1
|
Iacobucci I, Cipollone I, Cozzolino F, Iaconis D, Talarico C, Coppola G, Morasso S, Costanzi E, Malune P, Storici P, Tramontano E, Esposito F, Monti M. Cys44 of SARS-CoV-2 3CL pro affects its catalytic activity. Int J Biol Macromol 2025; 295:139590. [PMID: 39788258 DOI: 10.1016/j.ijbiomac.2025.139590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
SARS-CoV-2 encodes a 3C-like protease (3CLpro) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CLpro. Mass spectrometry and crystallographic analysis revealed that halicin covalently binds to several cysteine residues in 3CLpro. As expected, Cys145, the catalytic residue, was found to be the most targeted residue by halicin. Secondly, Cys44 was found to be modified, suggesting a potential inhibitory role of this residue. A mutant protease (Cys44Ala) was generated to further understand the function of Cys44. In silico and enzymatic assays showed that the mutation significantly reduced the stability and activity of 3CLpro, indicating the importance of Cys44 in maintaining the active conformation of the protease. Differential scanning fluorimetry assays confirmed this evidence, showing a reduced thermal stability of the mutant compared to the wild-type protease. Our results highlight the potential of halicin as a multi-target inhibitor of 3CLpro and underline the importance of Cys44 in the function of the protease. These findings contribute to the development of effective antiviral therapies against COVID-19 by targeting critical residues in 3CLpro.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy; Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Gabriele Coppola
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Stefano Morasso
- Elettra Sincrotrone Trieste, Structural Biology, Protein Targets for Drug Discovery Lab, SS 14 - km 163,5 in AREA Science Pack, Basovizza, 34149 Trieste, Italy
| | - Elisa Costanzi
- Elettra Sincrotrone Trieste, Structural Biology, Protein Targets for Drug Discovery Lab, SS 14 - km 163,5 in AREA Science Pack, Basovizza, 34149 Trieste, Italy
| | - Paolo Malune
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Paola Storici
- Elettra Sincrotrone Trieste, Structural Biology, Protein Targets for Drug Discovery Lab, SS 14 - km 163,5 in AREA Science Pack, Basovizza, 34149 Trieste, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy.
| |
Collapse
|
2
|
Fan Y, Wang Y, Du J, Wu R, Li J, Xiao C, Li Q, Zhou M, Liu Y, Zhang D, Wang B, Li S, Zhao Z, Lyu X, Wu Y, Liu Y, Ning X, Li Z, Yu S, Chen E, Zhu G, Zhao Y, Liu J, Liu Y, He D, Liu W. Clinical characteristics and prognostic factors of COVID-19 in rheumatic patients and their family members: a retrospective study. Front Immunol 2024; 15:1439242. [PMID: 39742255 PMCID: PMC11685756 DOI: 10.3389/fimmu.2024.1439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Background Patients with rheumatic diseases who receive long-term treatment with steroids, immunosuppressants, or biologics are more susceptible to infection with pathogens than the general population. In order to explore the differences in clinical features and prognosis of Corona Virus Disease 2019 (COVID-19) infection between patients with rheumatic diseases and the general population (family members), a retrospective investigative study was used to analyze the differences between the two populations. Methods The study was conducted in 13 Grade A Tertiary hospitals in China to investigate the clinical symptoms and prognostic factors of patients with rheumatic diseases who were infected with COVID-19 for the first time and their families. Results A total of 2,889 participants were included in this study, including 1,530 patients with rheumatic diseases and 1,359 family members. In terms of clinical symptoms, the complete recovery time from COVID-19 for patients with rheumatic disease patients was 13 days (8.00, 18.00), which was shorter than that of family members (16 days, 11.00, 20.00). The risk of developing moderate to severe cases of COVID-19 was lower in patients with rheumatic disease than in their family members (OR=0.511, P=0.0026). Compared with non-use of non-steroidal anti-inflammatory drugs (NSAIDs), the risk of developing mild cases of COVID-19 was 0.595 times greater with pre-infection use of NSAIDs (P = 0.0003). The use of glucocorticoids and Chinese herbal decoctions before infection increased the probability of developing mild cases of COVID-19 (OR=1.537, 1.773, P<0.05). The risk of developing moderate to severe cases with disease-modifying anti-rheumatic drugs (DMARDs) used before infection was 0.350 times that without such drugs (P<0.001). In terms of prognosis, compared with family members, the complete recovery time of patients with rheumatic diseases was reduced by 2.241 days on average (P<0.001), and the complete recovery time of patients with mild rheumatism was reduced by 4.178 days on average (P<0.001). There was no significant difference in the complete recovery time from COVID-19 in patients with severe rheumatism compared with their family members (P=0.1672). The use of NSAIDs, glucocorticoids, DMARDs, biologics, Chinese patent medicine, and Chinese herbal decoctions during the infection period could shorten the recovery time of COVID-19 symptoms (P<0.05). Conclusions Compared with their family members, patients with rheumatic diseases had milder symptoms after infection with COVID-19, which was related to the use of glucocorticoids, DMARDs, and Chinese herbal decoctions before infection. During the COVID-19 infection phase, the use of NSAIDs, glucocorticoids, DMARDs, biologics, Chinese patent medicine, and Chinese herbal decoctions might shorten the recovery time from symptoms of COVID-19. Chinese clinical trial registry ChiCTR2300072679.
