1
|
Chen Y, Du Y. The Application of Deuteration Strategy in Drug Design. ChemMedChem 2025; 20:e202400836. [PMID: 39715028 DOI: 10.1002/cmdc.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Deuterated drugs, which are derived from the subtle exchange of a protium atom with a deuterium atom in drug molecules, exhibit significant differences in pharmaceutical characteristics compared to their parent drugs. With the advantages of improving pharmacokinetic properties, reducing toxicity, inhibiting the interconversion between chiral drugs and restricting drug interactions, deuterated drugs have attracted widespread attention from medicinal chemists. This review highlights the application of deuteration strategies in drug design, summarizing the progress of all deuterated drugs available in the market or still under investigation to provide a reference for all researchers engaged deuterated drug development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| | - Yunfei Du
- Department: School of Pharmaceutical Science and Technology, Faculty of Medicine, Institution: Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
| |
Collapse
|
2
|
Kwakowsky A, Palpagama TH. Neuroinflammation as a therapeutic target in Huntington's disease. Neural Regen Res 2025; 20:817-818. [PMID: 38886953 PMCID: PMC11433902 DOI: 10.4103/nrr.nrr-d-24-00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Andrea Kwakowsky
- Center for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Thulani H. Palpagama
- Center for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Frank S, Testa CM, Goldstein J, Kayson E, Leavitt BR, Oakes D, O'Neill C, Whaley J, Gross N, Chaijale N, Barash S, Gordon MF. Safety and Efficacy of Deutetrabenazine at High versus Lower Daily Dosages in the ARC-HD Study to Treat Chorea in Huntington Disease. CNS Drugs 2025; 39:185-195. [PMID: 39825184 PMCID: PMC11769868 DOI: 10.1007/s40263-024-01139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND Huntington disease (HD) is a progressive neurodegenerative disease that causes psychiatric and neurological symptoms, including involuntary and irregular muscle movements (chorea). Chorea can disrupt activities of daily living, pose safety issues, and may lead to social withdrawal. The vesicular monoamine transporter 2 inhibitors tetrabenazine, deutetrabenazine, and valbenazine are approved treatments that can reduce chorea. OBJECTIVE This post hoc analysis was conducted to evaluate safety and efficacy among participants who received high-dosage deutetrabenazine treatment (> 48 mg/d) in ARC-HD, an open-label study that assessed long-term safety and efficacy of deutetrabenazine for the treatment of chorea in HD in adults. METHODS ARC-HD was a single-arm, two-cohort, open-label study. Participants either successfully completed the First-HD study or switched overnight from tetrabenazine to deutetrabenazine. Participants were dosed with deutetrabenazine in a response-driven manner (maximum 72 mg/d allowed). For the current analysis, exposure-adjusted incidence rates (EAIRs) for adverse events of interest were analyzed according to daily dosage (≤ 48 mg/d versus > 48 mg/d), and total maximal chorea (TMC) scores were analyzed by cohort during the stable-dose period. RESULTS In total, 116 of the 119 participants enrolled in ARC-HD entered the stable-dose period, where no apparent differences were seen in EAIRs when receiving deutetrabenazine dosages ≤ 48 mg/d (exposure = 177.7 person-years) compared with > 48 mg/d (exposure = 74.1 person-years). Similar results were found among the subset of participants who received deutetrabenazine dosages > 48 mg/d at least once during the study (n = 49, 42%) when their dosage was ≤ 48 mg/d (exposure = 37.9 person-years) versus > 48 mg/d (74.1 person-years). Efficacy analyses were conducted for participants who had TMC scores available (rollover cohort, n = 77; switch cohort, n = 35). For most participants, the lowest deutetrabenazine dosage needed to achieve a TMC response (≥ 30% improvement from baseline) was between 24 and 48 mg/d in both the rollover (n = 57, 74.0%) and switch (n = 16, 46.0%) cohorts. Whereas the dosage needed for a TMC response was independent of baseline TMC score in the rollover cohort, participants with higher baseline TMC scores in the switch cohort required higher dosages to achieve a TMC response during the trial. CONCLUSIONS In this open-label, long-term study, some participants received deutetrabenazine dosing > 48 mg/d to achieve adequate chorea control. There was no new safety concern or incremental change in the safety profile between dosages of ≤ 48 mg/d and > 48 mg/d. These results include dosages that have not been approved for clinical use, however, they increase our understanding of safety and tolerability of deutetrabenazine doses. CLINICAL TRIALS REGISTRATION ARC-HD (ClinicalTrials.gov identifier: NCT01897896); First-HD (ClinicalTrials.gov identifier: NCT01795859).
Collapse
Affiliation(s)
- Samuel Frank
- Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave., Kirstein 228, Boston, MA, 02215, USA.
| | - Claudia M Testa
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Christine O'Neill
- Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA
| | - Jacquelyn Whaley
- Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Nicholas Gross
- Innovative Medicines, Global Statistical and Data Sciences, Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA, USA
| | - Nayla Chaijale
- Global Medical Affairs, Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA, USA
| | - Steve Barash
- Innovative Medicines, Global Statistical and Data Sciences, Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA, USA
| | - Mark Forrest Gordon
- Innovative Medicines and Global Clinical Development, Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA, USA
| |
Collapse
|
4
|
Huynh K, Jamadar SD, Lampit A, Siddiqui MN, Stout JC, Georgiou-Karistianis N. Feasibility and effects of cognitive training on cognition and psychosocial function in Huntington's disease: a randomised pilot trial. J Neurol 2025; 272:159. [PMID: 39847109 PMCID: PMC11757664 DOI: 10.1007/s00415-024-12855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Huntington's disease (HD) is a rare neurodegenerative disease that causes progressive cognitive, physical, and psychiatric symptoms. Computerised cognitive training (CCT) is a novel intervention that aims to improve and maintain cognitive functions through repeated practice. The effects of CCT have yet to be established in HD. This randomised pilot trial examined the feasibility of a large scale trial to assess efficacy of multidomain CCT in pre-manifest and early-stage HD. METHODS 28 participants were randomised to either at-home CCT (2 × 60 min sessions per week for 12 weeks; n = 13) or lifestyle education through monthly newsletters (n = 15). Participants completed cognitive tasks and questionnaires at baseline and follow up, either in person (n = 18) or via video teleconferencing (n = 10). RESULTS All participants were retained at follow up, and adherence to CCT ranged from 96 to 100%, with 11/13 participants completing all sessions. Preliminary analyses showed evidence of a large effect of CCT on task switching and response inhibition, compared to lifestyle education. There was no evidence of specific benefit to other cognitive domains (processing speed, basic and divided attention, working memory), or psychosocial functions (subjective cognition, mood, health-related quality of life). DISCUSSION Whilst retention and adherence rates were high, recruitment rates were low, suggesting that a large scale trial may be feasible with some modifications to increase recruitment rates, such as by reducing time burden associated with the study, and using a multi-site trial design. Potential effects on cognitive functioning warrant further investigation. CLINICAL TRIAL REGISTRATION The trial was prospectively registered on the Australian New Zealand Clinical Trials Registry (ACTRN12622000908730).
