1
|
Ohuchi K, Watanabe K, Izutsu M, Mishima A, Murata J, Kurita H, Hozumi I, Hayashi Y, Inden M. Type III sodium-dependent inorganic phosphate transporters are required for the phenotypes in human brain microvascular endothelial cells. Exp Cell Res 2025; 448:114556. [PMID: 40221005 DOI: 10.1016/j.yexcr.2025.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Inorganic phosphate (Pi) homeostasis in the brain is critical for the development of primary brain calcification (PBC). In the brains of patients with PBC, calcification occurs in the cerebral small vessels, and it is primarily caused by mutated SLC20A2, a gene that encodes a type III Pi transporter. A previous study founded that the SLC20 family, which includes SLC20A1 and SLC20A2, contributes to Pi homeostasis in the central nervous system. However, the impact of these Pi transporters on the brain vessel phenotype remains unknown. Thus, in this study, we aimed to investigate the effect of SLC20A1 or SLC20A2 depletion on the phenotype of human brain microvascular endothelial cells (hBMECs). We assessed the primary phenotypes of vascular endothelial cells, such as proliferation, tube formation, and VE-cadherin expression. The results showed that hBMECs silenced for SLC20A1 or SLC20A2 had decreased proliferative and angiogenic ability, as well as VE-cadherin expression. The intracellular Pi concentration ([Pi]i) remained constant in SLC20A1-silenced hBMECs whereas it increased in SLC20A2-silenced cells. Tube formation ability was no change even at 3 mM, a concentration higher than [Pi]i which was increased in SLC20A2-silenced hBMECs. Thus, increased [Pi]i in SLC20A2-silenced hBMECs may have a small impact on phenotypic changes. In conclusion, abnormalities in Pi homeostasis caused by SLC20A2 depletion were suggested to play a minor role in PBC endothelial pathology.
Collapse
Affiliation(s)
- Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| | - Ku Watanabe
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Mutsuko Izutsu
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Ayane Mishima
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Junya Murata
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Yuichi Hayashi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan; Department of Clinical Pathophysiology and Functional Morphology, Faculty of Nursing Science, Tsuruga Nursing University, 78-2-1 Kizaki, Tsuruga, 914-0814, Fukui, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| |
Collapse
|
2
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kavakli E, Gul N, Begentas OC, Kiris E. Astrocytes in Primary Familial Brain Calcification (PFBC): Emphasis on the Importance of Induced Pluripotent Stem Cell-Derived Human Astrocyte Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:19-38. [PMID: 39841380 DOI: 10.1007/5584_2024_840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies. There is a growing interest in the involvement of astrocytes in PFBC, as recent studies have suggested that astrocytes play a central role in the disease and that functional defects in these cells are critical for the development and progression of the disease. This review aims to discuss recent findings on the roles of astrocytes in PFBC pathophysiology, with a focus on known expression and roles of PFBC genes in astrocytes. Additionally, we discuss the importance of human astrocytes for PFBC disease modeling, and astrocytes as a potential therapeutic target in PFBC. Utilization of species-specific and physiologically relevant PFBC model systems can open new avenues for basic research, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Ebru Kavakli
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Nazli Gul
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Onur Can Begentas
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Erkan Kiris
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
4
|
Zhao M, Cheng X, Chen L, Zeng YH, Lin KJ, Li YL, Zheng ZH, Huang XJ, Zuo DD, Guo XX, Guo J, He D, Liu Y, Lin Y, Wang C, Lv WQ, Su HZ, Yao XP, Ye ZL, Chen XH, Lu YQ, Huang CW, Yang G, Zhang YX, Lin MT, Wang N, Xiong ZQ, Chen WJ. Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model. Neuron 2024; 112:3278-3294.e7. [PMID: 39121859 DOI: 10.1016/j.neuron.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Zeng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Lu Li
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ze-Hong Zheng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Jing Huang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Dan-Dan Zuo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chong Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Qi Lv
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiang-Ping Yao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zi-Ling Ye
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying-Qian Lu
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Wei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Xian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ning Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201602, China.
| | - Wan-Jin Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
5
|
Cheng X, Zhao M, Chen L, Huang C, Xu Q, Shao J, Wang HT, Zhang Y, Li X, Xu X, Yao XP, Lin KJ, Xue H, Wang H, Chen Q, Zhu YC, Zhou JW, Ge WP, Zhu SJ, Liu JY, Chen WJ, Xiong ZQ. Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. Neuron 2024; 112:3126-3142.e8. [PMID: 39019040 DOI: 10.1016/j.neuron.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.
