1
|
Dy Closas AMF, Tan AH, Tay YW, Hor JW, Toh TS, Lim JL, Lew CY, Cham CY, Yim CCW, Chee KY, Ng CG, Lit LC, Anuar ANK, Lange LM, Fang ZH, Ciga SB, Lohmann K, Klein C, Ahmad-Annuar A, Muthusamy KA, Lim SY. New insights from a Malaysian real-world deep brain stimulation cohort. JOURNAL OF PARKINSON'S DISEASE 2025; 15:189-201. [PMID: 39973484 DOI: 10.1177/1877718x241297715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundThe availability of deep brain stimulation (DBS), a highly efficacious treatment for several movement disorders, remains low in developing countries, with scarce data available on utilization and outcomes.ObjectiveWe characterized the DBS cohort and outcomes at a Malaysian quaternary medical center.MethodsA retrospective chart review was done on DBS-related surgery at the University of Malaya, including clinico-demographic, genetics, and outcomes data focusing on post-operative medication reduction and complications.Results149 Parkinson's disease (PD) patients underwent DBS targeting the subthalamic nucleus. Six had globus pallidus internus DBS (primarily for dystonia). Only 16.1% of patients were government-funded. Of the 133 PD patients operated in the past decade (2013-2022), 25 (18.8%) had disease duration <5 years. At 6-12 months post-DBS, median levodopa-equivalent daily dose (LEDD) reduction was 440.5 [418.9] mg/day, corresponding to a reduction of ≥50% and ≥30% in 42.2% and 69.8% of patients, respectively. LEDD reductions were larger in the early-onset and short-duration subgroups. Three patients (1.9% of 155) had symptomatic intracranial hemorrhage, resulting in stroke in two. Pathogenic monogenic or GBA1 variants were detected in 12/76 (16%) of patients tested, mostly comprising the "severe" GBA1 variant p.L483P (12%).ConclusionsThis is the largest report on DBS from Southeast Asia. The procedures were effective, and complication rates on par with international norms. Our study found a high frequency of GBA1-PD; and included a substantial number of patients with short-duration PD, who had good outcomes. It also highlights regional inequities in access to device-aided therapy.
Collapse
Affiliation(s)
- Alfand Marl F Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choey Yee Lew
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Yoong Cham
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Carolyn Chue Wai Yim
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Yoon Chee
- Department of Psychiatry and Mental Health, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Chong Guan Ng
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Lara M Lange
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Zih-Hua Fang
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen, Germany
| | - Sara Bandres Ciga
- Center for Alzheimer's Disease and Related Dementias (CARD), National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Katja Lohmann
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Onder H, Kertmen H, Comoglu S. Illustration of the Dramatic and Dynamic Efficacy of Chronic GPi-DBS Therapy in a Patient with Tardive Dyskinesia/Dystonia. Ann Indian Acad Neurol 2024; 27:90-92. [PMID: 38495233 PMCID: PMC10941891 DOI: 10.4103/aian.aian_799_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 03/19/2024] Open
Affiliation(s)
- Halil Onder
- Department of Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery Clinic, Etlik City Hospital, Ankara, Turkey
| | - Selcuk Comoglu
- Department of Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Chou PC, Lee Y, Chang YY, Lin PY, Wang LJ. The Outcome of Antipsychotics-induced Tardive Syndromes: A Ten-year Follow-up Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:488-498. [PMID: 37424417 PMCID: PMC10335907 DOI: 10.9758/cpn.22.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/04/2022] [Accepted: 11/23/2022] [Indexed: 07/11/2023]
Abstract
Objective Tardive syndrome (TS) is an umbrella term used to describe a group of abnormal movement disorders caused by chronic exposure to dopamine receptor blocking agents. Few follow-up studies have been performed on the outcome of TS in patients using antipsychotics. The purpose of our study was to investigate the prevalence, incidence, remission rate, and factors associated with remission in patients using antipsychotics. Methods This retrospective cohort study consisted of 123 patients who received continuous treatment of antipsychotics in a medical center in Taiwan, from April 1, 2011 to May 31, 2021. We assessed the demographic and clinical characteristics, prevalence, incidence, remission rate, and factors associated with remission in patients using antipsychotics. TS remission was defined as a Visual Analogue Scale score ≤ 3. Results Of the 92 patients who completed the 10-year follow-up, 39 (42.4%) were found to have at least one episode of TS, with tardive dyskinesia (TD) being the most prevalent subtype (51.3%). With regard to concurrent physical illness, a history of extrapyramidal symptoms were significant risk factors for TS. During the 10-year follow-up period, the remission rate of TS was 74.3%. The use of antioxidants including vitamin B6 and piracetam was related to the remission of TS. Patients with tardive dystonia had a higher remission rate (87.5%) compared to TD (70%). Conclusion Our study suggests that TS may be a treatable condition, and the key to a better outcome is early detection and prompt intervention, including closely monitoring antipsychotics-related TS symptoms and using antioxidants.