Collapse
Affiliation(s)
- Yihua Fan
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiwen Wang
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juanli Du
- Department of Rheumatology and Immunology, Xi’an No.5 Hospital, Xi’an, Shaanxi, China
| | - Rui Wu
- Department of Immunology and Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianbin Li
- Department of Immunology and Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Changhong Xiao
- Department of Rheumatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Rheumatology Department, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, Qinghai, China
| | - Mi Zhou
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Liu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Zhang
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bei Wang
- Department of Rheumatology and Immunology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Songwei Li
- Department of Rheumatism and Immunity, Henan Provincial Hospital of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhina Zhao
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinliang Lyu
- Rheumatology Department, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yuanhao Wu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaomei Ning
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiteng Li
- Department of Rheumatology and Immunology, Xi’an No.5 Hospital, Xi’an, Shaanxi, China
| | - Shujiao Yu
- Department of Immunology and Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ensheng Chen
- Department of Rheumatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangzhao Zhu
- Rheumatology Department, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, Qinghai, China
| | - Yuxing Zhao
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juan Liu
- Department of Rheumatology and Immunology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuquan Liu
- Rheumatology Department, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Chen S, Liang J, Chen D, Huang Q, Sun K, Zhong Y, Lin B, Kong J, Sun J, Gong C, Wang J, Gao Y, Zhang Q, Sun H. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2024; 115:209-222. [PMID: 37858739 DOI: 10.1016/j.bbi.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dingqiang Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyuan Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxia Zhong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Chengfang Gong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
5
|
Nam Y, Lucas A, Yun JS, Lee SM, Park JW, Chen Z, Lee B, Ning X, Shen L, Verma A, Kim D. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks. J Transl Med 2023; 21:415. [PMID: 37365631 DOI: 10.1186/s12967-023-04223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and pharmaceutical experts for further investigation. Network-based approaches can provide repurposable drugs quickly by leveraging comprehensive relationships among biological components. However, in a case of newly emerging disease, applying a repurposing methods with only pre-existing knowledge networks may prove inadequate due to the insufficiency of information flow caused by the novel nature of the disease. METHODS We proposed a network-based complementary linkage method for drug repurposing to solve the lack of incoming new disease-specific information in knowledge networks. We simulate our method under the controlled repurposing scenario that we faced in the early stage of the COVID-19 pandemic. First, the disease-gene-drug multi-layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, complementary information for COVID-19, containing data on 18 comorbid diseases and 17 relevant proteins, was collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID-19 node and the backbone network to construct a complemented network. Network-based drug scoring for COVID-19 was performed by applying graph-based semi-supervised learning, and the resulting scores were used to validate prioritized drugs for population-scale electronic health records-based medication analyses. RESULTS The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre-pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the backbone network, drug scoring screened top 30 potential repurposable drugs for COVID-19. The prioritized drugs were subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID-19 Registry as of October 2021 and 8 of these were found to be statistically associated with a COVID-19 phenotype. CONCLUSION We found that 8 of the 30 drugs identified by graph-based scoring on complemented networks as potential candidates for COVID-19 repurposing were additionally supported by real-world patient data in follow-up analyses. These results show that our network-based complementary linkage method and drug scoring algorithm are promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks.
Collapse
Affiliation(s)
- Yonghyun Nam
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Anastasia Lucas
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jae-Seung Yun
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Mi Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Won Park
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ziqi Chen
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
| | - Brian Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Xia Ning
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA.
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
6
|
Iaconis D, Caccuri F, Manelfi C, Talarico C, Bugatti A, Filippini F, Zani A, Novelli R, Kuzikov M, Ellinger B, Gribbon P, Riecken K, Esposito F, Corona A, Tramontano E, Beccari AR, Caruso A, Allegretti M. DHFR Inhibitors Display a Pleiotropic Anti-Viral Activity against SARS-CoV-2: Insights into the Mechanisms of Action. Viruses 2023; 15:v15051128. [PMID: 37243214 DOI: 10.3390/v15051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.
Collapse
Affiliation(s)
- Daniela Iaconis
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Carmine Talarico
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Antonella Bugatti
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Rubina Novelli
- Dompè Famaceutici SpA, Via Campo di Pile snc, 67100 L'Aquila, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | | | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | |
Collapse
|
7
|
Cundra LB, Vallabhaneni M, Saadeh M, Houston KV, Yoo BS, D’Souza S, Johnsonv DA. Immunomodulation strategies against COVID-19 evidence: key nutrients and dietary approaches. EXPLORATION OF MEDICINE 2023:189-206. [DOI: 10.37349/emed.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2025] Open
Abstract
The novel coronavirus disease-2019 (COVID-19) has created a major public health crisis. Various dietary factors may enhance immunological activity against COVID-19 and serve as a method to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dietary factors that are responsible for boosting immunity may provide a therapeutic advantage in patients with COVID-19. Investigators have demonstrated that vitamins B6, B12, C, D, E, and K, and trace elements like zinc, copper, selenium, and iron may serve as important tools for immunomodulation. Herein this is a review the peer-reviewed literature pertaining to dietary immunomodulation strategies against COVID-19. This review is intended to better define the evidence that dietary modifications and supplementation could positively influence the proinflammatory state in patients with COVID-19 and improve clinical outcomes. With appropriate insight, therapeutic interventions are discussed and directed to potentially modulate host immunity to mitigate the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Lindsey B. Cundra
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Manasa Vallabhaneni
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Steve D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - David A. Johnsonv
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
8
|
Liu M, Wang H, Liu L, Cui S, Huo X, Xiao Z, Zhao Y, Wang B, Zhang G, Wang N. Risk of COVID-19 infection, hospitalization and mortality in psoriasis patients treated with interleukin-17 inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:1046352. [PMID: 36389759 PMCID: PMC9648142 DOI: 10.3389/fimmu.2022.1046352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) have brought great disaster to mankind, and there is currently no globally recognized specific drug or treatment. Severe COVID-19 may trigger a cytokine storm, manifested by increased levels of cytokines including interleukin-17 (IL-17), so a new strategy to treat COVID-19 may be to use existing IL-17 inhibitors, which have demonstrated efficacy, safety and tolerability in the treatment of psoriasis. However, the use of IL-17 inhibitors in patients with psoriasis during the COVID-19 pandemic remains controversial due to reports that IL-17 inhibitors may increase the risk of respiratory tract infections. OBJECTIVES The systematic review and meta-analysis aimed to evaluate the effect of IL-17 inhibitors on the risk of COVID-19 infection, hospitalization, and mortality in patients with psoriasis. METHODS Databases (including Embase, PubMed, SCI-Web of Science, Scopus, CNKI, and the Cochrane Library) were searched up to August 23, 2022, for studies exploring differences in COVID-19 outcomes between psoriasis patients using IL-17 inhibitors and those using non-biologics. Two authors independently extracted data and assessed the risk of bias in a double-blind manner. The risk ratios (RRs) and 95% confidence intervals (CIs) were calculated and heterogeneities were determined by the Q test and I 2 statistic. And the numbers needed to treat (NNTs) were calculated to assess the clinical value of IL-17 inhibitors in preventing SARS-CoV-2 infection and treating COVID-19. RESULTS Nine observational studies involving 7,106 participants were included. The pooled effect showed no significant differences in the rates of SARS-CoV-2 infection (P = 0.94; I 2 = 19.5%), COVID-19 hospitalization (P = 0.64; I 2 = 0.0%), and COVID-19 mortality (P = 0.32; I 2 = 0.0%) in psoriasis patients using IL-17 inhibitors compared with using non-biologics. Subgroup analyses grouped by age and COVID-19 cases, respectively, revealed consistent results as above. Meanwhile, the pooled NNTs showed no significant differences between the two groups in the clinical value of preventing SARS-CoV-2 infection and treating COVID-19. CONCLUSION The use of IL-17 inhibitors in patients with psoriasis does not increase the risk of SARS-CoV-2 infection or worsen the course of COVID-19. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022335195.