Collapse
Affiliation(s)
- Katharine Huynh
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Clayton, Victoria, 3800, Australia
| | - Sharna D Jamadar
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Clayton, Victoria, 3800, Australia
| | - Amit Lampit
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - M Navyaan Siddiqui
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Clayton, Victoria, 3800, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
6
|
Rodríguez-Agudelo Y, Chávez-Oliveros M, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Paz-Rodríguez F. Psychological discomfort in carriers and non-carriers of the Huntington disease mutation and its relationship with disease burden. Neurologia 2025; 40:1-9. [PMID: 36058517 DOI: 10.1016/j.nrleng.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a neurodegenerative and hereditary disorder. Due to the predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. Several studies have reported an increase in psychiatric symptoms in carriers of the HD gene without motor symptoms. OBJECTIVE To identify psychological distress in carriers of the mutation that causes HD, without motor symptoms, utilizing the Symptom Checklist 90 (SCL-90), and to correlate with the burden and proximity of the disease. METHOD A sample of 175 participants in a HD Predictive Diagnostic Program (PDP-HD) was divided into HEP carriers (39.4%) and NPEH non-carriers (61.6%) of the HD-causing mutation. By means of mathematical formulas, the disease burden and proximity to the manifest stage in the PEH group were obtained and it was correlated with the results of the SCL-90-R. RESULTS Comparing the results obtained in the SCL-90-R of the PEH and NPEH, the difference is observed in the positive somatic male index, where the PEH obtains higher average scores. The correlations between disease burden and psychological distress occur in the domains; obsessions and compulsions, interpersonal sensitivity, hostility, global severity index and positive somatic distress index. A low correlation is observed between the burden of disease and the scores obtained in psychological discomfort. CONCLUSIONS In general, we found that the PEH group obtained a higher score in the dimensions evaluated with the SCL-90-R, showing a relationship with the burden and differences due to the proximity of the disease. Higher scores on the SCL-90-R dimensions in carriers of the HD gene may suggest an early finding of psychological symptoms in the disease.
Collapse
Affiliation(s)
- Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
7
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
8
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci 2024; 14:1049. [PMID: 39595812 PMCID: PMC11591915 DOI: 10.3390/brainsci14111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The inexorable progression of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis, is closely related to irreversible brain decline. Accurately characterizing pathophysiological features and identifying reliable biomarkers for early diagnosis and optimized treatment are critical. Hindered by the blood-brain barrier (BBB), obtaining sensitive monitoring indicators for disease progression and achieving efficient drug delivery remain significant challenges. Exosomes, endogenous nanoscale vesicles that carry key bioactive substances, reflect the intracellular environment and play an important role in cell signaling. They have shown promise in traversing the BBB, serving dual roles as potential biomarkers for NDs and vehicles for targeted drug delivery. However, the specific mechanisms by which exosome influence NDs are not fully understood, necessitating further investigation into their attributes and functionalities in the context of NDs. This review explores how exosomes mediate multifaceted interactions, particularly in exacerbating pathogenic processes such as oxidative stress, neuronal dysfunction, and apoptosis integral to NDs. It provides a comprehensive analysis of the profound impact of exosomes under stress and disease states, assessing their prospective utility as biomarkers and drug delivery vectors, offering new perspectives for tackling these challenging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
9
|
Huynh K, Jamadar S, Stout J, Voigt K, Lampit A, Georgiou-Karistianis N. Effects and mechanisms of computerized cognitive training in Huntington's disease: protocol for a pilot study. Neurodegener Dis Manag 2024; 14:203-216. [PMID: 39781626 PMCID: PMC11730119 DOI: 10.2217/nmt-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/20/2024] [Indexed: 01/12/2025] Open
Abstract
Huntington's disease (HD) causes progressive cognitive decline, with no available treatments. Computerized cognitive training (CCT) has shown efficacy in other populations, but its effects in HD are largely unknown. This pilot study will explore the effects and neural mechanisms of CCT in HD. The intervention group participants will complete 12 weeks of multidomain CCT. Control group participants will receive lifestyle education and access to CCT after the study. The primary outcome is change in processing speed. Secondary outcomes include - change in other cognitive domains, functional brain network connectivity (derived from MRI) and psychosocial function. Feasibility outcomes include rates of recruitment, adherence and retention. This study may provide insights into the effects of CCT in HD and guide future trials.Clinical Trial Registration: ACTRN12622000908730 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Katharine Huynh
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville VIC 3010, Australia
| | - Sharna Jamadar
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia
- Monash Biomedical Imaging, 770 Blackburn Rd, Monash University, Clayton VIC 3800, Australia
| | - Julie Stout
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia
| | - Katharina Voigt
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia
- Monash Biomedical Imaging, 770 Blackburn Rd, Monash University, Clayton VIC 3800, Australia
| | - Amit Lampit
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville VIC 3010, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
10
|
Mehanna R, Jankovic J. Systemic Symptoms in Huntington's Disease: A Comprehensive Review. Mov Disord Clin Pract 2024; 11:453-464. [PMID: 38529740 PMCID: PMC11078495 DOI: 10.1002/mdc3.14029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Although Huntington's disease (HD) is usually thought of as a triad of motor, cognitive, and psychiatric symptoms, there is growing appreciation of HD as a systemic illness affecting the entire body. OBJECTIVES This review aims to draw attention to these systemic non-motor symptoms in HD. METHODS We identified relevant studies published in English by searching MEDLINE (from 1966 to September 2023), using the following subject headings: Huntington disease, autonomic, systemic, cardiovascular, respiratory, gastrointestinal, urinary, sexual and cutaneous, and additional specific symptoms. RESULTS Data from 123 articles were critically reviewed with focus on systemic features associated with HD, such as cardiovascular, respiratory, gastrointestinal, urinary, sexual and sweating. CONCLUSION This systematic review draws attention to a variety of systemic and autonomic co-morbidities in patients with HD. Not all of them correlate with the severity of the primary HD symptoms or CAG repeats. More research is needed to better understand the pathophysiology and treatment of systemic and autonomic dysfunction in HD.