Collapse
Affiliation(s)
- Pei-Chien Chou
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu Lee
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Baláž M, Búřil J, Jurková T, Koriťáková E, Hrabovský D, Kunst J, Bártová P, Chrastina J. Intraoperative electrophysiological monitoring determines the final electrode position for pallidal stimulation in dystonia patients. Front Surg 2023; 10:1206721. [PMID: 37284558 PMCID: PMC10239835 DOI: 10.3389/fsurg.2023.1206721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective treatment for refractory dystonia. Neuroradiological target and stimulation electrode trajectory planning with intraoperative microelectrode recordings (MER) and stimulation are used. With improving neuroradiological techniques, the need for MER is in dispute mainly because of the suspected risk of hemorrhage and the impact on clinical post DBS outcome. Objective The aim of the study is to compare the preplanned GPi electrode trajectories with final trajectories selected for electrode implantation after electrophysiological monitoring and to discuss the factors potentially responsible for differences between preplanned and final trajectories. Finally, the potential association between the final trajectory selected for electrode implantation and clinical outcome will be analyzed. Methods Forty patients underwent bilateral GPi DBS (right-sided implants first) for refractory dystonia. The relationship between preplanned and final trajectories (MicroDrive system) was correlated with patient (gender, age, dystonia type and duration) and surgery characteristics (anesthesia type, postoperative pneumocephalus) and clinical outcome measured using CGI (Clinical Global Impression parameter). The correlation between the preplanned and final trajectories together with CGI was compared between patients 1-20 and 21-40 for the learning curve effect. Results The trajectory selected for definitive electrode implantation matched the preplanned trajectory in 72.5% and 70% on the right and left side respectively; 55% had bilateral definitive electrodes implanted along the preplanned trajectories. Statistical analysis did not confirm any of the studied factors as predictor of the difference between the preplanned and final trajectories. Also no association between CGI and final trajectory selected for electrode implantation in the right/left hemisphere has been proven. The percentages of final electrodes implanted along the preplanned trajectory (the correlation between anatomical planning and intraoperative electrophysiology results) did not differ between patients 1-20 and 21-40. Similarly, there were no statistically significant differences in CGI (clinical outcome) between patients 1-20 and 21-40. Conclusion The final trajectory selected after electrophysiological study differed from the preplanned trajectory in a significant percentage of patients. No predictor of this difference was identified. The anatomo-electrophysiological difference was not predictive of the clinical outcome (as measured using CGI parameter).
Collapse
Affiliation(s)
- Marek Baláž
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Búřil
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tereza Jurková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Koriťáková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Dušan Hrabovský
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jonáš Kunst
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Bártová
- Department of Neurology, Faculty Hospital Ostrava, Ostrava, Czechia
| | - Jan Chrastina
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Marini S, D'Agostino L, Ciamarra C, Gentile A. Deep brain stimulation for autism spectrum disorder. World J Psychiatry 2023; 13:174-181. [PMID: 37303931 PMCID: PMC10251363 DOI: 10.5498/wjp.v13.i5.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Deep brain stimulation (DBS) is a medical treatment that aims to obtain therapeutic effects by applying chronic electrical impulses in specific brain structures and neurological circuits. Over the years, DBS has been studied for the treatment of many psychiatric disorders. Scientific research on the use of DBS in people with autism has focused this interest mainly on treatment-resistant obsessive-compulsive disorder, drug-resistant epilepsy, self-injurious behaviors (SIB), and aggressive behaviors toward the self. Autism spectrum disorder (ASD) includes a group of developmental disabilities characterized by patterns of delay and deviance in the development of social, communicative, and cognitive skills and the presence of repetitive and stereotyped behaviors as well as restricted interests. People with autism often have numerous medical and psychiatric comorbidities that worsen the quality of life of patients and their caregivers. Obsessive-compulsive symptoms can be found in up to 81.3% of people with autism. They are often severe, refractory to treatment, and particularly difficult to treat. SIB has a high prevalence in severely retarded individuals and is often associated with autism. Drug treatment of both autism and SIB presents a therapeutic challenge. To describe the current state of the art regarding the efficacy of DBS in people with ASD, a literature search was conducted for relevant studies using the PubMed database. Thirteen studies have been considered in this paper. Up to date, DBS has been used for the stimulation of the nucleus accumbens, globus pallidus internus, anterior limb of the internal capsule, ventral anterior limb of the internal capsule, basolateral amygdala, ventral capsule and ventral striatum, medial forebrain bundle, and posterior hypothalamus. In the total sample of 16 patients, 4 were adolescents, and 12 were adults. All patients had symptoms resistant to multiple drug therapy. Many patients taken into consideration by the studies showed clinical improvements as evidenced by the scores of the psychopathological scales used. In some cases, clinical improvements have varied over time, which may require further investigation. Among the new therapeutic perspectives, DBS could be a valid option. However, further, and more in-depth research is needed in this field.
