1
|
Mao X, Lu X, Liu Y, Wu H, Li B, Bi X. Exploring the mediating role of cerebrospinal fluid metabolites in the pathway from circulating inflammatory proteins to multiple sclerosis: A Mendelian randomization study. Mult Scler Relat Disord 2025; 98:106440. [PMID: 40245661 DOI: 10.1016/j.msard.2025.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease in which inflammation plays a pivotal role in its pathogenesis. The inflammatory response is regulated by a complex network of cells and mediators, including circulating proteins such as cytokines and inflammatory mediators. Metabolomics is a powerful analytical approach that may provide diagnostic and therapeutic targets for MS. However, the causal effects of circulating inflammatory proteins and cerebrospinal fluid metabolites (CSFMs) on MS, as well as whether CSFMs act as mediators, remain unclear. OBJECTIVE In this study, we obtained data on circulating inflammatory proteins, CSFMs, and MS from the largest genome-wide association study (GWAS) dataset of the International Multiple Sclerosis Genetics Consortium (IMSGC). METHODS We utilized the Mendelian randomization (MR) mediation analysis method to investigate the causal relationships among circulating inflammatory proteins, CSFMs and MS. Inverse variance weighting (IVW) served as the primary statistical method. Additionally, we explored whether CSFMs act as mediators in the pathway from circulating inflammatory proteins to MS. RESULTS Our findings reveal that there are five inflammatory proteins associated with MS. MR analysis reveals a positive correlation between the genetic prediction of three inflammatory proteins and the occurrence of MS. Our study reveals a link between 10 CSFMs and MS. Further MR analysis reveals a positive correlation between the genetic prediction of 6 CSFMs and the development of MS. Notably, CSFMs do not exhibit a reverse effect on MS. Our study establishes a significant causal effect of circulating inflammatory proteins and CSFMs on the progression of MS. Furthermore, CSFMs do not serve as an intermediary factor in the pathway connecting inflammatory proteins with MS. Circulating inflammatory proteins and CSFMs are causally associated with MS, and CSFMs do not appear to be intermediate factors in the pathway from inflammatory proteins to MS.
Collapse
Affiliation(s)
- Xiaowei Mao
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China
| | - Xiaoyan Lu
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China
| | - Yanqun Liu
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China
| | - Hangfei Wu
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China
| | - Binghan Li
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, 200433, Shanghai, China.
| |
Collapse
|
2
|
Carver JJ, Lau KM, Puckett AE, Didonna A. Autoimmune demyelination alters hypothalamic transcriptome and endocrine function. J Neuroinflammation 2024; 21:12. [PMID: 38178091 PMCID: PMC10768476 DOI: 10.1186/s12974-023-03006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The hypothalamus is a brain structure that is deputed to maintain organism homeostasis by regulating autonomic function and hormonal production as part of the neuroendocrine system. Dysfunction in hypothalamic activity results in behavioral alterations, depression, metabolic syndromes, fatigue, and infertility. Remarkably, many of these symptoms are associated with multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) characterized by focal demyelination, immune cell infiltration into the brain parenchyma, and neurodegeneration. Furthermore, altered hormonal levels have been documented in MS patients, suggesting the putative involvement of hypothalamic deficits in MS clinical manifestations. Yet, a systematic analysis of hypothalamic function in response to neuroinflammatory stress is still lacking. To fill this gap, here we performed a longitudinal profiling of the hypothalamic transcriptome upon experimental autoimmune encephalomyelitis (EAE)-a murine disease model recapitulating key MS phenotypes at both histopathological and molecular levels. We show that changes in gene expression connected with an anti-inflammatory response start already at pre-onset and persist along EAE progression. Altered levels of hypothalamic neuropeptides were also detected, which possibly underlie homeostatic responses to stress and aberrant feeding behaviors. Last, a thorough investigation of the principal endocrine glands highlighted defects in the main steroidogenic pathways upon disease. Collectively, our findings corroborate the central role of hypothalamic dysfunction in CNS autoimmunity.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Kristy M Lau
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alexandra E Puckett
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA.