Collapse
Affiliation(s)
- Raja Mehanna
- Department of NeurologyUniversity of Texas Health Science Center at Houston, McGovern Medical SchoolHoustonTXUSA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of NeurologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
11
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
12
|
Shafie A, Ashour AA, Anjum F, Shamsi A, Hassan MI. Elucidating the Impact of Deleterious Mutations on IGHG1 and Their Association with Huntington's Disease. J Pers Med 2024; 14:380. [PMID: 38673007 PMCID: PMC11050829 DOI: 10.3390/jpm14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
13
|
Paz-Rodríguez F, Chávez-Oliveros M, Bernal-Pérez A, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Rodríguez-Agudelo Y. Neuropsychological performance and disease burden in individuals at risk of developing Huntington disease. Neurologia 2024; 39:127-134. [PMID: 38272259 DOI: 10.1016/j.nrleng.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Huntington disease (HD) is a hereditary neurodegenerative disorder. Thanks to predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. OBJECTIVE To compare performance in cognitive tasks of carriers (HDC) and non-carriers (non-HDC) of the huntingtin gene and to analyse the variability in performance as a function of disease burden and proximity to the manifest stage (age of symptom onset). METHOD A sample of 146 participants in a predictive diagnosis of HD programme were divided into the HDC (41.1%) and non-HDC groups (58.9%). Mathematical formulae were used to calculate disease burden and proximity to the manifest stage in the HDC group; these parameters were correlated with neuropsychological performance. RESULTS Significant differences were observed between groups in performance on the Mini-Mental State Examination (MMSE), Stroop-B, Symbol-Digit Modalities Test (SDMT), and phonological fluency. In the HDC group, correlations were observed between disease burden and performance on the MMSE, Stroop-B, and SDMT. The group of patients close to the manifest stage scored lowest on the MMSE, Stroop-B, Stroop-C, SDMT, and semantic verbal fluency. According to the multivariate analysis of covariance, the MMSE effect shows statistically significant differences in disease burden and proximity to onset of symptoms. CONCLUSIONS Members of the HDC group close to the manifest phase performed more poorly on tests assessing information processing speed and attention. Prefrontal cognitive dysfunction appears early, several years before the motor diagnosis of HD.
Collapse
Affiliation(s)
- F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Bernal-Pérez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Krause A, Anderson DG, Ferreira-Correia A, Dawson J, Baine-Savanhu F, Li PP, Margolis RL. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 2024; 20:36-49. [PMID: 38114648 DOI: 10.1038/s41582-023-00906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - David G Anderson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- University of Glasgow, Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, Faculty of Humanities, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Boersema-Wijma DJ, van Duijn E, Heemskerk AW, van der Steen JT, Achterberg WP. Palliative care in advanced Huntington's disease: a scoping review. BMC Palliat Care 2023; 22:54. [PMID: 37138329 PMCID: PMC10155365 DOI: 10.1186/s12904-023-01171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND As Huntington's disease (HD) is a progressive disease for which there is no cure yet, patients in the advanced stage of HD may benefit from palliative care. OBJECTIVE To review the literature focusing on palliative care in advanced stage HD, and the level of evidence. METHODS Publications between 1993 and October 29th, 2021 from 8 databases (Embase, Web of Science, Cochrane, Emcare, PsycINFO, Academic Search Premier, PMC PubMed Central and Pubmed) were included. The literature was deductively classified based on topics that are part of the definition of palliative care, or as care-related topics that emerged from the literature. Levels of evidence I (high) - V (low) were determined as defined by the Joanna Briggs Institute. RESULTS Our search resulted in 333 articles, 38 of which were included. The literature covered four domains of palliative care: physical care, psychological care, spiritual care, and social care. Four other topics in the literature were: advance care planning, end-of-life needs assessments, pediatric HD care, and need for health care services. Most literature was underpinned by a low level of evidence, except for the topics on social care (Level III-V), advance care planning (Level II-V) and end-of-life needs assessments (Level II-III). CONCLUSIONS To deliver adequate palliative care in advanced HD, both general and HD-specific symptoms and problems need to be addressed. As the level of evidence in existing literature is low, further research is essential to improve palliative care and to meet patient's wishes and needs.
Collapse
Affiliation(s)
- Dorine J Boersema-Wijma
- Department of Public Health and Primary care, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, the Netherlands.
- Huntington Center of Expertise Topaz Overduin, Nachtegaallaan 5, 2225 SX, Katwijk, the Netherlands.
| | - Erik van Duijn
- Department of Public Health and Primary care, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, the Netherlands
- Huntington Center of Expertise Topaz Overduin, Nachtegaallaan 5, 2225 SX, Katwijk, the Netherlands
| | - Anne-Wil Heemskerk
- Department of Public Health and Primary care, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, the Netherlands
- Huntington Center of Expertise Topaz Overduin, Nachtegaallaan 5, 2225 SX, Katwijk, the Netherlands
| | - Jenny T van der Steen
- Department of Public Health and Primary care, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, the Netherlands
- Radboudumc Alzheimer center and Department of Primary and Community Care, Radboud university medical center, Geert Grooteplein Noord 21, 6500 HB, Nijmegen, the Netherlands
| | - Wilco P Achterberg
- Department of Public Health and Primary care, Leiden University Medical Center, Hippocratespad 21, 2333 ZD, Leiden, the Netherlands
- Huntington Center of Expertise Topaz Overduin, Nachtegaallaan 5, 2225 SX, Katwijk, the Netherlands
| |
Collapse
|
16
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington's Disease. Biomedicines 2022; 10:2866. [PMID: 36359390 PMCID: PMC9687177 DOI: 10.3390/biomedicines10112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 10/01/2023] Open
Abstract
Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. β-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals β-BA in preventing neurological illnesses such as HD.