Collapse
Affiliation(s)
- Meitong Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijuan Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lu Liu
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saijin Cui
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangran Huo
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhuoyun Xiao
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaning Zhao
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Wang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, China
| | - Na Wang
- Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Valle A, Mahmood SN. COVID-19 Outcomes in Idiopathic Inflammatory Myopathies: A Case Series. J Clin Rheumatol 2022; 28:174-176. [PMID: 35067508 DOI: 10.1097/rhu.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Shereen N Mahmood
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
10
|
Zhou B, Li S, Ye J, Liu Y, Hu L, Tang Y, Wu Z, Zhang P. Immunopathological events surrounding IL-6 and IFN-α: A bridge for anti-lupus erythematosus drugs used to treat COVID-19. Int Immunopharmacol 2021; 101:108254. [PMID: 34710657 PMCID: PMC8527889 DOI: 10.1016/j.intimp.2021.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023]
Abstract
With the outbreak and rapid spread of COVID-19, the world health situation is unprecedentedly severe. Systemic lupus erythematosus (SLE) is a common autoimmune disease, which can cause multiple organ damage. Numerous studies have shown that immune factors have important roles in the pathogenesis of both COVID-19 and SLE. In the early stages of COVID-19 and SLE pathogenesis, IFN-α expression is frequently increased, which aggravates the virus infection and promotes SLE development. In addition, increased IL-6 levels, caused by different mechanisms, are observed in the peripheral blood of patients with severe COVID-19 and SLE, stimulating a series of immune cascades that lead to a cytokine storm, as well as causing B cell hyperfunction and production of numerous of antibodies, aggravating both COVID-19 and SLE. In this review, we explore the background immunopathological mechanisms in COVID-19 and SLE and analyze the advantages and disadvantages of commonly used SLE drugs for patients with COVID-19, to optimize treatment plans for patients with SLE who develop COVID-19.
Collapse
Affiliation(s)
- Bangyi Zhou
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, People’s Republic of China,Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China
| | - Siying Li
- School of Traditional Chinese Medicine, Southern Medical University, People’s Republic of China
| | - Jujian Ye
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, People’s Republic of China,Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China
| | - Yi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, People’s Republic of China
| | - Longtai Hu
- School of Traditional Chinese Medicine, Southern Medical University, People’s Republic of China
| | - Yan Tang
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, People’s Republic of China
| | - Zhijian Wu
- Department of Cardiology, Boai Hospital of Zhongshan, Southern Medical University, People’s Republic of China,Corresponding authors
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China,Corresponding authors
| |
Collapse
|
11
|
Chowdhury UN, Faruqe MO, Mehedy M, Ahmad S, Islam MB, Shoombuatong W, Azad A, Moni MA. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med 2021; 138:104891. [PMID: 34624759 PMCID: PMC8479467 DOI: 10.1016/j.compbiomed.2021.104891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by the infection of highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as the novel coronavirus. In most countries, the containment of this virus spread is not controlled, which is driving the pandemic towards a more difficult phase. In this study, we investigated the impact of the Bacille Calmette Guerin (BCG) vaccination on the severity and mortality of COVID-19 by performing transcriptomic analyses of SARS-CoV-2 infected and BCG vaccinated samples in peripheral blood mononuclear cells (PBMC). A set of common differentially expressed genes (DEGs) were identified and seeded into their functional enrichment analyses via Gene Ontology (GO)-based functional terms and pre-annotated molecular pathways databases, and their Protein-Protein Interaction (PPI) network analysis. We further analysed the regulatory elements, possible comorbidities and putative drug candidates for COVID-19 patients who have not been BCG-vaccinated. Differential expression analyses of both BCG-vaccinated and COVID-19 infected samples identified 62 shared DEGs indicating their discordant expression pattern in their respected conditions compared to control. Next, PPI analysis of those DEGs revealed 10 hub genes, namely ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33. Functional enrichment analyses found significantly enriched pathways/GO terms including cytokine activities, lysosome, IL-17 signalling pathway, TNF-signalling pathways. Moreover, a set of identified TFs, miRNAs and potential drug molecules were further investigated to assess their biological involvements in COVID-19 and their therapeutic possibilities. Findings showed significant genetic interactions between BCG vaccination and SARS-CoV-2 infection, suggesting an interesting prospect of the BCG vaccine in relation to the COVID-19 pandemic. We hope it may potentially trigger further research on this critical phenomenon to combat COVID-19 spread.
Collapse
Affiliation(s)
- Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mehedy
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - A.K.M. Azad
- Faculty of Science, Engineering & Technology, Swinburne University of Technology Sydney, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author
| |
Collapse
|
12
|
Bhardwaj A, Gupta SK, Narang T, Suneetha S, Pradhan S, Agarwal P, Suvirya S, Gupta A, Chhabra N, Rao AG, Ashwini PK, Jandhyala S, Rathod S, Rao PN, Dogra S. Updates on Management of Leprosy in the Context of COVID-19 Pandemic: Recommendations by IADVL SIG Leprosy. Indian Dermatol Online J 2021; 12:S24-S30. [PMID: 34976878 PMCID: PMC8664173 DOI: 10.4103/idoj.idoj_513_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