Collapse
Affiliation(s)
- Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Miao Zhao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China
| | - Chenwei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwu Xu
- Lin Gang Laboratory, Shanghai 201602, China
| | - Jia Shao
- Lin Gang Laboratory, Shanghai 201602, China
| | - Hong-Tao Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuequan Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Ping Yao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui Xue
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia-Wei Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Shu-Jia Zhu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Sennfält S, Gustavsson P, Malmgren H, Gilland E, Almqvist H, Oscarson M, Engvall M, Björkhem I, Nilsson D, Lagerstedt-Robinson K, Svenningsson P, Paucar M. Novel findings in a Swedish primary familial brain calcification cohort. J Neurol Sci 2024; 460:123020. [PMID: 38642488 DOI: 10.1016/j.jns.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.
Collapse
Affiliation(s)
- Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Eric Gilland
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Blå stråket 7, 413 46 Göteborg, Sweden.
| | - Håkan Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden; Department of Radiology, Capio S:t Goran Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden.
| | - Mikael Oscarson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Anna Steckséns g 47, 171 76 Solna, Sweden.
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Anna Steckséns g 47, 171 76 Solna, Sweden.
| | - Ingemar Björkhem
- Science for Life Laboratory, Stockholm, Tomtebodavägen 23, 171 65 Solna, Sweden.
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Alfred Nobels Allé 8, 141 52 Huddinge, Sweden.
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
8
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
9
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
10
|
Golgi damage caused by dysfunction of PiT-2 in primary familial brain calcification. Biochem Biophys Res Commun 2023; 642:167-174. [PMID: 36584480 DOI: 10.1016/j.bbrc.2022.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The Golgi apparatus is vital for protein modification and molecular trafficking. It is essential for nerve development and activity, and damage thereof is implicated in many neurological diseases. Primary familial brain calcification (PFBC) is a rare inherited neurodegenerative disease characterized by multiple brain calcifications. SLC20A2, which encodes the inorganic phosphate transporter 2 (PiT-2) protein, is the main pathogenic gene in PFBC. The PiT-2 protein is a sodium-dependent phosphate type III transporter, and dysfunction leads to a deficit in the cellular intake of inorganic phosphate (Pi) and calcium deposits. Whether the impaired Golgi apparatus is involved in the PFBC procession requires elucidation. In this study, we constructed induced pluripotent stem cells (iPSCs) derived from two PFBC patients with different SLC20A2 gene mutations (c.613G > A or del exon10) and two healthy volunteers as dependable cell models for research on pathogenic mechanism. To study the mechanism, we differentiated iPSCs into neurons and astrocytes in vitro. Our study found disruptive Golgi structure and damaged autophagy in PFBC neurons with increased activity of mTOR. We also found damaged mitochondria and increased apoptosis in the PFBC dopaminergic neurons and astrocytes. In this study, we prove that dysfunctional PiT-2 leads to an imbalance of cellular Pi, which may disrupt the Golgi apparatus with impaired autophagy, mitochondria and apoptosis in PFBC. Our study provides a new avenue for understanding nerve damage and pathogenic mechanism in brain calcifications.
Collapse
|
11
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
12
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
13
|
Living with primary brain calcification with PDGFB variants: A qualitative study. PLoS One 2022; 17:e0275227. [PMID: 36206226 PMCID: PMC9543980 DOI: 10.1371/journal.pone.0275227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Primary brain calcification (PBC) is a rare and intractable neurodegenerative disease. SLC20A2 and PDGFB are two major causative genes. As there is no effective treatment to avoid further progression or to prevent the onset of the disease, the patients may experience psychological distress. There is a qualitative study on the experiences of patients with primary brain calcification with SLC20A2 variants. However, the experiences of patients with PDGFB variants of the disease have not been explored. The purpose of this study is to identify the experiences of patients with PDGFB variants after diagnosis. Materials and methods Semi-structured interviews were conducted once or twice a year for three years with five patients over the age of 21. The data were analyzed using inductive qualitative methods. Results Seven categories, 15 subcategories, and 129 codes were extracted. The seven categories are as follows: [Shock at hearing the term ‘brain calcification’ for the first time], [Anxiety regarding the risk of heredity], [Anxiety, along with severe headaches, and various other symptoms], [Gratitude for the family members who care], [Accepting the disease as a non-life-threatening illness], [Feeling alienated due to the rare intractable disease], and [Modifying lifestyle due to the illness]. Discussion The most stressful aspect of the disease was the headache that persisted even with the use of analgesics, which was different from patients with the SLC20A2 variants. In addition, we found unique concepts such as anxiety regarding the risk of heredity and a feeling of alienation due to the rare and intractable disease.