Collapse
Affiliation(s)
- Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arzoo Kamra
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
18
|
Ketchum FB, Chin NA, Grill J, Gleason CE, Erickson C, Clark LR, Paulsen JS, Kind AJ. Moving beyond disclosure: Stages of care in preclinical Alzheimer's disease biomarker testing. Alzheimers Dement 2022; 18:1969-1979. [PMID: 35213786 PMCID: PMC9402800 DOI: 10.1002/alz.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) begins with an asymptomatic "preclinical" phase, in which abnormal biomarkers indicate risk for developing cognitive impairment. Biomarker information is increasingly being disclosed in research settings, and is moving toward clinical settings with the development of cheaper and non-invasive testing. Limited research has focused on the safety and psychological effects of disclosing biomarker results to cognitively unimpaired adults. However, less is known about how to ensure equitable access and robust counseling for decision-making before testing, and how to effectively provide long-term follow-up and risk management after testing. Using the framework of Huntington's disease, which is based on extensive experience with disclosing and managing risk for a progressive neurodegenerative condition, this article proposes a conceptual model of pre-disclosure, disclosure, and post-disclosure phases for AD biomarker testing. Addressing research questions in each phase will facilitate the transition of biomarker testing into clinical practice.
Collapse
Affiliation(s)
- Fred B. Ketchum
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Division of GeriatricsDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Joshua Grill
- Institute for Memory Impairments and Neurological DisordersUniversity of California, IrvineIrvineCaliforniaUSA
- Departments of Psychiatry and Human Behavior and Neurobiology and BehaviorUniversity of California, IrvineIrvineCaliforniaUSA
| | - Carey E. Gleason
- Division of GeriatricsDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Claire Erickson
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Neuroscience & Public Policy ProgramUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Clark
- Division of GeriatricsDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Jane S. Paulsen
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Amy J.H. Kind
- Division of GeriatricsDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Center for Health Disparities ResearchUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
19
|
Malestar psicológico en portadores y no portadores de la mutación causante de enfermedad de Huntington y su relación con la carga de la enfermedad. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Behavioral- and blood-based biomarkers for Huntington's disease: Studies on the R6/1 mouse model with prospects for early diagnosis and monitoring of the disease. Brain Behav Immun Health 2022; 23:100482. [PMID: 35799674 PMCID: PMC9253406 DOI: 10.1016/j.bbih.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Objective Methods Results Conclusion Gender is one of the factors that determine the rate of progression of Huntington's disease symptoms. A set of non-invasive biomarkers that are useful in the diagnosis and monitoring of Huntington's disease progression. Hormonal profile may be a factor in the efficacy of potential therapy for Huntington's disease.
Collapse
|
21
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
22
|
Soares ES, Prediger RD, Brocardo PS, Cimarosti HI. SUMO-modifying Huntington's disease. IBRO Neurosci Rep 2022; 12:203-209. [PMID: 35746980 PMCID: PMC9210482 DOI: 10.1016/j.ibneur.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-like modifiers, SUMOs, are proteins that are conjugated to target substrates and regulate their functions in a post-translational modification called SUMOylation. In addition to its physiological roles, SUMOylation has been implicated in several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases (HD). HD is a neurodegenerative monogenetic autosomal dominant disorder caused by a mutation in the CAG repeat of the huntingtin (htt) gene, which expresses a mutant Htt protein more susceptible to aggregation and toxicity. Besides Htt, other SUMO ligases, enzymes, mitochondrial and autophagic components are also important for the progression of the disease. Here we review the main aspects of Htt SUMOylation and its role in cellular processes involved in the pathogenesis of HD.
Collapse
Affiliation(s)
- Ericks S. Soares
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Rui D. Prediger
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Patricia S. Brocardo
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Helena I. Cimarosti
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
23
|
Frank S, Testa C, Edmondson MC, Goldstein J, Kayson E, Leavitt BR, Oakes D, O’Neill C, Vaughan C, Whaley J, Gross N, Gordon MF, Savola JM, The Huntington Study Group/ARC-HD Investigators and Coordinators http://orcid.org/0000-0002-1866-162XFrankSamuelTestaClaudiaStamlerDavidKaysonEliseEdmondsonMary C.LeavittBlair R.OakesDavidO’NeillChristineVaughanChristinaGoldsteinJodyBockusMargaretLeyvaStephanieSnivelyVictoriaWhaleyJacquelynWongCynthiaMalloneeWilliam M.SuterGregoryJankovicJosephJimenez-ShahedJoohiHunterChristineClaassenDaniel O.WestLaurenRomanOliviaSungVictorSmithJennaClouseRondaSaint-HilaireMarieTurpinDenyseJamesRaymondRodriguezRamonRizerKyleAndersonKarenHellerHopeAhmadAlexisCriswellSusanRacetteBrad A.Nucifora JrFrederick C.ChurchillGregoryOngMaryJaneMendisTilakMendisNeilaSingerCarlosPaulsenJane S.KerrJaneDubinskyRichardGrayCarolynFactorStewart A.SperinElaineMolhoEricEvansSharonNickelsBreannaBergenCourtneyJaynesJessicaReevesChristinaSegroVickiSamiiAliChristopherEmilyDel CastilloDebraChouinardSylvainPerry-TricePeggyEsmailSheraliFungWai Lun AlanGibbonsClareColcherAmyHackmyerCoryMcGarryAndrewKlosKevinGudesblattMarkSchneiderDanielDhallRohitSimpsonEdithWojcieszekJoanneHurtAndreaLaFaverKathrinRobinsonAnnetteRevillaFredy J.DukerAndrew P.NeefusErinWilson-PerezHilaryShprecherDavidHohnholtTylerWallPaolaBoydJamesHoustonEmilyFarbmanEric S.PoynorShamineAgarwalPinkyLeonJulissaEberlyShirleyWattsArthurTariotPierreFeiginAndrewEvansScott