Collapse
Affiliation(s)
- Stefano Marini
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Lucia D'Agostino
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Carla Ciamarra
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Alessandro Gentile
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| |
Collapse
|
6
|
Grabel M, Merola A. Pallidal deep brain stimulation for tardive dystonia: meta-analysis of clinical outcomes. Neurol Sci 2023; 44:827-833. [PMID: 36378365 DOI: 10.1007/s10072-022-06506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Tardive dystonia (TD) is a disabling complication of pharmacological therapy with dopaminergic receptor antagonists, usually resistant to oral medications. Several reports have shown that deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) might be effective in TD, but the overall level of evidence remains limited to case reports or small case series. OBJECTIVES We sought to summarize the collective evidence in support of GPi-DBS for TD using a meta-analytic approach. METHODS We searched PubMed for human studies reporting tardive dystonia cases treated with GPi-DBS that reported the validated Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) as outcome measure. Data extracted were reviewed for risk of bias. Then, through linear mixed effects modeling of the percent improvement seen on an individual level, we estimated the average improvement effect varying by study. RESULTS The searching strategy resulted in a total of n = 78 studies, which were screened for eligibility criteria resulting in the inclusion of n = 14 studies, yielding 134 TD patients for the final analyses. The overall estimate improvement in the BFMDRS after GPi-DBS was 66.88 ± 11.96%. The review of individual case reports indicated rare worsening (n = 4) or lack of improvement (n = 3) following GPi-DBS. CONCLUSIONS Bilateral GPi-DBS can be an effective therapeutic option for severe cases of TD resistant to oral pharmacological therapies, even though rare cases of symptom worsening or lack of improvement have also been reported.
Collapse
Affiliation(s)
- Michael Grabel
- Department of Environmental Health Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Kettering Lab Building, Room 112, 160 Panzeca Way, Cincinnati, OH, 45267-0056, USA.
| | - Aristide Merola
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
7
|
Abdulbaki A, Jijakli A, Krauss JK. Deep brain stimulation for hemidystonia: A meta-analysis with individual patient data. Parkinsonism Relat Disord 2023; 108:105317. [PMID: 36813584 DOI: 10.1016/j.parkreldis.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is now well established for the treatment of dystonic movement disorders. There is limited data, however, on the efficacy of DBS in hemidystonia. This meta-analysis aims to summarize the published reports on DBS for hemidystonia of different etiologies, to compare different stimulation targets, and to evaluate clinical outcome. METHODS A systematic literature review was performed on PubMed, Embase and Web of Science to identify appropriate reports. The primary outcome variables were the improvement in the Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability (BFMDRS-D) scores for dystonia. RESULTS Twenty-two reports (39 patients; 22 with pallidal stimulation, 4 with subthalamic stimulation, 3 with thalamic stimulation, and 10 with combined target stimulation) were included. Mean age at surgery was 26.8 years. Mean follow-up time was 31.72 months. An overall mean improvement of 40% in the BFMDRS-M score was achieved (range 0%-94%), which was paralleled by a mean improvement of 41% in the BFMDRS-D score. When considering a 20% cut-off for improvement, 23/39 patients (59%) would qualify as responders. Hemidystonia due to anoxia did not significantly improve with DBS. Several limitations of the results must be considered, most importantly the low level of evidence and the small number of reported cases. CONCLUSION Based on the results of the current analysis, DBS can be considered as a treatment option for hemidystonia. The posteroventral lateral GPi is the target used most often. More research is needed to understand the variability in outcome and to identify prognostic factors.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Amr Jijakli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Nagel JM, Ghika J, Runge J, Wolf ME, Krauss JK. Case report: Pallidal deep brain stimulation for treatment of tardive dystonia/dyskinesia secondary to chronic metoclopramide medication. Front Neurol 2023; 13:1076713. [PMID: 36712453 PMCID: PMC9877408 DOI: 10.3389/fneur.2022.1076713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Objectives Tardive dystonia/dyskinesia (TDD) occurs as a side effect of anti-dopaminergic drugs, including metoclopramide, and is often refractory to medication. While pallidal deep brain stimulation (DBS) has become an accepted treatment for TDD secondary to neuroleptic medication, there is much less knowledge about its effects on metoclopramide-induced TDD. Methods We present the case of a woman with metoclopramide-induced TDD, whose symptoms were initially misjudged as "functional." After 8 years of ineffective medical treatments, she received bilateral implantation of quadripolar electrodes into the posteroventral lateral globus pallidus internus (GPi). Results GPi DBS led to significant symptom reduction [Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor score 24/44 at admission and 7/44 at discharge]. Chronic stimulation led to full recovery from TDD symptoms 9 years after surgery. The BFMDRS motor score decreased to 0.5 (98% improvement). Discussion Pallidal DBS may result in sustained improvement of TDD secondary to chronic metoclopramide intake in the long term.
