1
|
Minowa K, Rodriguez-Agudo D, Suzuki M, Muto Y, Hirai S, Wang Y, Su L, Zhou H, Chen Q, Lesnefsky EJ, Mitamura K, Ikegawa S, Takei H, Nittono H, Fuchs M, Pandak WM, Kakiyama G. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease. J Lipid Res 2023; 64:100363. [PMID: 36966904 PMCID: PMC10182330 DOI: 10.1016/j.jlr.2023.100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yamato Muto
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Saeko Hirai
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Lianyong Su
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Huiping Zhou
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Qun Chen
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - Kuniko Mitamura
- Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Shigeo Ikegawa
- Division of Research and Development, Genmaikoso Co. Ltd., Sapporo, Hokkaido, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA, USA.
| |
Collapse
|
2
|
Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, Hashiguchi T, Liu X, Green R, Erickson S, Gil G, Fuchs M, Suzuki M, Murai T, Nittono H, Hylemon PB, Zhou H, Pandak WM. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res 2020; 61:1629-1644. [PMID: 33008924 PMCID: PMC7707165 DOI: 10.1194/jlr.ra120000924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Rebecca Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Sandra A LaSalle
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | | | - Xiaoying Liu
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Green
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Erickson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Phillip B Hylemon
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|