1
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
2
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:2390. [PMID: 37190316 PMCID: PMC10137050 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M. Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F. Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Khan Z, Alhalmi A, Tyagi N, Khan WU, Sheikh A, Abourehab MAS, Kohli K, Kesharwani P. Folic acid engineered sulforaphane loaded microbeads for targeting breast cancer. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:674-694. [PMID: 36345958 DOI: 10.1080/09205063.2022.2144692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Non-targeted cancer therapy poses a huge risk to the cancer patients' life due to high toxicity offered by chemotherapy. Breast carcinoma is one of such deleterious disease, demanding a highly effectual treatment option which could reduce the toxicity and extend survival rate. Since, folate receptors extensively display themselves on the cancer cell surface, targeting them would help to ameliorate the progression and metastasis. Considering this, we envisaged and developed sulforaphane loaded folate engineered microbeads to target breast cancer cells over-expressing folate receptors. The surface engineered microbeads were optimized and developed using emulsion gelation technique, among which the best developed preparation demonstrated the particle size of 1302 ± 3.98 µm, % EE of 84.1 ± 3.32% and in vitro drug release of 98.1 ± 4.42%@24h. The spherical sized microbead showed controlled release with improved haem-compatibility in comparison to the bare drug. Free radical scavenging activity by ABTS assay showed strong anti-oxidant activity (IC50 20.62 µg/ml) of the targeted microbeads with profound cancer cell sup pressing effect (IC50 17.48 ± 3.5 µM) as observed in MCF-7 cells by MTT assay. Finally, in comparison to lone SFN, the targeted therapy showed enhanced uptake by the intestinal villi indicating a suitable oral targeted therapy against breast carcinoma.
Collapse
Affiliation(s)
- Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Wasi Uzzaman Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
- Director (Research and Publication), Faculty of pharmacy, Lloyd Institute of Management and Technology, Greater Noida, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi-110062
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India
| |
Collapse
|
4
|
Wang B, Li K, Wu G, Xu Z, Hou R, Guo B, Zhao Y, Liu F. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. MOLECULAR PLANT PATHOLOGY 2022; 23:1508-1523. [PMID: 35942507 PMCID: PMC9452769 DOI: 10.1111/mpp.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites perform numerous functions in the interactions between plants and pathogens. However, little is known about the precise mechanisms underlying their contribution to the direct inhibition of pathogen growth and virulence in planta. Here, we show that the secondary metabolite sulforaphane (SFN) in crucifers inhibits the growth, virulence, and ability of Xanthomonas species to adapt to oxidative stress, which is essential for the successful infection of host plants by phytopathogens. The transcription of oxidative stress detoxification-related genes (catalase [katA and katG] and alkylhydroperoxide-NADPH oxidoreductase subunit C [ahpC]) was substantially inhibited by SFN in Xanthomonas campestris pv. campestris (Xcc), and this phenomenon was most obvious in sax gene mutants sensitive to SFN. By performing microscale thermophoresis (MST) and electrophoretic mobility shift assay (EMSA), we observed that SFN directly bound to the virulence-related redox-sensing transcription factor OxyR and weakened the ability of OxyR to bind to the promoters of oxidative stress detoxification-related genes. Collectively, these results illustrate that SFN directly targets OxyR to inhibit the bacterial adaptation to oxidative stress, thereby decreasing bacterial virulence. Interestingly, this phenomenon occurs in multiple Xanthomonas species. This study provides novel insights into the molecular mechanisms by which SFN limits Xanthomonas adaptation to oxidative stress and virulence, and the findings will facilitate future studies on the use of SFN as a biopesticide to control Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Kaihuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and SafetyState Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|
5
|