Collapse
Affiliation(s)
- Johanna M. Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany,*Correspondence: Johanna M. Nagel ✉
| | - Joseph Ghika
- Service de Neurologie, Hôpital du Valais, Sion, Switzerland
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Marc E. Wolf
- Department of Neurology, Neurozentrum, Klinikum Stuttgart, Stuttgart, Germany,Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Hasan A, Leucht S. Erkennen und behandeln von Antipsychotika-Nebenwirkungen. INFO NEUROLOGIE + PSYCHIATRIE 2022. [PMCID: PMC9393078 DOI: 10.1007/s15005-022-2424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Amerika WE, van der Gaag S, Mosch A, van der Gaag NA, Hoffmann CF, Zutt R, Marinus J, Contarino MF. Medical and surgical treatment for medication‐induced tremor: case report and systematic review. Mov Disord Clin Pract 2022; 9:676-687. [PMID: 35844282 PMCID: PMC9274355 DOI: 10.1002/mdc3.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wardell E. Amerika
- Department of Neurology Haga Teaching Hospital The Hague The Netherlands
| | | | - Arne Mosch
- Department of Neurology Haga Teaching Hospital The Hague The Netherlands
| | | | | | - Rodi Zutt
- Department of Neurology Haga Teaching Hospital The Hague The Netherlands
| | - Johan Marinus
- Department of Neurology Leiden University Medical Center Leiden the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology Haga Teaching Hospital The Hague The Netherlands
- Department of Neurology Leiden University Medical Center Leiden the Netherlands
| |
Collapse
|
11
|
Høck AN, Jensen SR, Sværke KW, Brennum J, Jespersen B, Bergdal O, Karlsborg M, Hjermind LE, Løkkegaard A. A randomised double-blind controlled study of Deep Brain Stimulation for dystonia in STN or GPi – A long term follow-up after up to 15 years. Parkinsonism Relat Disord 2022; 96:74-79. [DOI: 10.1016/j.parkreldis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022]
|
12
|
Krause P, Kroneberg D, Gruber D, Koch K, Schneider GH, Kühn AA. Long-term effects of pallidal deep brain stimulation in tardive dystonia: a follow-up of 5-14 years. J Neurol 2022; 269:3563-3568. [PMID: 35083518 PMCID: PMC9217904 DOI: 10.1007/s00415-022-10965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Introduction Pallidal DBS is an established treatment for severe isolated dystonia. However, its use in disabling and treatment-refractory tardive syndromes (TS) including tardive dyskinesia and tardive dystonia (TD) is less well investigated and long-term data remain sparse. This observational study evaluates long-term effects of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in patients with medically refractory TS. Methods We retrospectively analyzed a cohort of seven TD patients with bilateral GPi-DBS. Involuntary movements, dystonia and disability were rated at long-term follow-up (LT-FU) after a mean of 122 ± 33.2 SD months (range 63–171 months) and compared to baseline (BL), short-term (ST-FU; mean 6 ± 2.0 SD months) and 4-year follow-up (4y-FU; mean 45 ± 12.3 SD months) using the Abnormal Involuntary Movement Scale (AIMS) and the Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), respectively. Quality of life and mood were evaluated using the SF36 and Beck Depression Index (BDI) questionnaires, respectively. Results At LT-FU patients had improved by 73% ± 14.2 SD in involuntary movements and 90% ± 1.0 SD in dystonia. Mood had improved significantly whereas quality of life remained unchanged compared to baseline. No serious long-lasting stimulation-related adverse events (AEs) were observed. Three patients of this cohort presented without active stimulation and ongoing symptom relief at long-term follow-up after 3–10 years of continuous DBS. Conclusion Pallidal DBS is a safe and effective long-term TD treatment. Even more interesting, three of our patients could stop stimulation after several years of DBS without serious relapse. Larger studies need to explore the phenomenon of ongoing symptom relief after DBS cessation. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-10965-8.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Doreen Gruber
- Department of Neurology and Stereotactic Surgery, University Medicine of Magdeburg, Magdeburg, Germany
| | - Kristin Koch
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité, University Medicine Berlin, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
13
|
Méneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front Neurol 2021; 12:659805. [PMID: 34925200 PMCID: PMC8671871 DOI: 10.3389/fneur.2021.659805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperkinetic movement disorders are characterized by the presence of abnormal involuntary movements, comprising most notably dystonia, chorea, myoclonus, and tremor. Possible causes are numerous, including autoimmune disorders, infections of the central nervous system, metabolic disturbances, genetic diseases, drug-related causes and functional disorders, making the diagnostic process difficult for clinicians. Some diagnoses may be delayed without serious consequences, but diagnosis delays may prove detrimental in treatable disorders, ranging from functional disabilities, as in dopa-responsive dystonia, to death, as in Whipple's disease. In this review, we focus on treatable disorders that may present with prominent hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Aurélie Méneret
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Béatrice Garcin
- Service de Neurologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Solène Frismand
- Département de Neurologie, Hôpital universitaire de Nancy, Nancy, France