| |
Collapse
|
3
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
5
|
Genç B, Şen S, Aslan K, İncesu L. Volumetric changes in hypothalamic subunits in patients with relapsing remitting multiple sclerosis. Neuroradiology 2023; 65:899-905. [PMID: 36720749 DOI: 10.1007/s00234-023-03122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE Studies on hypothalamic changes in patients with relapsing remitting multiple sclerosis (RRMS) are very scarce, despite the fact that the relationship with the hypothalamus is frequently reported. The aim of the study was to determine the volume of the hypothalamic subunits and the total hypothalamus and its relationship with the total demyelinating lesion volume (TLV) and expanded disability status scale (EDSS) in RRMS patients. METHODS In this cross-sectional study, anterior-superior, superior tubular, posterior hypothalamus, anterior-inferior, inferior tubular subunits of hypothalamus, and total hypothalamus volume were calculated, with fully automatic analysis methods using volumetric T1 images of 65 relapsed RRMS patients and 68 healthy controls (HC). Volume changes in the hypothalamus and its subunits in RRMS patients were examined using multivariate analysis of covariance (MANCOVA). The relationship of these volumes with EDSS and TLV was investigated by partial correlation analysis. RESULTS There is volume reduction in total hypothalamus (F = 13.87, p < 0.001), anterior-superior (F = 19.2, p < 0.001), superior tubular (F = 10.1, p = 0.002) subunits, and posterior hypothalamus (F = 19.2, p < 0.001) volume in RRMS patients. EDSS correlates negatively with anterior-superior (p = 0.017, r = - 0.333), superior tubular subunits (p = 0.023, r = - 0.439), posterior hypothalamus (p < 0.001, r = - 0.511), and whole hypothalamus volume (p = 0.001, r = - 0.439). TLV correlates negatively with anterior superior (p < 0.001, r = - 0.565), anterior inferior (p = 0.002, r = - 0.431), superior tubular subunits (p = 0.002, r = - 0.432), posterior hypothalamus (p < 0.001, r = - 0.703), and whole hypothalamus (p < 0.001, r = - 0.627) volumes. CONCLUSION This study demonstrates a reduction in total hypothalamus volume, anterior-superior, superior tubular, and posterior hypothalamus in patients with RRMS. Anterior-superior and superior tubular subunit, posterior hypothalamus, and total hypothalamus volume were negatively correlated with TLV and EDSS scores.
Collapse
Affiliation(s)
- Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, İlkadım, Samsun, 55060, Turkey.
| | - Sedat Şen
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Kerim Aslan
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey.,Department of Radiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Lütfi İncesu
- Department of Radiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| |
Collapse
|
6
|
Mueller C, Baird JF, Motl RW. Whole-Brain Metabolic Abnormalities Are Associated With Mobility in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2022; 36:286-297. [PMID: 35164595 DOI: 10.1177/15459683221076461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Older adults with multiple sclerosis (MS) experience mobility impairments, but conventional brain imaging is a poor predictor of walking abilities in this population. OBJECTIVE To test whether brain metabolites measured with Magnetic Resonance Spectroscopy (MRS) are associated with walking performance in older adults with MS. METHODS Fifteen older adults with MS (mean age: 60.9, SD: 5.1) and 22 age-matched healthy controls (mean age: 64.2, SD: 5.7) underwent whole-brain MRS and mobility testing. Levels of N-acetylaspartate (NAA), myo-inositol (MI), choline (CHO), and temperature in 47 brain regions were compared between groups and correlated with walking speed (Timed 25 Foot Walk) and walking endurance (Six-Minute Walk). RESULTS Older adults with MS had higher MI in 23 areas, including the bilateral frontal (right: t (21.449) = -2.605, P = .016; left: t (35) = -2.434, P = .020), temporal (right: t (35) = -3.063, P = .004; left: t (35) = -3.026, P = .005), and parietal lobes (right: t (21.100) = -2.886, P = .009; left: t (35) = -2.507, P = .017), and right thalamus (t (35) = -2.840, P = .007). MI in eleven regions correlated with walking speed, and MI in twelve regions correlated with walking endurance. NAA was lower in MS in the bilateral thalami (right: t (35) = 3.449, P < .001; left: t (35) = 2.061, P = .047), caudate nuclei (right: t (33) = 2.828, P = .008; left: t (32) = 2.132, P = .041), and posterior cingulum (right: t (35) = 3.077, P = .004; left: t (35) = 2.972, P = .005). NAA in four regions correlated with walking speed and endurance. Brain temperature was higher in MS patients in four regions, but did not correlate with mobility measures. There were no group differences in CHO. CONCLUSION MI and NAA may be useful imaging end-points for walking ability as a clinical outcome in older adults with MS.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, 9967University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica F Baird