Collapse
|
14
|
Sakai K, Ishida C, Hayashi K, Tsuji N, Kannon T, Hosomichi K, Takei N, Kakita A, Tajima A, Yamada M. Familial idiopathic basal ganglia calcification with a heterozygous missense variant (c.902C>T/p.P307L) in SLC20A2 showing widespread cerebrovascular lesions. Neuropathology 2022; 42:126-133. [PMID: 35026865 DOI: 10.1111/neup.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
We describe a postmortem case of familial idiopathic basal ganglia calcification (FIBGC) in a 72-year-old Japanese man. The patient showed progressive cognitive impairment with a seven-year clinical course and calcification of the basal ganglia, thalami, and cerebellar dentate nuclei. A novel heterozygous missense variant in SLC20A2 (c.920C>T/p.P307L), a type III sodium-dependent phosphate transporter (PiT-2), was subsequently identified, in addition to typical neuropathological findings of FIBGC, such as capillary calcification of the occipital gray matter, confluent calcification of the basal ganglia and cerebellar white matter, widespread occurrence of vasculopathic changes, cerebrovascular lesions, and vascular smooth muscle cell depletion. Immunohistochemistry for PiT-2 protein revealed no apparent staining in endothelial cells in the basal ganglia and insular cortex; however, the immunoreactivity in endothelial cells of the cerebellum was preserved. Moreover, Western blot analysis identified preserved PiT-2 immunoreactivity signals in the frontal cortex and cerebellum. The variant identified in the present patient could be associated with development of FIBGC and is known to be located at the large intracytoplasmic part of the PiT-2 protein, which has potential phosphorylation sites with importance in the regulation of inorganic phosphate transport activity. The present case is an important example to prove that FIGBC could stem from a missense variant in the large intracytoplasmic loop of the PiT-2 protein. Abnormal clearance of inorganic phosphate in the brain could be related to the development of vascular smooth muscle damage, the formation of cerebrovascular lesions, and subsequent brain calcification in patients with FIBGC with SLC20A2 variants.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
| | - Koji Hayashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naotaka Tsuji
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
15
|
Elston MS, Elajnaf T, Hannan FM, Thakker RV. Autosomal dominant hypocalcemia type 1 (ADH1) associated with myoclonus and intracerebral calcifications. J Endocr Soc 2022; 6:bvac042. [PMID: 35402765 PMCID: PMC8989155 DOI: 10.1210/jendso/bvac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is a disorder of extracellular calcium homeostasis caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR). Over 35% of ADH1 patients have intracerebral calcifications predominantly affecting the basal ganglia. The clinical consequences of such calcifications remain to be fully characterized, although the majority of patients with these calcifications are considered to be asymptomatic. We report a 20-year-old female proband with a severe form of ADH1 associated with recurrent hypocalcemic and hypercalcemic episodes, persistent childhood hyperphosphatemia, and a low calcium/phosphate ratio. From the age of 18 years, she had experienced recurrent myoclonic jerks affecting the upper limbs that were not associated with epileptic seizures, extra-pyramidal features, cognitive impairment, or alterations in serum calcium concentrations. Computerised tomography (CT) scans revealed calcifications of the globus pallidus regions of the basal ganglia bilaterally, and also the frontal lobes at the grey-white matter junction, and posterior horn choroid plexuses. The patient’s myoclonus resolved following treatment with levetiracetam. CASR mutational analysis identified a reported germline gain-of-function heterozygous missense mutation, c.2363T>G; p.(Phe788Cys), which affects an evolutionarily conserved phenylalanine residue located in transmembrane domain helix 5 of the CaSR protein. Analysis of the cryo-electron microscopy CaSR structure predicted the wild-type Phe788 residue to form interactions with neighbouring phenylalanine residues, which likely maintain the CaSR in an inactive state. The p.(Phe788Cys) mutation was predicted to disrupt these interactions, thereby leading to CaSR activation. These findings reveal myoclonus as a novel finding in an ADH1 patient with intracerebral calcifications.