| | - Annie Lannuzel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Département de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
- Faculté de Médecine, Université Des Antilles, Pointe-à-Pitre, France
- Centre D'investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Louise-Laure Mariani
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
14
|
Abstract
Deep brain stimulation (DBS) is the most commonly used surgical treatment for drug-refractory movement disorders such as tremor and dystonia. Appropriate patient selection along with target selection is important to ensure optimal outcome without complications. This review summarizes the recent literature regarding the mechanism of action, indications, outcome, and complications of DBS in tremor and dystonia. A comparison with other modalities of surgical interventions is discussed along with a note of the recent advances in technology. Future research needs to be directed to understand the underlying etiopathogenesis of the disease and the way in which DBS modulates the intracranial abnormal networks.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
16
|
Zhang C, Sun B. Deep brain stimulation 'probably' works on patients with tardive syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2021-326028. [PMID: 33722818 DOI: 10.1136/jnnp-2021-326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Chencheng Zhang
- Neurosurgery Department, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Bomin Sun
- Neurosurgery Department, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
17
|
Deep brain stimulation in Fragile X syndrome with tardive dystonia. Neurol Sci 2021; 42:2987-2989. [PMID: 33576914 DOI: 10.1007/s10072-021-05112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
|
18
|
M Oliveira L, Yan H, Algarni M, J B Elias G, Germann J, Boutet A, Hodaie M, P Munhoz R, Lozano AM, Fasano A, Kalia SK. Probabilistic characterisation of deep brain stimulation in patients with tardive syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324270. [PMID: 33563812 DOI: 10.1136/jnnp-2020-324270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Lais M Oliveira
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Musleh Algarni
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Gavin J B Elias
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
19
|
Debrey SM, Goldsmith DR. Tardive Dyskinesia: Spotlight on Current Approaches to Treatment. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2021; 19:14-23. [PMID: 34483762 DOI: 10.1176/appi.focus.20200038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tardive dyskinesia (TD) is a debilitating, iatrogenic, and potentially severe movement disorder characterized by involuntary, repetitive, purposeless movements that are present throughout the body. The authors present a review of studies of past, current, and possible future treatment approaches to the management of TD; consider the phenomenology, assessment, and putative pathophysiological mechanisms of TD, early pharmacological trials, a focus on the newer vesicular monoamine transporter 2 inhibitors, and other evidence-based approaches, such as clozapine; and present preliminary evidence for newer approaches, such as deep brain stimulation and repetitive transcranial magnetic stimulation. On the basis of the evidence presented here, the authors highlight the importance of early recognition and assessment of TD, as well as how to best approach management of these often incapacitating symptoms.
Collapse
Affiliation(s)
- Sarah M Debrey
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta
| |
Collapse
|
20
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
21
|
Kashyap S, Ceponiene R, Savla P, Bernstein J, Ghanchi H, Ananda A. Resolution of tardive tremor after bilateral subthalamic nucleus deep brain stimulation placement. Surg Neurol Int 2020; 11:444. [PMID: 33408929 PMCID: PMC7771401 DOI: 10.25259/sni_723_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/19/2020] [Indexed: 11/04/2022] Open
Abstract
Background:Tardive tremor (TT) is an underrecognized manifestation of tardive syndrome (TS). In our experience, TT is a rather common manifestation of TS, especially in a setting of treatment with aripiprazole, and is a frequent cause of referrals for the evaluation of idiopathic Parkinson disease. There are reports of successful treatment of tardive orofacial dyskinesia and dystonia with deep brain stimulation (DBS) using globus pallidus interna (GPi) as the primary target, but the literature on subthalamic nucleus (STN) DBS for tardive dyskinesia (TD) is lacking. To the best of our knowledge, there are no reports on DBS treatment of TT.Case Description:A 75-year-old right-handed female with the medical history of generalized anxiety disorder and major depressive disorder had been treated with thioridazine and citalopram from 1980 till 2010. Around 2008, she developed orolingual dyskinesia. She was started on tetrabenazine in June 2011. She continued to have tremors and developed Parkinsonian gait, both of which worsened overtime. She underwent DBS placement in the left STN in January 2017 with near-complete resolution of her tremors. She underwent right STN implantation in September 2017 with similar improvement in symptoms.Conclusion:While DBS-GPi is the preferred treatment in treating oral TD and dystonia, DBS-STN could be considered a safe and effective target in patients with predominating TT and/or tardive Parkinsonism. This patient saw a marked improvement in her symptoms after implantation of DBS electrodes, without significant relapse or recurrence in the years following implantation.