Ma S, Bao J, Lu Y, Lu X, Tian P, Zhang X, Yang J, Shi X, Pu Z, Li S. Glucoraphanin and sulforaphane biosynthesis by melatonin mediating nitric oxide in hairy roots of broccoli (Brassica oleracea L. var. italica Planch): insights from transcriptome data. BMC PLANT BIOLOGY 2022; 22:403. [PMID: 35974315 PMCID: PMC9382772 DOI: 10.1186/s12870-022-03747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Glucoraphanin (GRA) is present in the seeds and nutrient organs of broccoli and is the precursor of the anti-cancer compound sulforaphane (SF). The hairy roots obtained by infecting broccoli (Brassica oleracea L. var. Italic Planch) leaves with Agrobacterium rhizogenes (ATCC15834) are phytohormonally autonomous, genetically stable, and can produce large amounts of the anti-cancer substance SF. Melatonin (MT) is a natural hormone widely found in plants. Studies have shown that melatonin can regulate the synthesis of secondary metabolites of downstream targets by mediating the synthesis of signal molecules. However, whether MT regulates the synthesis of NO and H2O2 and mediates the synthesis mechanism of secondary metabolites, GRA and SF, is not yet clear. In this study, the hairy roots of broccoli were treated with 500 μmol/L MT, and the genome of broccoli (Brassica oleracea L. var. botrytis L) was used as the reference genome for transcriptome analysis. By this approach, we found that MT regulates the synthesis of NO and H2O2 and mediates the synthesis of secondary metabolites GRA and SF. GO annotations indicated that DEGs involved in the MT treatment of broccoli hairy roots were mainly related to catalytic activity, cells, and metabolic processes; the KEGG pathway analysis indicated that MT treatment likely affects the hormone signal transduction process in broccoli hairy roots; broccoli hairy roots were treated with 500 μmol/L MT for 0, 6, 12, 20, and 32 h, respectively; compared with 0 h, the yield of GRA and SF increased under the other treatments. The highest yields of GRA and SF occurred at 12 h. The NO content was the highest at 12 h, and the H2O2 content was positively correlated with MT concentration. The content of NO and H2O2 were regulated, and the content of GRA and SF was increased under MT treatment. NO synthase inhibitor (L-NAME and TUN) could effectively inhibit the content of NO in broccoli hairy roots and reduce GRA and SF yield; MT could regulate NO levels by regulating NO synthesis-related enzymes and could alleviate the reduction of NO content in tissue cells caused by NO synthase inhibitor and promote NO synthesis. These results have important theoretical implications for understanding the regulation of GRA and SF synthesis events by NO and H2O2.
Collapse
Affiliation(s)
- Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Yaqi Lu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Peng Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Xiaoling Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Xiaotong Shi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Zhihui Pu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, China.
| |
Collapse
|
6
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
7
|
Gao L, Li H, Li B, Shao H, Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115387. [PMID: 35580770 DOI: 10.1016/j.jep.2022.115387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine. AIM OF THE STUDY This review provides a critical and comprehensive summary of traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS based on research data that have been reported, aiming at providing a basis for further study on RS. MATERIALS AND METHODS The search terms "Raphani Semen", "the seeds of Raphanus sativus L." and "radish seed" were used to obtain the information from electronic databases such as Web of Science, China National Knowledge Infrastructure, PubMed and other web search instruments. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS were summarized. RESULTS RS has been traditionally used to treat food dyspeptic retention, distending pain in the epigastrium and abdomen, constipation, diarrhea and dysentery, panting, and cough with phlegm congestion in the clinical practice. The chemical constituents of RS include glucosinolates and sulfur-containing derivatives, phenylpropanoid sucrosides, small organic acids and derivatives, flavone glycosides, alkaloids, terpenoids, steroids, oligosaccharides and others. Among them, glucosinolates can be transformated to isothiocyanates by plant myrosinase or the intestinal flora, which display a variety of activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, treatment of metabolic diseases, central nervous system protection, anti-osteoporosis. RS has a variety of pharmacological activities, including treatment of metabolic diseases, anti-inflammatory, anti-tumor, antioxidant, antibacterial, antihypertensive, central nervous system protection, anti-osteoporosis, etc. This review will provide useful insight for exploration, further study and precise medication of RS in the future. CONCLUSIONS According to its traditional uses, phytochemistry, transformation of ingredients and pharmacology, RS is regarded as a promising medical plant with various chemical compounds and numerous pharmacological activities. However, the material bases and mechanisms of traditional effect of RS need further study.