Collapse
Affiliation(s)
- Marianne S Elston
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Taha Elajnaf
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
17
|
Takase N, Inden M, Murayama Y, Mishima A, Kurita H, Hozumi I. PDGF-BB is involved in phosphate regulation via the phosphate transporters in human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2022; 593:93-100. [PMID: 35063775 DOI: 10.1016/j.bbrc.2022.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Inorganic phosphate (Pi) is the second most abundant inorganic ion in the body. Since abnormalities in Pi metabolism are risk factors for various diseases, serum Pi levels are strictly controlled. Type-III sodium-dependent Pi transporters, PiT-1 (encoded by SLC20A1) and PiT-2 (encoded by SLC20A2), are distributed throughout the tissues of the body, including the central nervous system, and are known to be responsible for extracellular to intracellular Pi transport. Platelet-derived growth factor (PDGF) is a major growth factor of mesenchymal cells. PDGF-BB, a homodimer of PDGF-B, regulates intracellular Pi by increasing PiT-1 expression in vascular smooth muscle cells. However, the effects of PDGF-BB on Pi transporters in neurons have yet to be reported. Here, we investigated the effect of PDGF-BB on Pi transporters in human neuroblastoma SH-SY5Y cells. PDGF-BB did not induce SLC20A1 mRNA expression, but it increased the intracellular uptake of Pi via PiT-1 in SH-SY5Y cells. Among the signaling pathways associated with PDGF-BB, AKT signaling was shown to be involved in the increase in Pi transport. In addition, the PDGF-BB-induced increase in Pi mediated neuroprotective effects in SLC20A2-suppressed cells, in an in vitro model of the pathological condition found in idiopathic basal ganglia calcification. Moreover, the increase in Pi uptake was found to occur through promotion of intracellular PiT-1 translocation to the plasma membrane. Overall, these results indicate that PDGF-BB exerts neuroprotective effects via Pi transport, and they demonstrate the potential utility of PDGF-BB against abnormal Pi metabolism in neurons.
Collapse
Affiliation(s)
- Naoko Takase
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan.
| | - Yuto Murayama
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Ayane Mishima
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu city, Gifu, 501-1196, Japan.
| |
Collapse
|
18
|
Characteristics and therapeutic potential of sodium-dependent phosphate cotransporters in relation to idiopathic basal ganglia calcification. J Pharmacol Sci 2021; 148:152-155. [PMID: 34924120 DOI: 10.1016/j.jphs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Type-III sodium-dependent phosphate transporters 1 and 2 (PiT 1 and PiT 2, respectively) are proteins encoded by SLC20A1 and SLC20A2, respectively. The ubiquitous distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues supports the housekeeping maintenance and homeostasis of intracellular inorganic phosphate (Pi), which is absorbed from interstitial fluid for normal cellular functions. SLC20A2 variants have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease or primary familial brain calcification (PFBC). Thus, disrupted Pi homeostasis is considered one of the major factors in the pathogenic mechanism of IBGC. In this paper, among the causative genes of IBGC, we focused specifically on PiT2, and its potential for a therapeutic target of IBGC.