Collapse
Affiliation(s)
- Samir Kashyap
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Rita Ceponiene
- Department of Neurology, Kaiser Permanente Sourthern California Physician Medical Group, Los Angeles, California, United States,
| | - Paras Savla
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Jacob Bernstein
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Hammad Ghanchi
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Ajay Ananda
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California, United States
| |
Collapse
|
22
|
Chen CY, Chiang HL, Fuh JL. Tardive syndrome: An update and mini-review from the perspective of phenomenology. J Chin Med Assoc 2020; 83:1059-1065. [PMID: 32956105 DOI: 10.1097/jcma.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tardive syndrome (TS) is a group of movement disorders caused by the long-term use of dopamine receptor blocking agents. The phenotypic presentation of TS is diverse, ranging from the most well-characterized symptom of tardive dyskinesia to other symptoms, including dystonia, akathisia, myoclonus, parkinsonism, tremor, and tics. These tardive symptoms are distinct not only in their phenomenology but also in their clinical outcomes. However, our knowledge of the pathophysiology and management of TS is almost exclusively based on tardive dyskinesia. First-generation antipsychotics have a higher risk of inducing TS and have largely been replaced by second-generation antipsychotics with a lower risk of TS. However, patients with off-label use of second-generation antipsychotics are still at risk of developing TS. Thus, the management of TS remains a challenging and important issue for physicians. In this review, we update the information on the epidemiology, phenomenology, and treatment of TS from the perspective of the specific form of TS.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualian, Taiwan, ROC
| | - Han-Lin Chiang
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
23
|
Drug-induced dyskinesias, can they be prevented? CURRENT PROBLEMS OF PSYCHIATRY 2020. [DOI: 10.2478/cpp-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Dyskinesia is a symptom complex in the form of involuntary, repetitive movements of lips, lower jaw, tongue, less often the trunk and limbs. Despite the use of newer drugs in treatment neuroleptics, dyskinesia has not ceased to be a clinical problem.
Method: The work is based on a research review for which the Google Scholar database was used as well PubMed. The search range was limited to 2008-2020. We have included descriptive publications tardive dyskinesia only as a consequence of antipsychotic medications.
Material: We present the use of tetrabenazine analogues, deep brain stimulation, neuroleptics, benzodiazepines and botulinum toxin in late-suffering patients drug-induced dyskinesias, which may indicate an improvement in your health.
Discussion: The first method of treating tardive dyskinesia are withdrawal antipsychotic medications, but for many patients this is impossible. Valbenazine and Deep Brain Stimulation are the most effective in treating Tardive Dyskinesia.
Conclusions: There are not enough studies with the highest reliability to create unequivocal recommendations in the treatment of drug-induced tardive dyskinesia.
Collapse
|
24
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
25
|
Mulroy E, Balint B, Bhatia KP. Tardive syndromes. Pract Neurol 2020; 20:368-376. [PMID: 32487722 DOI: 10.1136/practneurol-2020-002566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 11/04/2022]
Abstract
Dopamine receptor-blocking antipsychotics, first introduced into clinical practice in 1952, were hailed as a panacea in the treatment of a number of psychiatric disorders. However, within 5 years, this notion was to be shattered by the recognition of both acute and chronic drug-induced movement disorders which can accompany their administration. Tardive syndromes, denoting the delayed onset of movement disorders following administration of dopamine receptor-blocking (and also other) drugs, have diverse manifestations ranging from the classic oro-bucco-lingual dyskinesia, through dystonic craniocervical and trunk posturing, to abnormal breathing patterns. Although tardive syndromes have been an important part of movement disorder clinical practice for over 60 years, their pathophysiologic basis remains poorly understood and the optimal treatment approach remains unclear. This review summarises the current knowledge relating to these syndromes and provides clinicians with pragmatic, clinically focused guidance to their management.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, University Hospital, Heidelberg, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
26
|
|
27
|
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathomechanism of nocturnal paroxysmal dystonia in autosomal dominant sleep-related hypermotor epilepsy with S284L-mutant α4 subunit of nicotinic ACh receptor. Biomed Pharmacother 2020; 126:110070. [PMID: 32169758 DOI: 10.1016/j.biopha.2020.110070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