The Special Interest Group (SIG) on leprosy thought it to be prudent to revisit its previous practice recommendations through this update. During this period, the pandemic course shifted to a 'second wave' riding on the 'delta variant'. While the number of cases increased manifold, so did the research on all aspects of the disease. Introduction of vaccination and data from various drug trials have an impact on current best practices on management of diseases including leprosy. The beneficial results of using steroids in management of COVID-19, gives elbow room regarding its usage in conditions like lepra reactions. On the other hand, the increase in cases of Mucormycosis again underlines applying due caution while recommending immunosuppressants to a patient already suffering from COVID-19. This recommendation update from SIG leprosy reflects current understanding about managing leprosy while the dynamic pandemic continues with its ebbs and flows.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Department of Dermatology, Venereology and Leprology, All India Institute of Medial Sciences, Jodhpur, Rajasthan, India
| | - Sunil Kumar Gupta
- Department of Dermatology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sujai Suneetha
- Institute for Specialized Services in Leprosy (INSSIL), Nireekshana ACET, Hyderabad, Telangana, India
| | - Swetalina Pradhan
- Department of Dermatology, All India Institute of Medial Sciences, Patna, Bihar, India
| | - Pooja Agarwal
- Department of Dermatology, Smt NHL Municipal Medical College, Ahmedabad, Gujarat, India
| | - Swastika Suvirya
- Department of Dermatology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ankan Gupta
- Department of Dermatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Namrata Chhabra
- Department of Dermatology, AIIMS, Raipur, Chhattisgarh, India
| | | | - P. K. Ashwini
- Department of Dermatology, JSS Medical College, Mysore, Karnataka, India
| | | | - Santoshdev Rathod
- Department of Dermatology, Smt NHL Municipal Medical College, Ahmedabad, Gujarat, India
| | - P. Narasimha Rao
- Institute for Specialized Services in Leprosy (INSSIL), Nireekshana ACET, Hyderabad, Telangana, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Izadi Z, Brenner EJ, Mahil SK, Dand N, Yiu ZZN, Yates M, Ungaro RC, Zhang X, Agrawal M, Colombel JF, Gianfrancesco MA, Hyrich KL, Strangfeld A, Carmona L, Mateus EF, Lawson-Tovey S, Klingberg E, Cuomo G, Caprioli M, Cruz-Machado AR, Mazeda Pereira AC, Hasseli R, Pfeil A, Lorenz HM, Hoyer BF, Trupin L, Rush S, Katz P, Schmajuk G, Jacobsohn L, Seet AM, Al Emadi S, Wise L, Gilbert EL, Duarte-García A, Valenzuela-Almada MO, Isnardi CA, Quintana R, Soriano ER, Hsu TYT, D’Silva KM, Sparks JA, Patel NJ, Xavier RM, Marques CDL, Kakehasi AM, Flipo RM, Claudepierre P, Cantagrel A, Goupille P, Wallace ZS, Bhana S, Costello W, Grainger R, Hausmann JS, Liew JW, Sirotich E, Sufka P, Robinson PC, Machado PM, Griffiths CEM, Barker JN, Smith CH, Yazdany J, Kappelman MD. Association Between Tumor Necrosis Factor Inhibitors and the Risk of Hospitalization or Death Among Patients With Immune-Mediated Inflammatory Disease and COVID-19. JAMA Netw Open 2021; 4:e2129639. [PMID: 34661663 PMCID: PMC8524310 DOI: 10.1001/jamanetworkopen.2021.29639] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Although tumor necrosis factor (TNF) inhibitors are widely prescribed globally because of their ability to ameliorate shared immune pathways across immune-mediated inflammatory diseases (IMIDs), the impact of COVID-19 among individuals with IMIDs who are receiving TNF inhibitors remains insufficiently understood. OBJECTIVE To examine the association between the receipt of TNF inhibitor monotherapy and the risk of COVID-19-associated hospitalization or death compared with other commonly prescribed immunomodulatory treatment regimens among adult patients with IMIDs. DESIGN, SETTING, AND PARTICIPANTS This cohort study was a pooled analysis of data from 3 international COVID-19 registries comprising individuals with rheumatic diseases, inflammatory bowel disease, and psoriasis from March 12, 2020, to February 1, 2021. Clinicians directly reported COVID-19 outcomes as well as demographic and clinical characteristics of individuals with IMIDs and confirmed or suspected COVID-19 using online data entry portals. Adults (age ≥18 years) with a diagnosis of inflammatory arthritis, inflammatory bowel disease, or psoriasis were included. EXPOSURES Treatment exposure categories included TNF inhibitor monotherapy (reference treatment), TNF inhibitors in combination with methotrexate therapy, TNF inhibitors in combination with azathioprine/6-mercaptopurine therapy, methotrexate monotherapy, azathioprine/6-mercaptopurine monotherapy, and Janus kinase (Jak) inhibitor monotherapy. MAIN OUTCOMES AND MEASURES The main outcome was COVID-19-associated hospitalization or death. Registry-level analyses and a pooled analysis of data across the 3 registries were conducted using multilevel multivariable logistic regression models, adjusting for demographic and clinical characteristics and accounting for country, calendar month, and registry-level correlations. RESULTS A total of 6077 patients from 74 countries were included in the analyses; of those, 3215 individuals (52.9%) were from Europe, 3563 individuals (58.6%) were female, and the mean (SD) age was 48.8 (16.5) years. The most common IMID diagnoses were rheumatoid arthritis (2146 patients [35.3%]) and Crohn disease (1537 patients [25.3%]). A total of 1297 patients (21.3%) were hospitalized, and 189 patients (3.1%) died. In the pooled analysis, compared with patients who received TNF inhibitor monotherapy, higher odds of hospitalization or death were observed among those who received a TNF inhibitor in combination with azathioprine/6-mercaptopurine therapy (odds ratio [OR], 1.74; 95% CI, 1.17-2.58; P = .006), azathioprine/6-mercaptopurine monotherapy (OR, 1.84; 95% CI, 1.30-2.61; P = .001), methotrexate monotherapy (OR, 2.00; 95% CI, 1.57-2.56; P < .001), and Jak inhibitor monotherapy (OR, 1.82; 95% CI, 1.21-2.73; P = .004) but not among those who received a TNF inhibitor in combination with methotrexate therapy (OR, 1.18; 95% CI, 0.85-1.63; P = .33). Similar findings were obtained in analyses that accounted for potential reporting bias and sensitivity analyses that excluded patients with a COVID-19 diagnosis based on symptoms alone. CONCLUSIONS AND RELEVANCE In this cohort study, TNF inhibitor monotherapy was associated with a lower risk of adverse COVID-19 outcomes compared with other commonly prescribed immunomodulatory treatment regimens among individuals with IMIDs.