Collapse
|
19
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Idiopathic basal ganglia calcification may cause pathological conditions resembling Parkinson's disease. eNeurologicalSci 2021; 22:100307. [PMID: 33490655 PMCID: PMC7804839 DOI: 10.1016/j.ensci.2020.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022] Open
|
22
|
Brown RB. Stress, inflammation, depression, and dementia associated with phosphate toxicity. Mol Biol Rep 2020; 47:9921-9929. [PMID: 33226563 DOI: 10.1007/s11033-020-06005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Depression and dementia are predicted to increase within aging global populations. Pathophysiological effects of phosphate toxicity, dysregulated amounts of accumulated phosphorus in body tissue, are under-investigated in association with stress, inflammation, depression, and dementia. A comparative analysis of concepts in cited sources from the research literature was used to synthesize novel themes exploring the disease-oriented neuroscience effects of phosphate toxicity. Phosphate toxicity is associated with activation of cellular stress response systems and inflammation. Cortisol released by the hypothalamic-pituitary-adrenal axis responds to stress and inflammation associated with phosphate toxicity and depression. In a reciprocal interaction, phosphate toxicity is capable of harming adrenal gland function, possibly leading to adrenal insufficiency and depression. Furthermore, Alzheimer's disease is associated with hyperphosphorylated tau which self-assembles into neurofibrillary tangles from excessive amounts of phosphate in the brain and central nervous system. Future research should investigate dietary phosphate modification to reduce potential pathophysiological effects of phosphate toxicity in stress, inflammation, depression, and cognitive decline which affects global populations.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
23
|
Paucar M, Almqvist H, Björkhem I, Svenningsson P. Hyperkinesias and Echolalia in Primary Familial Brain Calcification. Ann Neurol 2020; 89:418-419. [PMID: 33170525 PMCID: PMC7894520 DOI: 10.1002/ana.25955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Håkan Almqvist
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
López-Sánchez U, Tury S, Nicolas G, Wilson MS, Jurici S, Ayrignac X, Courgnaud V, Saiardi A, Sitbon M, Battini JL. Interplay between primary familial brain calcification-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis. J Biol Chem 2020; 295:9366-9378. [PMID: 32393577 PMCID: PMC7363132 DOI: 10.1074/jbc.ra119.011376] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters with the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis, and we identified XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of WT SLC20A2 increased phosphate uptake, as expected, but also unexpectedly increased phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1 KO cells. Elevated ATP levels are a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with WT XPR1 but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (IP6K1-2) gene inactivation or IP6K inhibitor treatment abolished XPR1-mediated phosphate efflux regulation and homeostasis. Our findings unveil an SLC20A2-XPR1 interplay that depends on IPs such as PP-IPs and controls cellular phosphate homeostasis via the efflux route, and alteration of this interplay likely contributes to PFBC.
Collapse
Affiliation(s)
- Uriel López-Sánchez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245, and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Miranda S Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Snejana Jurici
- Department of Neurology, Perpignan Hospital, Perpignan, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France .,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
25
|
Takase N, Inden M, Hirai S, Yamada Y, Kurita H, Takeda M, Yamaguchi E, Itoh A, Hozumi I. The Novel gem-Dihydroperoxide 12AC3O Suppresses High Phosphate-Induced Calcification via Antioxidant Effects in p53LMAco1 Smooth Muscle Cells. Int J Mol Sci 2020; 21:E4628. [PMID: 32610684 PMCID: PMC7369805 DOI: 10.3390/ijms21134628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022] Open
Abstract
The excessive intake of phosphate (Pi), or chronic kidney disease (CKD), can cause hyperphosphatemia and eventually lead to ectopic calcification, resulting in cerebrovascular diseases. It has been reported that reactive oxygen species (ROS), induced by high concentrations of Pi loading, play a key role in vascular calcification. Therefore, ROS suppression may be a useful treatment strategy for vascular calcification. 12AC3O is a newly synthesized gem-dihydroperoxide (DHP) that has potent antioxidant effects. In the present study, we investigated whether 12AC3O inhibited vascular calcification via its antioxidative capacity. To examine whether 12AC3O prevents vascular calcification under high Pi conditions, we performed Alizarin red and von Kossa staining, using the mouse aortic smooth muscle cell line p53LMAco1. Additionally, the effect of 12AC3O against oxidative stress, induced by high concentrations of Pi loading, was investigated using redox- sensitive dyes. Further, the direct trapping effect of 12AC3O on reactive oxygen species (ROS) was investigated by ESR analysis. Although high concentrations of Pi loading exacerbated vascular smooth muscle calcification, calcium deposition was suppressed by the treatment of both antioxidants and 12AC3O, suggesting that the suppression of ROS may be a candidate therapeutic approach for treating vascular calcification induced by high concentrations of Pi loading. Importantly, 12AC3O also attenuated oxidative stress. Furthermore, 12AC3O directly trapped superoxide anion and hydroxyl radical. These results suggest that ROS are closely involved in high concentrations of Pi-induced vascular calcification and that 12AC3O inhibits vascular calcification by directly trapping ROS.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Calcification, Physiologic/drug effects