Collapse
Affiliation(s)
- Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyue Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhuang Miao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lizhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Wang Z, Tu C, Pratt R, Khoury T, Qu J, Fahey JW, McCann SE, Zhang Y, Wu Y, Hutson AD, Ambrosone CB, Edge SB, Cappuccino HH, Takabe K, Young JS, Tang L. A Presurgical-Window Intervention Trial of Isothiocyanate-Rich Broccoli Sprout Extract in Patients with Breast Cancer. Mol Nutr Food Res 2022; 66:e2101094. [PMID: 35475592 PMCID: PMC9925304 DOI: 10.1002/mnfr.202101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Dietary isothiocyanates (ITCs) from cruciferous vegetables have shown potent anti-breast cancer activities in preclinical models, but their anticancer effects in vivo in breast cancer patients remain elusive. A proof-of-principle, presurgical window of opportunity trial is conducted to assess the anticancer effects of dietary ITCs in breast cancer patients. METHODS AND RESULTS Thirty postmenopausal breast cancer patients are randomly assigned to receive ITC-rich broccoli sprout extract (BSE) (200 µmol ITC per day) or a placebo for 2 weeks. Expression of biomarkers related to ITCs functions are measured in breast cancer tissue specimens at pre- and post-interventions using immunohistochemistry staining. First morning urine samples are collected at both timepoints for proteomic analysis. Overall, the study shows high compliance (100%) and low toxicity (no grade 4 adverse event). Trends of increase in cleaved caspase 3 and tumor-infiltrating lymphocytes (TILs) and trends of decrease in Ki-67 and nuclear to cytoplasm ratio of estrogen receptor (ER)-α are observed in the BSE arm only, consistent with the significantly altered signaling pathways identified in urinary proteomic analysis. CONCLUSIONS Anticancer activities of ITCs are observed in breast cancer patients, supporting the potential beneficial roles of ITC-containing cruciferous vegetables in breast cancer prognosis.
Collapse
Affiliation(s)
- Zinian Wang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, the State University of New York at Buffalo, Buffalo, NY
| | - Rachel Pratt
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jun Qu
- Department of Pharmaceutical Sciences, the State University of New York at Buffalo, Buffalo, NY
| | - Jed W. Fahey
- Departments of Medicine & Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD; Department of Nutrition and Food Studies, George Mason University, Fairfax, VA
| | - Susan E. McCann
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yuesheng Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Stephen B. Edge
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Helen H. Cappuccino
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jessica S. Young
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
9
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
10
|
Ngo SNT, Williams DB. Protective Effect of Isothiocyanates from Cruciferous Vegetables on Breast Cancer: Epidemiological and Preclinical Perspectives. Anticancer Agents Med Chem 2021; 21:1413-1430. [PMID: 32972351 DOI: 10.2174/1871520620666200924104550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced from the hydrolysis of glucosinolates and this reaction is catalysed by the plant-derived enzyme myrosinase. The main Isothiocyanates (ITCs) from cruciferous vegetables are sulforaphane, benzyl ITC, and phenethyl ITC, which had been intensively investigated over the last decade for their anti-breast cancer effects. OBJECTIVE The aim of this article is to systematically review the evidence from all types of studies, which examined the protective effect of cruciferous vegetables and/or their isothiocyanate constituents on breast cancer. METHODS A systematic review was conducted in Pubmed, EMBASE, and the Cochrane Library from inception to 27 April 2020. Peer-reviewed studies of all types (in vitro studies, animal studies, and human studies) were selected. RESULTS The systematic literature search identified 16 human studies, 4 animal studies, and 65 in vitro studies. The effect of cruciferous vegetables and/or their ITCs intake on breast cancer survival was found to be controversial and varied greatly across human studies. Most of these trials were observational studies conducted in specific regions, mainly in the US and China. Substantial evidence from in vitro and animal studies was obtained, which strongly supported the protective effect of sulforaphane and other ITCs against breast cancer. Evidence from in vitro studies showed that sulforaphane and other ITCs reduced cancer cell viability and proliferation via multiple mechanisms and pathways. Isothiocyanates inhibited cell cycle, angiogenesis and epithelial mesenchymal transition, as well as induced apoptosis and altered the expression of phase II carcinogen detoxifying enzymes. These are the essential pathways that promote the growth and metastasis of breast cancer. Noticeably, benzyl ITC showed a significant inhibitory effect on breast cancer stem cells, a new dimension of chemo-resistance in breast cancer treatment. Sulforaphane and other ITCs displayed anti-breast cancer effects at variable range of concentrations and benzyl isothiocyanate appeared to have a relatively lower inhibitory concentration IC50. The mechanisms underlying the cancer protective effect of sulforaphane and other ITCs have also been highlighted in this article. CONCLUSION Current preclinical evidence strongly supports the role of sulforaphane and other ITCs as potential therapeutic agents for breast cancer, either as adjunct therapy or combined therapy with current anti-breast cancer drugs, with sulforaphane displaying the greatest potential.