Collapse
Affiliation(s)
- Zara Izadi
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Erica J. Brenner
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill
| | - Satveer K. Mahil
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- St John’s Institute of Dermatology, King’s College London, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Zenas Z. N. Yiu
- Dermatology Centre, The University of Manchester, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- Salford Royal NHS Foundation Trust, Pendleton, Salford, England
| | - Mark Yates
- Centre for Rheumatic Diseases, King’s College London, London, United Kingdom
| | - Ryan C. Ungaro
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xian Zhang
- Division of Gastroenterology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| | - Manasi Agrawal
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Milena A. Gianfrancesco
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Kimme L. Hyrich
- Centre for Epidemiology Versus Arthritis, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anja Strangfeld
- Epidemiology and Health Care Research, German Rheumatism Research Center, Berlin, Germany
| | | | - Elsa F. Mateus
- Portuguese League Against Rheumatic Diseases, Lisbon, Portugal
- European League Against Rheumatism Standing Committee of People With Arthritis/Rheumatism in Europe, Kilchberg, Switzerland
| | - Saskia Lawson-Tovey
- NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - Eva Klingberg
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Giovanna Cuomo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Marta Caprioli
- Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Milan, Italy
| | - Ana Rita Cruz-Machado
- Rheumatology Department, Hospital de Santa Maria, CHULN, Lisbon Academic Medical Centre, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Rebecca Hasseli
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Alexander Pfeil
- Department of Internal Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Bimba Franziska Hoyer
- German Society for Rheumatology, Berlin, Germany
- University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Laura Trupin
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Stephanie Rush
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Patricia Katz
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Gabriela Schmajuk
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
- San Francisco VA Healthcare System, San Francisco, California
| | - Lindsay Jacobsohn
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Andrea M. Seet
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Samar Al Emadi
- Rheumatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Leanna Wise
- Division of Rheumatology, Department of Internal Medicine, University of Southern California, Los Angeles
| | | | - Alí Duarte-García
- Division of Rheumatology, Mayo Clinic, Rochester, Minnesota
- Robert D. and Patricia E. Kern Center for the Science of Health Care, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Enrique R. Soriano
- Rheumatology Unit, Internal Medicine Service, Hospital Italiano de Buenos Aires and Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Tiffany Y-T. Hsu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kristin M. D’Silva
- Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Allergy, and Immunology, Clinical Epidemiology Program, Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Naomi J. Patel
- Harvard Medical School, Boston, Massachusetts
- Rheumatology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | - René-Marc Flipo
- Department of Rheumatology, University of Lille, Lille, France
| | - Pascal Claudepierre
- EpiDermE, Université Paris Est Créteil, Créteil, France
- Rheumatology Department, Henri-Mondor University Hospital, Créteil, France
| | | | - Philippe Goupille
- Rheumatology Department, Chru Hospitals of Tours, Tours, France
- Groupe Innovation and Ciblage Cellulaire, University of Tours, Tours, France
| | - Zachary S. Wallace
- Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Allergy, and Immunology, Clinical Epidemiology Program, Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Wendy Costello
- Irish Children’s Arthritis Network, Bansha, Tipperary, Ireland
| | - Rebecca Grainger
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Jonathan S. Hausmann
- Rheumatology Program, Boston Children’s Hospital, Boston, Massachusetts
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jean W. Liew
- Section of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Emily Sirotich
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Canadian Arthritis Patient Alliance, Toronto, Ontario, Canada
| | - Paul Sufka
- HealthPartners Specialty Center–Rheumatology, St. Paul, Minnesota
| | - Philip C. Robinson
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Queensland, Australia
| | - Pedro M. Machado
- Centre for Rheumatology and Department of Neuromuscular Diseases, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, University College London Hospitals, NHS Foundation Trust, London, United Kingdom
- Department of Rheumatology, Northwick Park Hospital, London North West University Healthcare NHS Trust, London, United Kingdom
| | - Christopher E. M. Griffiths
- Dermatology Centre, The University of Manchester, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- Salford Royal NHS Foundation Trust, Pendleton, Salford, England
| | - Jonathan N. Barker
- St John’s Institute of Dermatology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Catherine H. Smith
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- St John’s Institute of Dermatology, King’s College London, London, United Kingdom
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco
| | - Michael D. Kappelman
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
14
|
Stegmann KM, Dickmanns A, Gerber S, Nikolova V, Klemke L, Manzini V, Schlösser D, Bierwirth C, Freund J, Sitte M, Lugert R, Salinas G, Meister TL, Pfaender S, Görlich D, Wollnik B, Groß U, Dobbelstein M. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. Virus Res 2021; 302:198469. [PMID: 34090962 PMCID: PMC8180352 DOI: 10.1016/j.virusres.2021.198469] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Sabrina Gerber
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Vella Nikolova
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Denise Schlösser
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Cathrin Bierwirth
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Julia Freund
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Raimond Lugert
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.
| |
Collapse
|
15
|
Karami H, Derakhshani A, Ghasemigol M, Fereidouni M, Miri-Moghaddam E, Baradaran B, Tabrizi NJ, Najafi S, Solimando AG, Marsh LM, Silvestris N, De Summa S, Paradiso AV, Racanelli V, Safarpour H. Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection. J Clin Med 2021; 10:3567. [PMID: 34441862 PMCID: PMC8397209 DOI: 10.3390/jcm10163567] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.
Collapse
Affiliation(s)
- Hassan Karami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS-Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Mohammad Ghasemigol
- Department of Computer Engineering, University of Birjand, Birjand 9717434765, Iran;
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center & Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria;
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
- Medical Oncology Unit, IRCCS-Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy;
| | | | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| |
Collapse
|
16
|
Investigating Optimal Chemotherapy Options for Osteosarcoma Patients through a Mathematical Model. Cells 2021; 10:cells10082009. [PMID: 34440778 PMCID: PMC8394778 DOI: 10.3390/cells10082009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Osteosarcoma is a rare type of cancer with poor prognoses. However, to the best of our knowledge, there are no mathematical models that study the impact of chemotherapy treatments on the osteosarcoma microenvironment. In this study, we developed a data driven mathematical model to analyze the dynamics of the important players in three groups of osteosarcoma tumors with distinct immune patterns in the presence of the most common chemotherapy drugs. The results indicate that the treatments’ start times and optimal dosages depend on the unique growth rate of the tumor, which implies the necessity of personalized medicine. Furthermore, the developed model can be extended by others to build models that can recommend individual-specific optimal dosages. Abstract Since all tumors are unique, they may respond differently to the same treatments. Therefore, it is necessary to study their characteristics individually to find their best treatment options. We built a mathematical model for the interactions between the most common chemotherapy drugs and the osteosarcoma microenvironments of three clusters of tumors with unique immune profiles. We then investigated the effects of chemotherapy with different treatment regimens and various treatment start times on the behaviors of immune and cancer cells in each cluster. Saliently, we suggest the optimal drug dosages for the tumors in each cluster. The results show that abundances of dendritic cells and HMGB1 increase when drugs are given and decrease when drugs are absent. Populations of helper T cells, cytotoxic cells, and IFN-γ grow, and populations of cancer cells and other immune cells shrink during treatment. According to the model, the MAP regimen does a good job at killing cancer, and is more effective than doxorubicin and cisplatin combined or methotrexate alone. The results also indicate that it is important to consider the tumor’s unique growth rate when deciding the treatment details, as fast growing tumors need early treatment start times and high dosages.