- Cell Line
- Cells, Cultured
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidation-Reduction/drug effects
- Oxidative Stress/drug effects
- Peroxides/pharmacology
- Reactive Oxygen Species/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Naoko Takase
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Shunsuke Hirai
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Yumeka Yamada
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Mitsumi Takeda
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| |
Collapse
|
26
|
Cassinari K, Rovelet-Lecrux A, Tury S, Quenez O, Richard AC, Charbonnier C, Olaso R, Boland A, Deleuze JF, Besancenot JF, Delpont B, Pouliquen D, Lecoquierre F, Chambon P, Thauvin-Robinet C, Campion D, Frebourg T, Battini JL, Nicolas G. Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element. Mov Disord 2020; 35:1336-1345. [PMID: 32506582 DOI: 10.1002/mds.28090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS After the identification of a deletion upstream of SLC20A2, we assessed its consequences on gene function by reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), an ex vivo inorganic phosphate uptake assay, and introduced the deletion of a putative SLC20A2 enhancer mapping to this region in human embryonic kidney 293 (HEK293) cells by clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9). RESULTS The 8p11.21 deletion, segregating with PFBC in a family, mapped 35 kb upstream of SLC20A2. The deletion carriers/normal controls ratio of relative SLC20A2 mRNA levels was 60.2% (P < 0.001). This was comparable with that of patients carrying an SLC20A2 premature stop codon (63.4%; P < 0.001). The proband exhibited a 39.3% decrease of inorganic phosphate uptake in blood (P = 0.015). In HEK293 cells, we observed a 39.8% decrease in relative SLC20A2 mRNA levels after normalization on DNA copy number (P < 0.001). DISCUSSION We identified a deletion of an enhancer of SLC20A2 expression, with carriers showing haploinsufficiency in similar ranges to loss-of-function alleles, and we observed reduced mRNA levels after deleting this element in a cellular model. We propose a 3-step strategy to identify and easily assess the effect of such events. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kévin Cassinari
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne Rovelet-Lecrux
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne-Claire Richard
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Benoit Delpont
- Department of Internal Medicine and Systemic Diseases, Dijon University Hospital, Dijon, France
| | - Dorothée Pouliquen
- Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - François Lecoquierre
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Pascal Chambon
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- CHU Dijon Bourgogne, Unité Fonctionnelle "Innovation diagnostique dans les maladies rares," laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, Dijon, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de causes rares," FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
- Department of Research, Rouvray Psychiatric Hospital, Sotteville-les-Rouen, France
| | - Thierry Frebourg
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
27
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
28
|
Beck-Cormier S, Beck L. The Need of a Paradigm Shift to Better Understand PiT1 and PiT2 Biology: Response to "Why Is There No PiT1/SLC20A1 Pathogenic Variants Yet Linked to Primary Familial Brain Calcification?". J Bone Miner Res 2020; 35:825-826. [PMID: 32049372 DOI: 10.1002/jbmr.3969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/11/2023]
Affiliation(s)
| | - Laurent Beck
- Université de Nantes, INSERM, UMR 1229, RMeS, ONIRIS, Nantes, France
| |
Collapse
|
29
|
Auffray-Calvier E, Lintia-Gaultier A, Bourcier R, Aguilar Garcia J. [Basal ganglia calcification]. Rev Med Interne 2020; 41:404-412. [PMID: 32165049 DOI: 10.1016/j.revmed.2020.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Calcifications of the basal ganglia are frequently seen on the cerebral CT scans and particularly in the globus pallidus. Their frequency increases physiologically with age after 50 years old. However, pathological processes can also be associated with calcium deposits in the gray nuclei, posterior fossa or white matter. Unilateral calcification is often related to an acquired origin whereas bilateral ones are mostly linked to an acquired or genetic origin that will be sought after eliminating a perturbation of phosphocalcic metabolism. In pathological contexts, these calcifications may be accompanied by neurological symptoms related to the underlying disease: Parkinson's syndrome, psychiatric and cognitive disorders, epilepsy or headache. The purpose of this article is to provide a diagnostic aid, in addition to clinical and biology, through the analysis of calcification topography and the study of different MRI sequences.