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert W Motl
- Department of Physical Therapy, 9968University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Kantorová E, Hnilicová P, Bogner W, Grendár M, Grossmann J, Kováčová S, Hečková E, Strasser B, Čierny D, Zeleňák K, Kurča E. Neurocognitive performance in relapsing-remitting multiple sclerosis patients is associated with metabolic abnormalities of the thalamus but not the hippocampus- GABA-edited 1H MRS study. Neurol Res 2021; 44:57-64. [PMID: 34313578 DOI: 10.1080/01616412.2021.1956282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is an inflammatory demyelinating disease that may cause physical disabling as well as cognitive dysfunction. The presented study investigated how the neuropsychological status depends on the thalamus and hippocampus's metabolic processes, using γ-aminobutyric acid-edited magnetic resonance spectroscopy (GABA-edited 1H MRS) in patients with early MS, and how the results differ from healthy volunteers. METHODS We recruited 36 relapsing-remitting (RRMS) MS patients and 22 controls (CON). In addition to common 1H MRS metabolites, such as N-acetyl-aspartate (tNAA), myoinositol (mIns), total choline and creatine (tCr, tCho), we also evaluated GABA and glutamate/glutamine (Glx). Metabolite ratios were correlated with the results of Single-Digit Modality Test (SDMT) and Expanded Disability Status Score (EDSS). RESULTS In the thalamus, GABA ratios (GABA/tCr, GABA/tNAA) were significantly lower in RRMS patients than in CON. Both tCho- and mIns-ratios correlated with lower scores of SDMT but not with EDSS. Metabolic ratios in the hippocampus did not differ between RRMS and CON and did not correlate with any of performed tests. DISCUSSION This study is the first to provide GABA-edited 1H MRS evidence for MS-related metabolic changes of the thalamus and hippocampus. The findings underline the importance of evaluating subcortical grey matter in MS patients to improve understanding of the clinical manifestations of MS and as a potential future target for treatment.
Collapse
Affiliation(s)
- Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Hnilicová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ján Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Slavomíra Kováčová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Hečková
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Bernhard Strasser
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Daniel Čierny
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
8
|
Kantorová E, Hnilicová P, Bogner W, Grendár M, Čierny D, Hečková E, Strasser B, Ružinák R, Zeleňák K, Kurča E. Positivity of oligoclonal bands in the cerebrospinal fluid predisposed to metabolic changes and rearrangement of inhibitory/excitatory neurotransmitters in subcortical brain structures in multiple sclerosis. Mult Scler Relat Disord 2021; 52:102978. [PMID: 34015640 DOI: 10.1016/j.msard.2021.102978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The latest diagnostic criteria for multiple sclerosis (MS) have revitalized the role of oligoclonal bands synthesis in the cerebrospinal fluid (CSF-OCB). This study identifies predictors of CSF-OCB-positivity among in vivo metabolic markers in the subcortical gray/white matter in MS patients after their first episode (CIS) and in patients with relapsing-remitting course (RRMS). METHODS The study enrolled 13 CIS and 23 RRMS patients. Metabolism was evaluated using Mescher-Garwood-edited proton-magnetic resonance spectroscopy on a 3T MR scanner. In addition to N-acetyl-aspartate (tNAA), myoinositol (mIns), and choline- and creatine compounds (tCho, tCr) were also evaluated γ-aminobutyric acid (GABA) and glutamate-glutamine (Glx) ratios. RESULTS CSF-OCB-positivity was found in 76.9% of CIS and 78.2% of RRMS patients. GABA and Glx ratios in putamen and corpus callosum strongly determined CSF-OCB-positive CIS patients. Other essential predictors of CSF-OCB-positive CIS were mIns and Glx ratios in the putamen, and tCho/tNAA in the corpus callosum. In RRMS, GABA ratios in the right thalamus and Glx ratios in the left hippocampus strongly predicted CSF-OCB-positive patients. tCho/tNAA and tNAA/tCr in the left hippocampus were also identified as essential predictors of CSF-OCB-positive RRMS patients. CONCLUSION This is the first in vivo evidence of GABA-Glx rearrangement in CSF-OCB-positive patients since its early stages of MS.