Collapse
|
17
|
Salesi M, Shojaie B, Farajzadegan Z, Salesi N, Mohammadi E. TNF-α Blockers Showed Prophylactic Effects in Preventing COVID-19 in Patients with Rheumatoid Arthritis and Seronegative Spondyloarthropathies: A Case-Control Study. Rheumatol Ther 2021; 8:1-16. [PMID: 34316436 PMCID: PMC8299175 DOI: 10.1007/s40744-021-00342-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The interaction between angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 is a crucial factor in the viral infections leading to the release of inflammatory proteins, such as TNF-α. Thus, it is hypothesized that TNF-α blockers can prevent either COVID-19 incidence or its serious symptoms. TNF-α blockers are prescribed to treat various autoimmune disorders, including rheumatoid arthritis (RA) and seronegative spondyloarthropathies (SpA). Therefore, the objective of this work was to examine this hypothesis that TNF-α blockers can prevent COVID-19 incidence in patients with RA or SpA. METHODS A case-control study was conducted through interviews based on a structured questionnaire to investigate the frequency of COVID-19 incidence in 254 eligible patients with RA or SpA about whom 45% were under treatment with one type of TNF-α blockers including infliximab, adalimumab, and etanercept at least for 3 months during the COVID-19 pandemic. Interviews were carried out twice, at the beginning and the end of the study (June-December 2020). Patients with COVID-19 during the study or before that were considered as cases. The control group was patients without COVID-19 experience. Data were analyzed using descriptive statistics, and logistic regression was used to determine the relationships between COVID-19 incidence and independent variables. RESULTS A small percentage of patients treated with TNF-α blockers (5.22%, 6/115) experienced COVID-19, while a large percentage of patients with COVID-19 did not receive TNF-α blockers (27.34%, 38/139). According to odds ratio, adalimumab, infliximab, and etanercept decreased significantly the risk of developing COVID-19 up to 96.8, 95, and 80.3% (p < 0.05), respectively. Therefore, TNF-α blockers could probably decrease the chances of the COVID-19 incidence in patients with RA or SpA. CONCLUSIONS A direct and positive correlation between the use of TNF-α blockers and a reduction in the incidence of COVID-19 could suggest the prophylactic role of these drugs in preventing COVID-19 in patients with RA and SpA.
Collapse
Affiliation(s)
- Mansour Salesi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrokh Shojaie
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Farajzadegan
- Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naghmeh Salesi
- Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Erfan Mohammadi
- Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
18
|
Frohman EM, Villemarette-Pittman NR, Rodriguez A, Glanzman R, Rugheimer S, Komogortsev O, Zamvil SS, Cruz RA, Varkey TC, Frohman AN, Frohman AR, Parsons MS, Konkle EH, Frohman TC. Application of an evidence-based, out-patient treatment strategy for COVID-19: Multidisciplinary medical practice principles to prevent severe disease. J Neurol Sci 2021; 426:117463. [PMID: 33971376 PMCID: PMC8055502 DOI: 10.1016/j.jns.2021.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
The COVID-19 pandemic has devastated individuals, families, and institutions throughout the world. Despite the breakneck speed of vaccine development, the human population remains at risk of further devastation. The decision to not become vaccinated, the protracted rollout of available vaccine, vaccine failure, mutational forms of the SARS virus, which may exhibit mounting resistance to our molecular strike at only one form of the viral family, and the rapid ability of the virus(es) to hitch a ride on our global transportation systems, means that we are will likely continue to confront an invisible, yet devastating foe. The enemy targets one of our human physiology's most important and vulnerable life-preserving body tissues, our broncho-alveolar gas exchange apparatus. Notwithstanding the fear and the fury of this microbe's potential to raise existential questions across the entire spectrum of human endeavor, the application of an early treatment intervention initiative may represent a crucial tool in our defensive strategy. This strategy is driven by evidence-based medical practice principles, those not likely to become antiquated, given the molecular diversity and mutational evolution of this very clever "world traveler".
Collapse
Affiliation(s)
- Elliot M Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| | | | - Adriana Rodriguez
- Department of Emergency Medicine, Cook Children's Medical Center, Ft. Worth, TX, United States of America
| | - Robert Glanzman
- Clene Nanomedicine, Inc., Salt Lake City, UT 84121, United States of America.
| | - Sarah Rugheimer
- Department of Physics, University Oxford, Oxford OX1 3PU, UK.
| | - Oleg Komogortsev
- Department of Computer Sciences, Texas State University, San Marcos, TX, United States of America.
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California San Francisco, San Francisco, CA, United States of America.
| | - Roberto Alejandro Cruz
- Department of Neurology, Doctor's Health at Renaissance Health Neurology Institute, United States of America; Department of Neurology, University of Texas Rio Grande Valley School of Medicine, United States of America.
| | - Thomas C Varkey
- Dell Medical School, University of Texas at Austin, United States of America.
| | | | | | - Matthew S Parsons
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, United States of America; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America.
| | | | - Teresa C Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| |
Collapse
|
19
|
Mazzarino RC. Targeting Future Pandemics, a Case for De Novo Purine Synthesis and Basic Research. Front Immunol 2021; 12:694300. [PMID: 34177959 PMCID: PMC8226072 DOI: 10.3389/fimmu.2021.694300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
We are currently experiencing a deadly novel viral pandemic with no efficacious, readily available anti-viral therapies to SARS-CoV-2. Viruses will hijack host cellular machinery, including metabolic processes. Here, I provide theory and evidence for targeting the host de novo purine synthetic pathway for broad spectrum anti-viral drug development as well as the pursuit of basic science to mitigate the risks of future novel viral outbreaks.
Collapse
Affiliation(s)
- Randall C. Mazzarino
- Schepens Eye Research Institute of Mass Eye and Ear Infirmary and the Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Rowe ES, Rowe VD, Hunter J, Gralinski MR, Neves LA. A nephroprotective iodinated contrast agent with cardioprotective properties: A pilot study. J Neuroimaging 2021; 31:706-713. [PMID: 33979019 PMCID: PMC8359965 DOI: 10.1111/jon.12873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Evaluation and treatment of acute ischemic syndromes, in the heart and brain, require vessel visualization by iodinated X-ray contrast agents. However, these contrast agents can induce injury, in both the kidneys and target organs themselves. Sulfobutylether beta cyclodextrin (SBECD) added to iohexol (SBECD-iohexol) (Captisol Enabled-iohexol, Ligand Pharmaceuticals, Inc, San Diego, CA) is currently in clinical trials in cardiovascular procedures, to determine its relative renal safety in high-risk patients. Preclinical studies showed that SBECD-iohexol reduced contrast-induced acute kidney injury in rodent models by blocking apoptosis. The current study was undertaken to determine whether SBECD-iohexol is also cardioprotective, in the male rat ischemia-reperfusion model, compared to iohexol alone. METHODS After anesthesia, the left coronary artery was ligated for 30 min and the ligation released and reperfusion followed for 2 h prior to sacrifice. Groups 1-4 were injected in the tail vein 10 min prior to ischemia with: (1) vehicle; (2) iohexol; (3) SBECD; and (4) SBECD-iohexol. Infarct size, hemodynamics, and serum markers were measured. RESULTS An eight-fold increase in serum creatine kinase in the iohexol-alone group was observed, compared with no increase in the SBECD-iohexol group. The mean arterial pressure and rate pressure product were depressed in the iohexol-alone group, but not in the SBECD-iohexol group, or controls. No difference in infarct size or serum creatinine among the groups was observed. CONCLUSION The results of this study suggest that SBECD-iohexol is superior to iohexol alone, for both the preservation of cardiomyocyte integrity and preservation of myocardial function in myocardial ischemia.