R.BeckChristopher A.. The Safety of Deutetrabenazine for Chorea in Huntington Disease: An Open-Label Extension Study. CNS Drugs 2022; 36:1207-1216. [PMID: 36242718 PMCID: PMC9653309 DOI: 10.1007/s40263-022-00956-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deutetrabenazine is approved in the USA, China, Australia, Israel, Brazil, and South Korea for the treatment of chorea associated with Huntington disease. OBJECTIVE We aimed to evaluate the long-term safety and tolerability of deutetrabenazine for the treatment of Huntington disease. METHODS This open-label, single-arm, multi-center study included patients who completed a double-blind study (Rollover) and patients who converted overnight from a stable tetrabenazine dose (Switch). Exposure-adjusted incidence rates (adverse events per person-year) were calculated. Efficacy was analyzed using a stable post-titration timepoint (8 weeks). Changes in the Unified Huntington's Disease Rating Scale total motor score and total maximal chorea score from baseline to week 8, as well as those from week 8 to week 145 (or the last visit on the study drug if that occurred earlier), were evaluated as both efficacy and safety endpoints during the study. RESULTS Of 119 patients (Rollover, n = 82; Switch, n = 37), 100 (84%) completed ≥ 1 year of treatment. End-of-study exposure-adjusted incidence rates for adverse events in Rollover and Switch, respectively, were: any, 2.57 and 4.02; serious, 0.11 and 0.14; leading to dose suspension, 0.05 and 0.04. Common adverse events (≥ 4% either cohort) included somnolence (Rollover, 20%; Switch, 30%), depression (32%; 22%), anxiety (27%; 35%), insomnia (23%; 16%), and akathisia (6%; 11%). Adverse events of interest included suicidality (9%; 5%) and parkinsonism (4%; 8%). Mean dose at week 8 was 38.1 mg (Rollover) and 36.5 mg (Switch). Mean dose across cohorts after titration was 37.6 mg; at the final visit, mean dose across cohorts was 45.7 mg. Patients showed minimal change in the Unified Huntington's Disease Rating Scale total maximal chorea scores with stable dosing from weeks 8-145 or at the end of treatment, but total motor score increased versus week 8 (mean change [standard deviation]: 8.2 [11.9]). There were no unexpected adverse events upon drug withdrawal, and mean (standard deviation) total maximal chorea scores increased 4.7 (4.6) units from week 8 to 1-week follow-up. CONCLUSIONS Adverse events observed with long-term deutetrabenazine exposure were consistent with previous studies. Reductions in chorea persisted over time. Upon treatment cessation, there was no unexpected worsening of chorea. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01897896.
Collapse
Affiliation(s)
- Samuel Frank
- Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Kirstein 228, Boston, MA, 02215, USA.
| | - Claudia Testa
- University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Mary C. Edmondson
- University of North Carolina School of Medicine, Chapel Hill, NC USA
| | | | | | - Blair R. Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | | | - Christine O’Neill
- Wake Forest University Baptist Medical Center, Winston Salem, NC USA
| | | | - Jacquelyn Whaley
- Center for Health and Technology, University of Rochester, Rochester, NY USA
| | | | | | | | | |
Collapse
|
24
|
Nikitina M, Bragina E, Nazarenko M, Alifirova V. The role of alleles with an intermediate number of trinucleotide repeats in Parkinson’s disease and other neurodegenerative disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:42-50. [DOI: 10.17116/jnevro202212207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
26
|
Silva TYT, Pedroso JL, França Junior MC, Barsottini OGP. A journey through the history of Neurogenetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:929-932. [PMID: 34550174 DOI: 10.1590/0004-282x-anp-2020-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Since the late 19th century, when several inherited neurological disorders were described, the close relationship between Neurology and heredity were well documented by several authors in a pre-genetic era. The term Neurogenetics came to integrate two large sciences and clinical practices: Neurology and Genetics. Neurogenetics is the emerging field that studies the correlation between genetic code and the development and function of the nervous system, including behavioral traits, personality and neurological diseases. In this historical note, a timeline shows the main events and contributors since the first reports of neurogenetic diseases until the current days. In the recent years, neurologists are experiencing much broader use of new genetic diagnosis techniques in clinical practice. Thus, new challenges are arising in diagnostic approach, ethical considerations, and therapeutic options. This article aims to summarize the main historical hallmarks of Neurogenetics, from the pre-DNA era to the present, and the future directions of the field.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil
| | | | | |
Collapse
|
27
|
Cryo-electron tomography provides topological insights into mutant huntingtin exon 1 and polyQ aggregates. Commun Biol 2021; 4:849. [PMID: 34239038 PMCID: PMC8266869 DOI: 10.1038/s42003-021-02360-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative trinucleotide repeat disorder caused by an expanded poly-glutamine (polyQ) tract in the mutant huntingtin (mHTT) protein. The formation and topology of filamentous mHTT inclusions in the brain (hallmarks of HD implicated in neurotoxicity) remain elusive. Using cryo-electron tomography and subtomogram averaging, here we show that mHTT exon 1 and polyQ-only aggregates in vitro are structurally heterogenous and filamentous, similar to prior observations with other methods. Yet, we find filaments in both types of aggregates under ~2 nm in width, thinner than previously reported, and regions forming large sheets. In addition, our data show a prevalent subpopulation of filaments exhibiting a lumpy slab morphology in both aggregates, supportive of the polyQ core model. This provides a basis for future cryoET studies of various aggregated mHTT and polyQ constructs to improve their structure-based modeling as well as their identification in cells without fusion tags.