Collapse
Affiliation(s)
- Suong N T Ngo
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5071, Australia
| | - Desmond B Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
11
|
Elkashty OA, Tran SD. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021; 41:250-269. [PMID: 33877541 DOI: 10.1007/s11596-021-2341-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Tumorigenicity-inhibiting compounds have been identified in our daily diet. For example, isothiocyanates (ITCs) found in cruciferous vegetables were reported to have potent cancer-prevention activities. The best characterized ITC is sulforaphane (SF). SF can simultaneously modulate multiple cellular targets involved in carcinogenesis, including (1) modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (2) inhibition of cell proliferation and induction of apoptosis; and (3) inhibition of neo-angiogenesis and metastasis. SF targets cancer stem cells through modulation of nuclear factor kappa B (NF-κB), Sonic hedgehog (SHH), epithelial-mesenchymal transition, and Wnt/β-catenin pathways. Conventional chemotherapy/SF combination was tested in several studies and resulted in favorable outcomes. With its favorable toxicological profile, SF is a promising agent in cancer prevention and/or therapy. In this article, we discuss the human metabolism of SF and its effects on cancer prevention, treatment, and targeting cancer stem cells, as well as providing a brief review of recent human clinical trials on SF.
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.
| |
Collapse
|
12
|
Kuran D, Pogorzelska A, Wiktorska K. Breast Cancer Prevention-Is there a Future for Sulforaphane and Its Analogs? Nutrients 2020; 12:nu12061559. [PMID: 32471217 PMCID: PMC7352481 DOI: 10.3390/nu12061559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most prevalent type of cancer among women worldwide. There are several recommended methods of breast cancer prevention, including chemoprevention. There are several approved drugs used to prevent breast cancer occurrence or recurrence and metastasizing. There are also a number of new substances undergoing clinical trials and at the stage of initial study. Studies suggest that dietary factors play a crucial role in breast cancer etiology. Epidemiological studies indicate that in particular vegetables from the Brassicaceae family are a rich source of chemopreventive substances, with sulforaphane (SFN) being one of the most widely studied and characterized. This review discusses potential applicability of SFN in breast cancer chemoprevention. A comprehensive review of the literature on the impact of SFN on molecular signalling pathways in breast cancer and breast untransformed cells is presented. The presented results of in vitro and in vivo studies show that this molecule has a potential to act as a preventive molecule either to prevent disease development or recurrence and metastasizing, and as a compound protecting normal cells against the toxic effects of cytostatics. Finally, the still scanty attempts to develop an improved analog are also presented and discussed.
Collapse
Affiliation(s)
- Dominika Kuran
- Department of Pharmacology, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Anna Pogorzelska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
- OncoBoost Ltd., 02-089 Warsaw, Poland
- Correspondence:
| |
Collapse
|
13
|
Mokbel K, Mokbel K. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review. In Vivo 2019; 33:983-997. [PMID: 31280187 DOI: 10.21873/invivo.11568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
Numerous dietary components and vitamins have been found to inhibit the molecular events and signalling pathways associated with various stages of breast cancer development. To identify the vitamins and dietary micronutrients that exert protective effects against breast cancer and define their mechanism of action, we performed a literature review of in vitro, animal and epidemiological studies and selected the in vitro and animal studies with robust molecular evidence and the epidemiological studies reporting statistically significant inverse associations for a breast cancer-specific protective effect. There is sufficient evidence from in vitro, animal and epidemiological human studies that certain vitamins, such as vitamin D3, folate, vitamin B6, and beta carotene as well as dietary micronutrients, such as curcumin, piperine, sulforaphane, indole-3-carbinol, quercetin, epigallocatechin gallate (EGCG) and omega-3 polyunsaturated fatty acids (PUFAs), display an antitumoral activity against breast cancer and have the potential to offer a natural strategy for breast cancer chemoprevention and reduce the risk of breast cancer recurrence. Therefore, a supplement that contains these micronutrients, using the safest form and dosage should be investigated in future breast cancer chemoprevention studies and as part of standard breast cancer therapy.
Collapse
Affiliation(s)
- Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K.
| | - Kinan Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K
| |
Collapse
|
14
|
Aumeeruddy MZ, Mahomoodally MF. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer 2019; 125:1600-1611. [PMID: 30811596 DOI: 10.1002/cncr.32022] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Despite the significant advances in screening methods for early diagnosis, breast cancer remains a global threat and continues to be the leading cancer diagnosed in women, requiring effective therapy. Currently, combination therapy has become the hallmark of breast cancer treatment due to the high incidence of tumor recurrence and disease progression after monotherapeutic treatments, including surgery, radiotherapy, endocrine therapy, and chemotherapy. Over the past decades, there has been considerable interest in studying the anticancer effect of bioactive phytochemicals from medicinal plants combined with these conventional therapies. The rationale for this type of therapy is to use combinations of drugs that work by different mechanisms, thereby decreasing the likelihood that cancer cells will develop resistance, and also reduce the therapeutic dose and toxicity of single treatments. Three agents have received great attention with regard to their anticancer properties: 1) piperine, a dietary phytochemical isolated from black pepper (Piper nigrum L.) and long pepper (Piper longum L.); 2) sulforaphane, an isothiocyanate mainly derived from cruciferous vegetables; and 3) thymoquinone, the active compound from black seed (Nigella sativa L.). This review focused on the combined effect of these 3 compounds on conventional cancer therapy with the objective of observing enhanced efficacy compared with single treatments. This review also highlights the importance of the nanoformulation of such bioactive phytochemicals that could enhance their bioavailability by providing an efficient targeted delivery system with a reduced systemic dose while resulting in a more efficient dosing at the target site.