Collapse
Affiliation(s)
- E Auffray-Calvier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France.
| | - A Lintia-Gaultier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| | - R Bourcier
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| | - J Aguilar Garcia
- Service de neuroradiologie, hôpital René-et-Guillaume-Laënnec, boulevard Jacques-Monod, 44093 Saint-Herblain cedex 1, France
| |
Collapse
|
30
|
Mishra BR, Nath S, Mishra S, Pattnaik JI, Maiti R. The rare association of rapid eye movement behavior disorder and Fahr's disease: A harbinger for neurodegeneration? Indian J Psychiatry 2020; 62:100-102. [PMID: 32001940 PMCID: PMC6964458 DOI: 10.4103/psychiatry.indianjpsychiatry_84_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/19/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Biswa Ranjan Mishra
- Department of Psychiatry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India. E-mail:
| | - Santanu Nath
- Department of Psychiatry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India. E-mail:
| | - Shree Mishra
- Department of Psychiatry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India. E-mail:
| | - Jigyansa Ipsita Pattnaik
- Department of Psychiatry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India. E-mail:
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
31
|
Nishii K, Shimogawa R, Kurita H, Inden M, Kobayashi M, Toyoshima I, Taguchi Y, Ueda A, Tamune H, Hozumi I. Partial reduced Pi transport function of PiT-2 might not be sufficient to induce brain calcification of idiopathic basal ganglia calcification. Sci Rep 2019; 9:17288. [PMID: 31754123 PMCID: PMC6872723 DOI: 10.1038/s41598-019-53401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Idiopathic basal ganglia calcification (IBGC) is a rare intractable disease characterized by abnormal mineral deposits, including mostly calcium in the basal ganglia, thalamus, and cerebellum. SLC20A2 is encoding the phosphate transporter PiT-2 and was identified in 2012 as the causative gene of familial IBGC. In this study, we investigated functionally two novel SLC20A2 variants (c.680C > T, c.1487G > A) and two SLC20A2 variants (c.82G > A, c.358G > C) previously reported from patients with IBGC. We evaluated the function of variant PiT-2 using stable cell lines. While inorganic phosphate (Pi) transport activity was abolished in the cells with c.82G > A, c.358G > C, and c.1487G > A variants, activity was maintained at 27.8% of the reference level in cells with the c.680C > T variant. Surprisingly, the c.680C > T variant had been discovered by chance in healthy members of an IBGC family, suggesting that partial preservation of Pi transport activity may avoid the onset of IBGC. In addition, we confirmed that PiT-2 variants could be translocated into the cell membrane to the same extent as PiT-2 wild type. In conclusion, we investigated the PiT-2 dysfunction of four SLC20A2 variants and suggested that a partial reduced Pi transport function of PiT-2 might not be sufficient to induce brain calcification of IBGC.
Collapse
Affiliation(s)
- Kazuya Nishii
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ritsuko Shimogawa
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Michio Kobayashi
- Department of Neurology, National Hospital Organization Akita National Hospital, Akita, Japan
| | - Itaru Toyoshima
- Department of Neurology, National Hospital Organization Akita National Hospital, Akita, Japan
| | | | - Akihiro Ueda
- Department of Neurology, Fujita Health University, Aichi, Japan
| | - Hidetaka Tamune
- Department of Neuropsychiatry, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
32
|
Ishitobi M, Kumashiro N, Nakao K. Clinical features of bipolar disorder with idiopathic basal ganglia calcification: a review of case reports in the literature. Neurocase 2019; 25:145-150. [PMID: 31266397 DOI: 10.1080/13554794.2019.1638945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although idiopathic basal ganglia calcification (IBGC) is associated with various neuropsychiatric disturbances including several cases of bipolar disorder (BD), there has been no systematic review of clinical features of patients with BD and comorbid IBGC. We undertook a literature search to identify case reports of these patients. Most cases showed complex syndromes comprising not only mood disturbance but also cognitive disability and motor symptoms limited to depressive state and had favorable treatment response. These patients should have a careful and repeated psychiatric, neurological, and cognitive assessment to determine an optimal diagnostic and treatment approaches at each clinical stage.