Collapse
|
28
|
Paz-Rodríguez F, Chávez-Oliveros M, Bernal-Pérez A, Ochoa-Morales A, Martínez-Ruano L, Camacho-Molina A, Rodríguez-Agudelo Y. Neuropsychological performance and disease burden in individuals at risk of developing Huntington disease. Neurologia 2021; 39:S0213-4853(21)00087-6. [PMID: 34090718 DOI: 10.1016/j.nrl.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Huntington disease (HD) is a hereditary neurodegenerative disorder. Thanks to predictive diagnosis, incipient clinical characteristics have been described in the prodromal phase. OBJECTIVE To compare performance in cognitive tasks of carriers (HDC) and non-carriers (non-HDC) of the huntingtin gene and to analyse the variability in performance as a function of disease burden and proximity to the manifest stage (age of symptom onset). METHOD A sample of 146 participants in a predictive diagnosis of HD programme were divided into the HDC (41.1%) and non-HDC groups (58.9%). Mathematical formulae were used to calculate disease burden and proximity to the manifest stage in the HDC group; these parameters were correlated with neuropsychological performance. RESULTS Significant differences were observed between groups in performance on the Mini-Mental State Examination (MMSE), Stroop-B, Symbol-Digit Modalities Test (SDMT), and phonological fluency. In the HDC group, correlations were observed between disease burden and performance on the MMSE, Stroop-B, and SDMT. The group of patients close to the manifest stage scored lowest on the MMSE, Stroop-B, Stroop-C, SDMT, and semantic verbal fluency. According to the multivariate analysis of covariance, the MMSE effect shows statistically significant differences in disease burden and proximity to onset of symptoms. CONCLUSIONS Members of the HDC group close to the manifest phase performed more poorly on tests assessing information processing speed and attention. Prefrontal cognitive dysfunction appears early, several years before the motor diagnosis of HD.
Collapse
Affiliation(s)
- F Paz-Rodríguez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - M Chávez-Oliveros
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Bernal-Pérez
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa-Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez-Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Camacho-Molina
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - Y Rodríguez-Agudelo
- Laboratorio de Neuropsicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
29
|
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22084085. [PMID: 33920936 PMCID: PMC8071291 DOI: 10.3390/ijms22084085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Collapse
|
30
|
Angeles-López QD, García-Lara L, Aguirre-Pineda N, Castañeda-Arellano R, Elizondo-Azuela G, Pérez-Severiano F, Segovia J. The absence of the aryl hydrocarbon receptor in the R6/1 transgenic mouse model of Huntington's disease improves the neurological phenotype. Behav Brain Res 2021; 408:113230. [PMID: 33684424 DOI: 10.1016/j.bbr.2021.113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.
Collapse
Affiliation(s)
- Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico; Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Lucia García-Lara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara 45425, Jalisco, Mexico
| | - Guillermo Elizondo-Azuela
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico.
| |
Collapse
|
31
|
Spronck EA, Vallès A, Lampen MH, Montenegro-Miranda PS, Keskin S, Heijink L, Evers MM, Petry H, van Deventer SJ, Konstantinova P, de Haan M. Intrastriatal Administration of AAV5-miHTT in Non-Human Primates and Rats Is Well Tolerated and Results in miHTT Transgene Expression in Key Areas of Huntington Disease Pathology. Brain Sci 2021; 11:brainsci11020129. [PMID: 33498212 PMCID: PMC7908995 DOI: 10.3390/brainsci11020129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 02/04/2023] Open
Abstract
Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype 5 expressing a microRNA that targets HTT mRNA (AAV5-miHTT) is in development for the treatment of HD with promising results in rodent and minipig HD models. To support a clinical trial, toxicity studies were performed in non-human primates (NHP, Macaca fascicularis) and Sprague-Dawley rats to evaluate the safety of AAV5-miHTT, the neurosurgical administration procedure, vector delivery and expression of the miHTT transgene during a 6-month observation period. For accurate delivery of AAV5-miHTT to the striatum, real-time magnetic resonance imaging (MRI) with convection-enhanced delivery (CED) was used in NHP. Catheters were successfully implanted in 24 NHP, without neurological symptoms, and resulted in tracer signal in the target areas. Widespread vector DNA and miHTT transgene distribution in the brain was found, particularly in areas associated with HD pathology. Intrastriatal administration of AAV5-miHTT was well tolerated with no clinically relevant changes in either species. These studies demonstrate the excellent safety profile of AAV5-miHTT, the reproducibility and tolerability of intrastriatal administration, and the delivery of AAV5-miHTT to the brain, which support the transition of AAV5-miHTT into clinical studies.
Collapse
Affiliation(s)
- Elisabeth A. Spronck
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
- Correspondence: ; Tel.: +31-(0)20-240-6091
| | - Astrid Vallès
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Margit H. Lampen
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Paula S. Montenegro-Miranda
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Sonay Keskin
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Liesbeth Heijink
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Melvin M. Evers
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Harald Petry
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Sander J. van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Pavlina Konstantinova
- uniQure biopharma B.V., 1105 BP Amsterdam, The Netherlands; (A.V.); (M.H.L.); (P.S.M.-M.); (S.K.); (L.H.); (M.M.E.); (H.P.); (P.K.)
| | - Martin de Haan
- Madeha Management & Consultancy, 1222 LM Nederhorst den Berg, The Netherlands;
| |
Collapse
|
32
|
|
33
|
Colpo GD, Rocha NP, Furr Stimming E, Teixeira AL. Gene Expression Profiling in Huntington's Disease: Does Comorbidity with Depressive Symptoms Matter? Int J Mol Sci 2020; 21:E8474. [PMID: 33187165 PMCID: PMC7697115 DOI: 10.3390/ijms21228474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. Besides the well-characterized motor symptoms, HD is marked by cognitive impairment and behavioral changes. In this study, we analyzed the blood of HD gene carries using RNA-sequencing techniques. We evaluated samples from HD gene carriers with (n = 8) and without clinically meaningful depressive symptoms (n = 8) compared with healthy controls (n = 8). Groups were age- and sex-matched. Preprocessing of data and between-group comparisons were calculated using DESeq2. The Wald test was used to generate p-values and log2 fold changes. We found 60 genes differently expressed in HD and healthy controls, of which 21 were upregulated and 39 downregulated. Within HD group, nineteen genes were differently expressed between patients with and without depression, being 6 upregulated and 13 downregulated. Several of the top differentially expressed genes are involved in nervous system development. Although preliminary, our findings corroborate the emerging view that in addition to neurodegenerative mechanisms, HD has a neurodevelopmental component. Importantly, the emergence of depression in HD might be related to these mechanisms.
