, Hamzaoui K, Hamzaoui A. Gene Variants, mRNA and NOD1/2 Protein Levels in Tunisian Childhood Asthma. Lung 2019; 197:377-385. [PMID: 30874883 DOI: 10.1007/s00408-019-00209-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common respiratory childhood disease that results from an interaction between genetic, environmental and immunologic factors. The implication of nucleotide-binding and oligomerization domain 1 and 2 (NOD1/CARD4, NOD2/CARD15) was highlighted in many inflammatory diseases. METHODS In this case-control study, we analyzed the association of three NOD2 polymorphisms and one NOD1 variant, in 338 Tunisian asthmatic children and 425 healthy Controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. We also assessed NOD1 and NOD2 mRNA and protein levels by qRT-PCR and ELISA techniques. RESULTS The homozygous AA genotype of rs2075820 was a risk factor for asthma (OR 2.39). The influence of the E266K variant in the presence of the heterozygous AG genotype was higher in male than female groups. The homozygous AA genotype was a risk factor associated with asthma, for patients aged between 6 and 18 years OR 2.39, IC95% (1.04-5.49) p < 0.01. The mRNA expression of NOD1, but not NOD2, was enhanced in asthma patients compared to Controls. We noted a significant difference between asthmatics and healthy controls in NOD1 protein expression (asthma patients : 31.18 ± 10.9 pg/ml, Controls: 20.10 ± 2.58 pg/ml; p < 0.001). CONCLUSIONS The NOD1 rs2075820 variant was associated with a higher childhood asthma risk and the NOD1 expression at mRNA and protein levels was significantly increased in asthma patients.
Collapse
Affiliation(s)
- Rafik Belhaj
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia. .,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia
| | - Ikbel Khalfallah
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Basma Hamdi
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Agnes Hamzaoui
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia.,Unit Research Homeostasis and Cell dysfunction, Medicine Faculty of Tunis, 15 Rue Djebel Lakdar 1007, Tunisia, Tunisia
| |
Collapse
|
7
|
Al-Anazi MR, Nazir N, Abdo AA, Sanai FM, Alkahtani S, Alarifi S, Alkahtane AA, Al-Yahya H, Ali D, Alessia MS, Al-Ahdal MN, Al-Qahtani AA. Genetic variations of NOD2 and MD2 genes in hepatitis B virus infection. Saudi J Biol Sci 2016; 26:270-280. [PMID: 31485165 PMCID: PMC6717085 DOI: 10.1016/j.sjbs.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Nucleotide oligomerization domain 2 (NOD2) and myeloid differentiation protein 2 (MD-2) have crucial roles in the innate immune system. NOD2 is a member of the NOD-like receptor (NLR) family of pattern recognition receptors (PRRs), while MD-2 is a co-receptor for Toll-like receptor 4 (TLR4), which comprises another group of PRRs. Genetic variations in the NOD2 and MD-2 genes may be susceptibility factors to viral pathogens including hepatitis B virus (HBV). We investigated whether polymorphisms at NOD2 (rs2066845 and rs2066844) or at MD-2 (rs6472812 and rs11466004) were associated with susceptibility to HBV infection and advancement to related liver complications in a Saudi Arabian population. Methods: A total of 786 HBV-infected patients and 600 healthy uninfected controls were analyzed in the present study. HBV-infected patients were categorized into three groups based on the clinical stage of the infection: inactive HBV carriers, active HBV carriers, and patients with liver cirrhosis + hepatocellular carcinoma (HCC). Results: All four SNPs were significantly associated with susceptibility to HBV infection although none of the SNPs tested in NOD2 and MD-2 were significantly associated with persistence of HBV infection. We found that HBV-infected patients that were homozygous CC for rs2066845 in the NOD2 gene were at a significantly increased risk of progression to HBV-related liver complications (Odds Ratio = 7.443 and P = 0.044). Furthermore, haplotype analysis found that the rs2066844-rs2066845 C-G and T-G haplotypes at the NOD2 gene and four rs6472812-rs11466004 haplotypes (G-C, G-T, A-C, and A-T) at the MD-2 gene were significantly associated with HBV infection in the affected cohort compared to those found in our control group. Conclusion: We found that the single nucleotide polymorphisms rs2066844 and rs2066845 at NOD2 and rs6472812 and rs11466004 at MD-2 were associated with susceptibility to HBV infection in a Saudi population.
Collapse
Affiliation(s)
- Mashael R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Nyla Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ayman A Abdo
- Section of Gastroenterology, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alkahtane
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hamad Al-Yahya
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alessia
- Department of Biology, Science College, AI-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|