Collapse
Affiliation(s)
- Makoto Ishitobi
- a Tokyo Aiseikai Takatsuki Hospital , Hachiouji City , Tokyo , Japan
| | - Natsuko Kumashiro
- a Tokyo Aiseikai Takatsuki Hospital , Hachiouji City , Tokyo , Japan
| | - Koji Nakao
- a Tokyo Aiseikai Takatsuki Hospital , Hachiouji City , Tokyo , Japan
| |
Collapse
|
33
|
Functional evaluation of PDGFB-variants in idiopathic basal ganglia calcification, using patient-derived iPS cells. Sci Rep 2019; 9:5698. [PMID: 30952898 PMCID: PMC6450963 DOI: 10.1038/s41598-019-42115-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/18/2019] [Indexed: 01/28/2023] Open
Abstract
Causative genes in patients with idiopathic basal ganglia calcification (IBGC) (also called primary familial brain calcification (PFBC)) have been reported in the past several years. In this study, we surveyed the clinical and neuroimaging data of 70 sporadic patients and 16 families (86 unrelated probands in total) in Japan, and studied variants of PDGFB gene in the patients. Variant analyses of PDGFB showed four novel pathogenic variants, namely, two splice site variants (c.160 + 2T > A and c.457−1G > T), one deletion variant (c.33_34delCT), and one insertion variant (c.342_343insG). Moreover, we developed iPS cells (iPSCs) from three patients with PDGFB variants (c.160 + 2T > A, c.457−1G > T, and c.33_34 delCT) and induced endothelial cells. Enzyme-linked immunoassay analysis showed that the levels of PDGF-BB, a homodimer of PDGF-B, in the blood sera of patients with PDGFB variants were significantly decreased to 34.0% of that of the control levels. Those in the culture media of the endothelial cells derived from iPSCs of patients also significantly decreased to 58.6% of the control levels. As the endothelial cells developed from iPSCs of the patients showed a phenotype of the disease, further studies using IBGC-specific iPSCs will give us more information on the pathophysiology and the therapy of IBGC in the future.
Collapse
|
34
|
SLC20A2 variants cause dysfunctional phosphate transport activity in endothelial cells induced from Idiopathic Basal Ganglia Calcification patients-derived iPSCs. Biochem Biophys Res Commun 2019; 510:303-308. [DOI: 10.1016/j.bbrc.2019.01.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
|
35
|
Lack of Major Ophthalmic Findings in Patients with Primary Familial Brain Calcification Linked to SLC20A2 and PDGFB. J Mol Neurosci 2019; 67:441-444. [PMID: 30607898 DOI: 10.1007/s12031-018-1250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by symmetrical and bilateral brain calcification. It is typically inherited as an autosomal dominant disorder, and de novo variants have also been described. Interestingly, just recent studies have reported the first autosomal recessive PFBC-causative gene. PFBC patients exhibit high clinical heterogeneity including Parkinsonism, dystonia, ataxia, depression, and migraine. Mice studies, an important research tool, have been a breakthrough in increasing the understanding of PFBC's main signs and symptoms, and many findings reported in these mice have been subsequently reported in patients. One phenotype that has been observed in PFBC mice models but not in PFBC patients, however, is the development of ophthalmic abnormalities. This way, this report focused on performing an ophthalmic assessment in six Brazilian patients genetically diagnosed with PFBC. The assessments showed that none of the PFBC individuals included presented any of the ophthalmic abnormalities reported in mice models, such as cataracts, ocular calcification, abnormal iris and lens morphology, and retinal deterioration. Additionally, of the six PFBC patients described, two SLC20A2 mutation carriers showed physiological excavation of the optic nerve head and partial vitreous detachment, while just one individual presented bilateral narrowing of retinal arterioles. In summary, no evidence of similar ophthalmological abnormalities found in mice were found in our patients; nonetheless, further studies in larger sample size are warranted to corroborate with our findings. To our knowledge, this study is the first to focus on investigating, in PFBC patients, the ophthalmological phenotypes described in the PFBC mice models.
Collapse
|
36
|
Pericytes in Primary Familial Brain Calcification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:247-264. [PMID: 31147881 DOI: 10.1007/978-3-030-16908-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.
Collapse
|