To study the pathomechanism and pathophysiology of nocturnal paroxysmal dystonia of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities in thalamic hyperdirect pathway from reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN), subthalamic nucleus (STN) to substantia nigra pars reticulata (SNr) of transgenic rats (S286L-TG) bearing S286 L missense mutation of rat Chrna4 gene, which corresponds to the S284 L mutation in the human CHRNA4 gene. The activation of α4β2-nAChR in the RTN increased GABA release in MoTN resulting in reduced glutamatergic transmission in thalamic hyperdirect pathway of wild-type. Contrary to wild-type, activation of S286L-mutant α4β2-nAChR (loss-of-function) in the RTN relatively enhanced glutamatergic transmission in thalamic hyperdirect pathway of S286L-TG via impaired GABAergic inhibition in intra-thalamic (RTN-MoTN) pathway. These functional abnormalities in glutamatergic transmission in hyperdirect pathway contribute to the pathomechanism of electrophysiologically negative nocturnal paroxysmal dystonia of S286L-TG. Therapeutic-relevant concentration of zonisamide (ZNS) inhibited the glutamatergic transmission in the hyperdirect pathway via activation of group II metabotropic glutamate receptor (II-mGluR) in MoTN and STN. The present results suggest that S286L-mutant α4β2-nAChR induces GABAergic disinhibition in intra-thalamic (RTN-MoTN) pathway and hyperactivation of glutamatergic transmission in thalamic hyperdirect pathway (MoTN-STN-SNr), possibly contributing to the pathomechanism of nocturnal paroxysmal dystonia of ADSHE patients with S284L mutant CHRNA4. Inhibition of glutamatergic transmission in thalamic hyperdirect pathway induced by ZNS via activation of II-mGluR may be involved, at least partially, in ZNS-sensitive nocturnal paroxysmal dystonia of ADSHE patients with S284L mutation.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki. 036-8560, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
28
|
Eleopra R, Rinaldo S, Devigili G, Mondani M, D’Auria S, Lettieri C, Ius T, Skrap M. Frameless Deep Brain Stimulation Surgery: A Single-Center Experience and Retrospective Analysis of Placement Accuracy of 220 Electrodes in a Series of 110 Patients. Stereotact Funct Neurosurg 2020; 97:337-346. [DOI: 10.1159/000503335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
|
29
|
Barnes TR, Drake R, Paton C, Cooper SJ, Deakin B, Ferrier IN, Gregory CJ, Haddad PM, Howes OD, Jones I, Joyce EM, Lewis S, Lingford-Hughes A, MacCabe JH, Owens DC, Patel MX, Sinclair JM, Stone JM, Talbot PS, Upthegrove R, Wieck A, Yung AR. Evidence-based guidelines for the pharmacological treatment of schizophrenia: Updated recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2020; 34:3-78. [PMID: 31829775 DOI: 10.1177/0269881119889296] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
These updated guidelines from the British Association for Psychopharmacology replace the original version published in 2011. They address the scope and targets of pharmacological treatment for schizophrenia. A consensus meeting was held in 2017, involving experts in schizophrenia and its treatment. They were asked to review key areas and consider the strength of the evidence on the risk-benefit balance of pharmacological interventions and the clinical implications, with an emphasis on meta-analyses, systematic reviews and randomised controlled trials where available, plus updates on current clinical practice. The guidelines cover the pharmacological management and treatment of schizophrenia across the various stages of the illness, including first-episode, relapse prevention, and illness that has proved refractory to standard treatment. It is hoped that the practice recommendations presented will support clinical decision making for practitioners, serve as a source of information for patients and carers, and inform quality improvement.
Collapse
Affiliation(s)
- Thomas Re Barnes
- Emeritus Professor of Clinical Psychiatry, Division of Psychiatry, Imperial College London, and Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Richard Drake
- Clinical Lead for Mental Health in Working Age Adults, Health Innovation Manchester, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Carol Paton
- Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Stephen J Cooper
- Emeritus Professor of Psychiatry, School of Medicine, Queen's University Belfast, Belfast, UK
| | - Bill Deakin
- Professor of Psychiatry, Neuroscience & Psychiatry Unit, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - I Nicol Ferrier
- Emeritus Professor of Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine J Gregory
- Honorary Clinical Research Fellow, University of Manchester and Higher Trainee in Child and Adolescent Psychiatry, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter M Haddad
- Honorary Professor of Psychiatry, Division of Psychology and Mental Health, University of Manchester, UK and Senior Consultant Psychiatrist, Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Oliver D Howes
- Professor of Molecular Psychiatry, Imperial College London and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ian Jones
- Professor of Psychiatry and Director, National Centre of Mental Health, Cardiff University, Cardiff, UK
| | - Eileen M Joyce
- Professor of Neuropsychiatry, UCL Queen Square Institute of Neurology, London, UK
| | - Shôn Lewis
- Professor of Adult Psychiatry, Faculty of Biology, Medicine and Health, The University of Manchester, UK, and Mental Health Academic Lead, Health Innovation Manchester, Manchester, UK
| | - Anne Lingford-Hughes
- Professor of Addiction Biology and Honorary Consultant Psychiatrist, Imperial College London and Central North West London NHS Foundation Trust, London, UK
| | - James H MacCabe
- Professor of Epidemiology and Therapeutics, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and Honorary Consultant Psychiatrist, National Psychosis Service, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| | - David Cunningham Owens
- Professor of Clinical Psychiatry, University of Edinburgh. Honorary Consultant Psychiatrist, Royal Edinburgh Hospital, Edinburgh, UK
| | - Maxine X Patel
- Honorary Clinical Senior Lecturer, King's College London, Institute of Psychiatry, Psychology and Neuroscience and Consultant Psychiatrist, Oxleas NHS Foundation Trust, London, UK
| | - Julia Ma Sinclair
- Professor of Addiction Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James M Stone
- Clinical Senior Lecturer and Honorary Consultant Psychiatrist, King's College London, Institute of Psychiatry, Psychology and Neuroscience and South London and Maudsley NHS Trust, London, UK
| | - Peter S Talbot
- Senior Lecturer and Honorary Consultant Psychiatrist, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Rachel Upthegrove
- Professor of Psychiatry and Youth Mental Health, University of Birmingham and Consultant Psychiatrist, Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Angelika Wieck