Collapse
Affiliation(s)
- Gabriela Delevati Colpo
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Natalia Pessoa Rocha
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Erin Furr Stimming
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Instituto de Ensino & Pesquisa, Santa Casa BH, Belo Horizonte 30150-221, Brazil
| |
Collapse
|
34
|
Pierzynowska K, Podlacha M, Łuszczek D, Rintz E, Gaffke L, Szczudło Z, Tomczyk M, Smoleński RT, Węgrzyn G. Hair dysmorphology in the R6/1 and R6/2 mouse models of Huntington's disease. Gene 2020; 765:145133. [PMID: 32898606 DOI: 10.1016/j.gene.2020.145133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD), caused by expansion of CAG repeats in the 1st exon of the HTT gene, is a disorder inherited in an autosomal dominant manner. HD symptoms include chorea, behavioral disturbances and cognitive decline. Although it is described as a neurodegenerative disease, due to expression of HTT in all types of cells, peripheral symptoms also occur. R6/1 and R6/2 mouse lines, which demonstrate many different phenotypical disturbances, are among the most commonly used HD animal models. Nevertheless, in this report, we underlined, for the first time, a previously undescribed R6/1 and R6/2 feature, hair dysmorphology. We observed changes in the general view of pelage, as well as specific changes in the shape of hair, assessed under electron microscope (deep cavity and hilly hair surface or concave and convex areas on the long hair axis with an appearance of the hair as flat). Hair diameter was significantly increased in both HD mouse models relative to control animals. Moreover, loosened contact between the scales and loosened scale texture were observed in R6/1 and R6/2. Thus, this study highlighted that the hair morphology might be a useful, noninvasive and simple marker of a widely used HD mouse models, R6/1 and R6/2 lines, particularly in testing effects of potential therapeutics or disease progression.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Dorota Łuszczek
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Zuzanna Szczudło
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
35
|
Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genet Med 2020; 22:2108-2113. [PMID: 32741964 PMCID: PMC7708297 DOI: 10.1038/s41436-020-0917-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose In some Huntington disease (HD) patients, the “loss of interruption” (LOI) variant eliminates an interrupting codon in the HTT CAG-repeat tract, which causes earlier age of onset (AOO). The magnitude of this effect is uncertain, since previous studies included few LOI carriers, and the variant also causes CAG size misestimation. We developed a rapid LOI detection screen, enabling unbiased frequency estimation among manifest HD patients. Additionally, we combined published data with clinical data from newly identified patients to accurately characterize the LOI’s effect on AOO. Methods We developed a LOI detection polymerase chain reaction (PCR) assay, and screened patients to estimate the frequency of the LOI variant and its effect on AOO. Results Mean onset for LOI carriers (n = 49) is 20.4 years earlier than expected based on diagnosed CAG size. After correcting for CAG size underestimation, the variant is still associated with onset 9.5 years earlier. The LOI is present in 1.02% of symptomatic HD patients, and in 32.2% of symptomatic reduced penetrance (RP) range patients (36–39 CAGs). Conclusion The LOI causes significantly earlier onset, greater than expected by CAG length, particularly in persons with 36–39 CAG repeats. Detection of this variant has implications for HD families, especially for those in the RP range.
Collapse
|
36
|
Applications of probability and statistics in cancer genomics. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Abstract
Huntington disease, a neurodegenerative disease characterized by progressive motor, behavioral, and cognitive decline, is caused by a CAG trinucleotide repeat expansion in the huntingtin gene on chromosome 4. Current treatments target symptom management because there are no disease-modifying therapies at this time. Investigation of RNA-based and DNA-based treatment strategies are emerging and hold promise of possible future disease-modifying therapy.
Collapse
Affiliation(s)
- Christine M Stahl
- NYU Langone Health, Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, 222 East 41st Street, Floor 13, New York, NY 10017, USA.
| | - Andrew Feigin
- NYU Langone Health, Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, 222 East 41st Street, Floor 13, New York, NY 10017, USA
| |
Collapse
|
39
|
Khan H, Ullah H, Tundis R, Belwal T, Devkota HP, Daglia M, Cetin Z, Saygili EI, Campos MDG, Capanoglu E, Du M, Dar P, Xiao J. Dietary Flavonoids in the Management of Huntington’s Disease: Mechanism and Clinical Perspective. EFOOD 2020; 1:38-52. [DOI: 10.2991/efood.k.200203.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive loss of neurons, which leads to behavioral systems and mental decline. HD is linked to repeat expansions of cytosine, adenine, and guanine in the Huntingtin (HTT) gene that give rise to mutation, leading to the formation of the HTT protein product. Oxidative stress also provokes the initiation and progression of HD as it leads to protein misfolding that results in the formation of inclusion which clumps together and alters neurotransmission. Despite the advancement in the field of pharmaceutical sciences, current therapeutic approaches suppress only the severity of symptoms and no therapy exists that can cure HD from its root cause. Flavonoids are the most abundant polyphenols widely present in daily dietary sources. Dietary flavonoids have a wide range of pharmacological bioactivities and many therapeutic applications. Dietary flavonoids including hesperidin, naringin, quercetin, rutin, fisetin, myricetin, luteolin, and epigallocatechin 3‐O‐gallate can prevent and manage HD through exerting antioxidant and anti‐inflammatory activities, altering intracellular pathways, genetic alterations, and metal ion chelation. This review highlights flavonoids as therapeutic options for HD and will open new dimensions for flavonoids as safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy Abdul Wali Khan University Mardan 23200 Pakistan
| | - Hammad Ullah
- Department of Pharmacy Abdul Wali Khan University Mardan 23200 Pakistan
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Via P. Bucci 87036 Rende CS Italy
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development Kosi‐Katarmal Almora Uttarakhand India
| | - Hari Prasad Devkota
- School of Pharmacy Kumamoto University 5‐1 Oe‐honmachi, Chuo ku Kumamoto 862‐0973 Japan
| | - Maria Daglia
- Department of Drug Science University of Pavia Pavia Italy
| | - Zafer Cetin
- Department of Medical Biology and Genetic SANKO University School of Medicine Gaziantep Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry SANKO University School of Medicine Gaziantep Turkey
| | - Maria da Graça Campos
- Observatory of Herb‐Drug Interactions/Faculty of Pharmacy University of Coimbra Heath Sciences Campus, Azinhaga de Santa Comba Coimbra Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC) University of Coimbra Rua Larga Coimbra Portugal
| | - Esra Capanoglu