Collapse
Affiliation(s)
| | | | - John Hunter
- Neurrow Pharmaceuticals, Inc, Shawnee, Kansas, USA
| | | | | |
Collapse
|
21
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
22
|
Samimi Ardestani SM, Khosravani V, Sharifi Bastan F, Baloğlu M. The Persian Version of the COVID-19 Phobia Scale (Persian-C19P-S) and the Differences in COVID-19-Related Phobic Reactions in Patients with Anxiety Disorders. Int J Ment Health Addict 2021; 20:2419-2435. [PMID: 33841053 PMCID: PMC8025735 DOI: 10.1007/s11469-021-00523-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic outbreak increasing several psychological distress, such as anxiety and phobia, and may affect patients with anxiety disorders. A scale has been recently designed to assess COVID-19-related phobic reactions named the COVID-19 Phobia Scale (C19P-S). The present study aimed to evaluate factor structure, reliability, and validity of the Persian version of the C19P-S (Persian-C19P-S) in patients with anxiety disorders and to compare COVID-19-related phobia among these patients. Three hundred patients with anxiety disorders completed the Persian-C19P-S and other scales assessing anxiety traits (e.g., the Short Health Anxiety Inventory (SHAI), the Health Concerns Questionnaire-54 (HCQ-54), and the Patient Health Questionnaire-4 (PHQ-4)) and COVID-19-related distress (e.g., the COVID Stress Scales (CSS) and the Fear of COVID-19 Scale (FCV-19)). The results showed that the Persian-C19P-S replicated the four-factor structure of the original C19P-S. Internal consistency and test-retest reliability coefficients evidenced the reliability of the scale. The validity of the scale (convergent and discriminant validity) was confirmed. Patients who had generalized anxiety and panic disorders showed higher phobic reactions related to COVID-19 than those with social anxiety disorder and specific phobia. This study indicates that the Persian version of the C19P-S is a valid scale to be used in Iranian patients with anxiety disorders to evaluate COVID-19-related phobia. Moreover, COVID-19-related phobic reactions are higher in some specific types of anxiety disorders.
Collapse
Affiliation(s)
- Seyed Mehdi Samimi Ardestani
- Departments of Psychiatry, Behavioral Sciences Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khosravani
- Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
23
|
Amere Subbarao S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting. Inflammopharmacology 2021; 29:343-366. [PMID: 33723711 PMCID: PMC7959277 DOI: 10.1007/s10787-021-00796-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is an intrinsic defence mechanism triggered by the immune system against infection or injury. Chronic inflammation allows the host to recover or adapt through cellular and humoral responses, whereas acute inflammation leads to cytokine storms resulting in tissue damage. In this review, we present the overlapping outcomes of cancer inflammation with virus-induced inflammation. The study emphasises how anti-inflammatory drugs that work against cancer inflammation may work against the inflammation caused by the viral infection. It is established that the cytokine storm induced in response to SARS-CoV-2 infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, we review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them. We also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2 induced cytokine storm. In this review, we emphasise on various possibilities to reduce SARS-CoV-2 induced cytokine storm.
Collapse
|
24
|
Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, Hung DT, Mootha VK, Gewurz BE. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun 2021; 12:1676. [PMID: 33723254 PMCID: PMC7960988 DOI: 10.1038/s41467-021-21903-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Rui Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sharon H Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuting Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jin Hua Liang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Colin N O' Leary
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Steven J Elledge
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | | | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Benjamin E Gewurz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Sollini M, Gelardi F, Chiti A. Asymptomatic versus symptomatic patients: [18F]FDG-PET/CT patterns and evolutionary track of COVID-19 associated vasculitis. ACTA ACUST UNITED AC 2021. [DOI: 10.4081/br.2021.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several patients experience unexplained persistent symptoms after recovering from severe acute respiratory syndrome-related coronavirus disease 2 (SARS-CoV-2) [the so-called long coronavirus disease (COVID)], with a negative impact on their quality of life. We report the evolutionary track of fluorine-18-fluorodeoxyglucose positron emission tomography-computed tomography ([18F]FDG-PET/CT) in two patients incidentally diagnosed with SARS-CoV-2 infection. In both cases, baseline PET/CT showed bilateral pneumonia associated with [18F]FDG vascular uptake. Vascular uptake was more evident in the baseline scan of the asymptomatic patient. Vice versa, it was more marked in the follow-up examinations of the patient who developed long COVID. These findings suggested that vascular inflammation and its duration are responsible for the clinical course of the disease and the development of long COVID.
Collapse
|
26
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
27
|
Khosravani V, Asmundson GJG, Taylor S, Sharifi Bastan F, Samimi Ardestani SM. The Persian COVID stress scales (Persian-CSS) and COVID-19-related stress reactions in patients with obsessive-compulsive and anxiety disorders. J Obsessive Compuls Relat Disord 2021; 28:100615. [PMID: 33354499 PMCID: PMC7746142 DOI: 10.1016/j.jocrd.2020.100615] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
The COVID Stress Scales (CSS) were designed to assess stress related to the COVID-19 pandemic. Emerging evidence indicates that people with anxiety disorders (ADs) and obsessive-compulsive disorder (OCD) may be more negatively impacted by COVID-19 than those with mood disorders or healthy individuals. Accordingly, this study sought to validate the Persian CSS (Persian-CSS) and to compare COVID-19-related stress reactions among patients with specific ADs and OCD. Patients with OCD (n = 300) and ADs (n = 310) completed the Persian-CSS and other scales developed to assess anxiety-related traits and COVID-19-related distress. The Persian-CSS replicated a five-factor structure similar to the original CSS in OCD and ADs. The total CSS and its scales had good reliability and validity. Patients with generalized anxiety disorder, panic disorder, and OCD had higher COVID-19 stress reactions than patients with social anxiety disorder and specific phobia. Patients with panic disorder had higher danger and contamination fears and xenophobia than patients with OCD. The study suggests that the Persian-CSS is a valid scale to be used in patients with OCD and ADs, each of whom differs in their specific patterns of COVID-19-related stress reactions.