Collapse
Affiliation(s)
- Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Petra Hnilicová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Daniel Čierny
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Eva Hečková
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Bernhard Strasser
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Róbert Ružinák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| |
Collapse
|
9
|
In vivo tensor-valued diffusion MRI of focal demyelination in white and deep grey matter of rodents. NEUROIMAGE-CLINICAL 2021; 30:102675. [PMID: 34215146 PMCID: PMC8100629 DOI: 10.1016/j.nicl.2021.102675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
We performed in-vivo tensor-valued diffusion MRI in demyelinating rodents. Lysolecithin was injected in white and deep grey matter to cause focal demyelination. Focal demyelination reduced microscopic fractional anisotropy (µFA). Isotropic kurtosis may be particularly sensitive to deep grey matter lesions.
Background Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease leading to damage of white matter (WM) and grey matter (GM). Magnetic resonance imaging (MRI) is the modality of choice to assess brain damage in MS, but there is an unmet need in MRI for achieving higher sensitivity and specificity to MS-related microstructural alterations in WM and GM. Objective To explore whether tensor-valued diffusion MRI (dMRI) can yield sensitive microstructural read-outs for focal demyelination in cerebral WM and deep GM (DGM). Methods Eight rats underwent L-α-Lysophosphatidylcholine (LPC) injections in the WM and striatum to introduce focal demyelination. Multimodal MRI was performed at 7 Tesla after 7 days. Tensor-valued dMRI was complemented by diffusion tensor imaging, quantitative MRI and proton magnetic resonance spectroscopy (MRS). Results Quantitative MRI and MRS confirmed that LPC injections caused inflammatory demyelinating lesions in WM and DGM. Tensor-valued dMRI illustrated a significant decline of microscopic fractional anisotropy (µFA) in both LPC-treated WM and DGM (P < 0.005) along with a marked increase of isotropic kurtosis (MKI) in DGM (P < 0.0001). Conclusion Tensor-valued dMRI bears considerable potential for microstructural imaging in MS, suggesting a regional µFA decrease may be a sensitive indicator of MS lesions, while a regional MKI increase may be particularly sensitive in detecting DGM lesions of MS.
Collapse
|
10
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
11
|
Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia. Biomolecules 2020; 10:biom10081128. [PMID: 32751764 PMCID: PMC7465067 DOI: 10.3390/biom10081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer's disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Collapse
|
12
|
Kovalska M, Hnilicova P, Kalenska D, Tothova B, Adamkov M, Lehotsky J. Effect of Methionine Diet on Metabolic and Histopathological Changes of Rat Hippocampus. Int J Mol Sci 2019; 20:ijms20246234. [PMID: 31835644 PMCID: PMC6941024 DOI: 10.3390/ijms20246234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) is regarded as an independent and strong risk factor for cerebrovascular diseases, stroke, and dementias. The hippocampus has a crucial role in spatial navigation and memory processes and is being constantly studied for neurodegenerative disorders. We used a moderate methionine (Met) diet at a dose of 2 g/kg of animal weight/day in duration of four weeks to induce mild hHcy in adult male Wistar rats. A novel approach has been used to explore the hippocampal metabolic changes using proton magnetic resonance spectroscopy (1H MRS), involving a 7T MR scanner in combination with histochemical and immunofluorescence analysis. We found alterations in the metabolic profile, as well as remarkable histo-morphological changes such as an increase of hippocampal volume, alterations in number and morphology of astrocytes, neurons, and their processes in the selective vulnerable brain area of animals treated with a Met-enriched diet. Results of both methodologies suggest that the mild hHcy induced by Met-enriched diet alters volume, histo-morphological pattern, and metabolic profile of hippocampal brain area, which might eventually endorse the neurodegenerative processes.
Collapse
Affiliation(s)
- Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Petra Hnilicova
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Tothova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Jan Lehotsky
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-821
| |
Collapse
|