- Food Engineering Department Faculty of Chemical and Metallurgical Engineering Istanbul Technical University, Maslak 34469 Istanbul Turkey
| | - Ming Du
- School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116034 China
| | - Parsa Dar
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Control in Chinese Medicine University of Macau Avenida da Universidade Taipa Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Control in Chinese Medicine University of Macau Avenida da Universidade Taipa Macau
| |
Collapse
|
40
|
Alonso R, Pisa D, Carrasco L. Brain Microbiota in Huntington's Disease Patients. Front Microbiol 2019; 10:2622. [PMID: 31798558 PMCID: PMC6861841 DOI: 10.3389/fmicb.2019.02622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
One of the most important challenges facing medical science is to better understand the cause of neuronal pathology in neurodegenerative diseases. Such is the case for Huntington's disease (HD), a genetic disorder primarily caused by a triplet expansion in the Huntingtin gene (HTT). Although aberrant HTT is expressed from embryogenesis, it remains puzzling as to why the onset of disease symptoms manifest only after several decades of life. In the present study, we investigated the possibility of microbial infection in brain tissue from patients with HD, reasoning that perhaps mutated HTT could be deleterious for immune cells and neural tissue, and could facilitate microbial colonization. Using immunohistochemistry approaches, we observed a variety of fungal structures in the striatum and frontal cortex of seven HD patients. Some of these fungi were found in close proximity to the nucleus, or even as intranuclear inclusions. Identification of the fungal species was accomplished by next-generation sequencing (NGS). Interestingly, some genera, such as Ramularia, appeared unique to HD patients, and have not been previously described in other neurodegenerative diseases. Several bacterial species were also identified both by PCR and NGS. Notably, a curved and filamentous structure that immunoreacts with anti-bacterial antibodies was characteristic of HD brains and has not been previously observed in brain tissue from neurodegenerative patients. Prevalent bacterial genera included Pseudomonas, Acinetobacter, and Burkholderia. Collectively, our results represent the first attempt to identify the brain microbiota in HD. Our observations suggest that microbial colonization may be a risk factor for HD and might explain why the onset of the disease appears after several decades of life. Importantly, they may open a new field of investigation and could help in the design of new therapeutic strategies for this devastating disorder.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Carbo M, Brandi V, Pascarella G, Staid DS, Colotti G, Polticelli F, Ilari A, Morea V. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy. Int J Mol Med 2019; 44:2223-2233. [PMID: 31638189 PMCID: PMC6844632 DOI: 10.3892/ijmm.2019.4373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder for which no cure is available yet. It is caused by abnormal expansion of a CAG triplet in the gene encoding the huntingtin protein (Htt), with consequent expansion of a polyglutamine repeat in mutated Htt (mHtt). This makes mHtt highly unstable and aggregation prone. Soluble mHtt is linked to cytotoxicity and neurotoxicity, whereas mHtt aggregates are thought to be neuroprotective. While Htt and mHtt are ubiquitously expressed throughout the brain and peripheral tissues, HD is characterized by selective degradation of the corpus striatum, without notable alterations in peripheral tissues. Screening for mRNAs preferentially expressed in rodent striatum led to the discovery of a GTP binding protein homologous to Ras family members. Due to these features, the newly discovered protein was termed Ras Homolog Enriched in Striatum (RHES). The aetiological role of RHES in HD has been ascribed to its small ubiquitin-like modifier (SUMO)-E3 ligase function. RHES sumoylates mHtt with higher efficiency than wild-type Htt, thereby protecting mHtt from degradation and increasing the amounts of the soluble form. Although RHES is an attractive target for HD treatment, essential information about protein structure and function are still missing. With the aim of investigating RHES 3D structure and function, bioinformatic analyses and molecular modelling have been performed in the present study, based on which, RHES regions predicted to be involved in the interaction with mHtt or the SUMO-E2 ligase Ubc9 have been identified. These regions have been used to design peptides aimed at inhibiting RHES interactions and, therefore, mHtt sumoylation; in turn, these peptides will be used to develop small molecule inhibitors by both rational design and virtual screening of large compound libraries. Once identified, RHES sumoylation inhibitors may open the road to the development of therapeutic agents against the severe, and currently untreatable, HD.
Collapse
Affiliation(s)
- Miriam Carbo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Gianmarco Pascarella
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - David Sasah Staid
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| |
Collapse
|
42
|
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67:74-89. [DOI: 10.1016/j.parkreldis.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
|
43
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Savitt D, Jankovic J. Clinical phenotype in carriers of intermediate alleles in the huntingtin gene. J Neurol Sci 2019; 402:57-61. [DOI: 10.1016/j.jns.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
|
45
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
46
|
Migliore S, Jankovic J, Squitieri F. Genetic Counseling in Huntington's Disease: Potential New Challenges on Horizon? Front Neurol 2019; 10:453. [PMID: 31114543 PMCID: PMC6503085 DOI: 10.3389/fneur.2019.00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, neurodegenerative and dominantly transmitted disorder affecting about 10 out of 100,000 people in Western Countries. The genetic cause is a CAG repeat expansion in the huntingtin gene (HTT), which is unstable and may further increase its length in subsequent generations, so called anticipation. Mutation repeat length coupled with other gene modifiers and environmental factors contribute to the age at onset in the offspring. Considering the unpredictability of age at onset and of clinical prognosis in HD, the accurate interpretation, a proper psychological support and a scientifically sound and compassionate communication of the genetic test result are crucial in the context of Good Clinical Practice and when considering further potential disease-modifying therapies. We discuss various genetic test scenarios that require a particularly careful attention in psychological and genetic counseling and expect that the counseling procedures will require a constant update.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
47
|
Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci 2019; 6:15. [PMID: 30968029 PMCID: PMC6439353 DOI: 10.3389/fmolb.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.
Collapse
Affiliation(s)
- Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin DeRowe
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanaa Adsi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|