Collapse
Affiliation(s)
- Vahid Khosravani
- Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Steven Taylor
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Seyed Mehdi Samimi Ardestani
- Departments of Psychiatry, Behavioral Sciences Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Saxena S, Khurana A, B S, Sardana K, Agarwal A, Muddebihal A, Raina A, Paliwal P. Severe type 2 leprosy reaction with COVID-19 with a favourable outcome despite continued use of corticosteroids and methotrexate and a hypothesis on the possible immunological consequences. Int J Infect Dis 2020; 103:549-551. [PMID: 33326870 PMCID: PMC7831392 DOI: 10.1016/j.ijid.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023] Open
Abstract
Type 2 leprosy reaction (T2LR), or Erythema Nodosum Leprosum (ENL), often poses a therapeutic challenge to clinicians and commonly requires long courses of steroids for control. While immunosuppressants are known to achieve control and lower steroid dependence in T2LR, the prospect of managing a severe T2LR in conjunction with COVID-19, with the concern of worsening COVID-19 with long-term immunosuppression has not previously been encountered. We report a case of severe T2LR treated with oral steroids and methotrexate, with COVID-19 infection acquired during hospital stay, and a favourable outcome achieved despite the continued use of immunosuppressants. We discuss the possible reasons for this both in terms of the drug pharmacodynamics and the immunological profile of T2LR.
Collapse
Affiliation(s)
- Snigdha Saxena
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India.
| | - Savitha B
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Aastha Agarwal
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Aishwarya Muddebihal
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Alok Raina
- Department of Dermatology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Purnima Paliwal
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
29
|
Rajaiah R, Abhilasha KV, Shekar MA, Vogel SN, Vishwanath BS. Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19. Cell Immunol 2020; 358:104240. [PMID: 33137649 PMCID: PMC7558230 DOI: 10.1016/j.cellimm.2020.104240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a global health emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The rapid worldwide spread of SARS-CoV-2 infection has necessitated a global effort to identify effective therapeutic strategies in the absence of vaccine. Among the re-purposed drugs being tested currently, hydroxychloroquine (HCQ), without or with zinc ion (Zn++) and the antibiotic azithromycin (AZM), has been administered to prevent or treat patients with COVID-19. The outcome of multiple clinical studies on HCQ has been mixed. Zn++ interferes with viral replication by inhibiting replicative enzymes and its entry into cells may be facilitated by HCQ. Another immunomodulatory drug, methotrexate (MTX), is well known for its ability to mitigate overactive immune system by upregulating the anti-inflammatory protein, A20. However, its beneficial effect in treating COVID-19 has not drawn much attention. This review provides an overview of the virology of SARS-CoV-2 and an analysis of the mechanisms by which these anti-inflammatory agents may act in the treatment of COVID-19 patients. We propose a rationale for the combinatorial use of these re-purposed drugs that may help to combat this ongoing pandemic health emergency.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| | - Kandahalli V Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Mysore A Shekar
- Chowdaiah Medical Center & Apoorva Diabetes Foundation, Mysuru, Karnataka, India
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, USA
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
30
|
Kothari A, Singh V, Nath UK, Kumar S, Rai V, Kaushal K, Omar BJ, Pandey A, Jain N. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? BIOLOGY 2020; 9:E243. [PMID: 32846906 PMCID: PMC7563789 DOI: 10.3390/biology9090243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic threat with more than 11.8 million confirmed cases and more than 0.5 million deaths as of 3 July 2020. Given the lack of definitive pharmaceutical interventions against SARS-CoV-2, multiple therapeutic strategies and personal protective applications are being used to reduce the risk of high mortality and community spread of this infection. Currently, more than a hundred vaccines and/or alternative therapeutic regimens are in clinical trials, and some of them have shown promising results in improving the immune cell environment and controlling the infection. In this review, we discussed high-performance multi-directory strategies describing the uncontrolled deregulation of the host immune landscape associated with coronavirus disease (COVID-19) and treatment strategies using an anti-neoplastic regimen. We also followed selected current treatment plans and the most important on-going clinical trials and their respective outcomes for blocking SARS-CoV-2 pathogenesis through regenerative medicine, such as stem cell therapy, chimeric antigen receptors, natural killer (NK) cells, extracellular vesicular-based therapy, and others including immunomodulatory regimens, anti-neoplastic therapy, and current clinical vaccine therapy.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Vanya Singh
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Vineeta Rai
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Karanvir Kaushal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India; (A.K.); (V.S.)
| | - Atul Pandey
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
31
|
Safavi F, Nath A. Silencing of immune activation with methotrexate in patients with COVID-19. J Neurol Sci 2020; 415:116942. [PMID: 32471659 PMCID: PMC7247505 DOI: 10.1016/j.jns.2020.116942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Farinaz Safavi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and stroke, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
32
|
Ohadian Moghadam S. A Review on Currently Available Potential Therapeutic Options for COVID-19. Int J Gen Med 2020; 13:443-467. [PMID: 32801840 PMCID: PMC7387864 DOI: 10.2147/ijgm.s263666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
A series of unexplained pneumonia cases currently were first reported in December 2019 in Wuhan, China. Official names have been announced for the virus responsible, previously known as "2019 novel coronavirus" and the diseases it causes are, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19), respectively. Despite great efforts worldwide to control SARS-CoV-2, the spread of the virus has reached a pandemic. Infection prevention and control of this virus is the primary concern of public health officials and professionals. Currently, several therapeutic options for COVID-19 are proposed and vaccine development has been initiated for prevention purposes. In this review, we will discuss the most recent evidence about the current potential treatment options including anti-inflammatory drugs, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, nucleoside analogs, protease inhibitors, monoclonal antibodies, and convalescent plasma therapy. Some other agents such as vitamin D and melatonin, which were recommended as potential adjuvant treatments for COVID-19 infection are also presented. Moreover, the potential use of convalescent plasma for treatment of COVID-19 infection was described. Furthermore, in the next part of the current review, various vaccination approaches against COVID-19 including whole virus vaccines, recombinant subunit vaccine, DNA vaccines, and mRNA vaccines are discussed.
Collapse
|