- Honorary Consultant in Perinatal Psychiatry, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Alison R Yung
- Professor of Psychiatry, University of Manchester, School of Health Sciences, Manchester, UK and Centre for Youth Mental Health, University of Melbourne, Australia, and Honorary Consultant Psychiatrist, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| |
Collapse
|
30
|
Abstract
Many therapeutic and illicit drugs can cause movement disorders Antipsychotics and antiemetics are most commonly implicated The time of onset of the movement disorder may be acute subacute or chronic The severity can range from mild to severe and life-threatening Early recognition of a drug-induced movement disorder is essential to allow for prompt intervention This includes stopping the offending drug supportive care and sometimes other pharmacological treatment
Collapse
Affiliation(s)
- Stephen R Duma
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney.,Sydney Medical School, University of Sydney
| | - Victor Sc Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney.,Sydney Medical School, University of Sydney
| |
Collapse
|
31
|
Kakko K, Bjelogrlic-Laakso N, Pihlakoski L, Lehtimäki K, Järventausta K. Tardive Dyskinesia Should Not Be Overlooked. J Child Adolesc Psychopharmacol 2019; 29:72-74. [PMID: 30388034 DOI: 10.1089/cap.2018.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kirsi Kakko
- 1 Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,2 Department of Child Psychiatry, Tampere University Hospital, Tampere, Finland
| | | | - Leena Pihlakoski
- 2 Department of Child Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Kai Lehtimäki
- 4 Department of Neurosciences, Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Kaija Järventausta
- 1 Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,5 Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
32
|
Abstract
The basal ganglia and dopaminergic pathways play a central role in hyperkinetic movement disorders. Vesicular monoamine transporter 2 (VMAT2) inhibitors, which deplete dopamine at presynaptic striatal nerve terminals, are a class of drugs that have long been used to treat hyperkinetic movement disorders, but have recently gained more attention following their development for specific indications in the United States. At present, there are three commercially available VMAT2 inhibitors: tetrabenazine, deutetrabenazine, and valbenazine. Pharmacokinetics, metabolism, and dosing vary significantly between the three drugs, and likely underlie the more favorable side effect profile of the newer agents (deutetrabenazine and valbenazine). Tetrabenazine and deutetrabenazine have demonstrated safety and efficacy in the treatment of chorea associated with Huntington's disease, including in randomized controlled trials, although direct comparison studies are limited. Both deutetrabenazine and valbenazine have demonstrated safety and efficacy in the treatment of tardive dyskinesia, with multiple double-blind, placebo-controlled trials, whereas tetrabenazine has been studied less rigorously. There have been no blinded, prospective trials with tetrabenazine in Tourette's syndrome (TS); however, double-blind, placebo-controlled trials in TS are ongoing for both deutetrabenazine and valbenazine. Given the favored side effect profile of newer VMAT2 inhibitors, clinicians should be aware of the distinctions between agents and become familiar with differences in their use, especially as there is potential for their utilization to increase across the range of hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Arjun Tarakad
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, 7200 Cambridge St., 9th floor, Houston, TX, 77030, USA
| | - Joohi Jimenez-Shahed
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, 7200 Cambridge St., 9th floor, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Hauser RA, Truong D. Tardive dyskinesia: Out of the shadows. J Neurol Sci 2018; 389:1-3. [PMID: 29449008 DOI: 10.1016/j.jns.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
The approvals of the first two medications, valbenazine and deutetrabenazine, to treat tardive dyskinesia have ushered in a new era in neuropsychiatric care. Tardive syndromes are defined as delayed onset, persistent movement disorders or sensory phenomena that occur in association with exposure to dopamine receptor blocking agents (DRBAs). Their underlying pathophysiology remains to be fully elucidated, but clinicians can conceptualize tardive syndromes as persistent dopamine supersensitivity states. Tardive syndromes can potentially cause distress, disfigurement, embarrassment, and dysfunction, and are often permanent. Therefore, practitioners who prescribe DRBAs should be aware of this potential, carefully assess the risk/benefit ratio when considering the use of these medications, and be sure that patients are appropriately informed. Patients on DRBAs should be monitored for the development of tardive syndromes, including through the use of regularly scheduled Abnormal Involuntary Movement Scale (AIMS) (or similar) examinations. Clinicians prescribing DRBAs should be familiar with the diagnosis and management of tardive syndromes, and be able to institute treatment or refer patients when treatment is appropriate. Future research may focus on the potential benefit of earlier introduction of VMAT2 inhibitors to delay onset or progression of tardive syndromes. More effective treatments are still needed, as are effective, well-tolerated antipsychotics that do not cause tardive syndromes.
Collapse
Affiliation(s)
- Robert A Hauser
- University of South Florida, Departments of Neurology, Molecular Pharmacology and Physiology, Tampa, FL, United States.
| | - Daniel Truong
- The Truong Neurosciences Institute, Fountain Valley, CA, United States; Department of Neurology, University of California, Riverside, CA, United States
| |
Collapse
|