Collapse
Affiliation(s)
- M Zakariyyah Aumeeruddy
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
15
|
Jaman MS, Sayeed MA. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer 2018; 25:517-528. [PMID: 29725861 DOI: 10.1007/s12282-018-0866-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 01/29/2023]
Abstract
Globally, breast cancer is the most common cancer and the second leading cause of cancer-related death among women. Surgery, chemotherapy, hormonal therapy, and radiotherapy are currently available treatment options for breast cancer therapy. However, chemotherapy, hormonal therapy, and radiotherapy are often associated with side effects and multidrug resistance, recurrence, and lack of treatment in metastasis are the major problems in the treatment of breast cancer. Recently, dietary phytochemicals have emerged as advantageous agents for the prevention and therapy of cancer due to their safe nature. Ellagic acid (EA), sulforaphane (SF), and ursolic acid (UA), which are found in widely consumed fruits and vegetables, have been shown to inhibit breast cancer cell proliferation and to induce apoptosis. This review encompasses the role of EA, SF, and UA in the fight against breast cancer. Both in vitro and in vivo effects of these agents are presented.
Collapse
Affiliation(s)
- Md Sadikuj Jaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| |
Collapse
|
16
|
Capuano E, Dekker M, Verkerk R, Oliviero T. Food as Pharma? The Case of Glucosinolates. Curr Pharm Des 2018; 23:2697-2721. [PMID: 28117016 DOI: 10.2174/1381612823666170120160832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucosinolates (GLSs) are dietary plant secondary metabolites occurring in the order Brassicales with potential health effects, in particular as anti-carcinogenic compounds. GLSs are converted into a variety of breakdown products (BPs) upon plant tissue damage and by the gut microbiota. GLS biological activity is related to BPs rather than to GLSs themselves. METHODS we have reviewed the most recent scientific literature on the metabolic fate and the biological effect of GLSs with particular emphasis on the epidemiological evidence for health effect and evidence from clinical trials. An overview of potential molecular mechanisms underlying GLS biological effect is provided. The potential toxic or anti-nutritional effect has also been discussed. RESULTS Epidemiological and human in vivo evidence point towards a potential anti-cancer effect for sulforaphane, indole-3-carbinol and 3,3-diindolylmethane. A number of new human clinical trials are on-going and will likely shed further light on GLS protective effect towards cancer as well as other diseases. BPs biological effect is the results of a plurality of molecular mechanisms acting simultaneously which include modulation of xenobiotic metabolism, modulation of inflammation, regulation of apoptosis, cell cycle arrest, angiogenesis and metastasis and regulation of epigenetic events. BPs have been extensively investigated for their protective effect towards cancer but in recent years the interest also includes other diseases. CONCLUSION It appears that certain BPs may protect against and may even represent a therapeutic strategy against several forms of cancer. Whether this latter effect can be achieved through diet or supplements should be investigated more thoroughly.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality Design, WU Agrotechnology & Food Sciences, Axis building 118, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Ruud Verkerk
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Axis building, 6708WG, Wageningen, Netherlands
| |
Collapse
|
17
|
Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017; 9:nu9070728. [PMID: 28698459 PMCID: PMC5537842 DOI: 10.3390/nu9070728] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among females worldwide. Several epidemiological studies suggested the inverse correlation between the intake of vegetables and fruits and the incidence of breast cancer. Substantial experimental studies indicated that many dietary natural products could affect the development and progression of breast cancer, such as soy, pomegranate, mangosteen, citrus fruits, apple, grape, mango, cruciferous vegetables, ginger, garlic, black cumin, edible macro-fungi, and cereals. Their anti-breast cancer effects involve various mechanisms of action, such as downregulating ER-α expression and activity, inhibiting proliferation, migration, metastasis and angiogenesis of breast tumor cells, inducing apoptosis and cell cycle arrest, and sensitizing breast tumor cells to radiotherapy and chemotherapy. This review summarizes the potential role of dietary natural products and their major bioactive components in prevention and treatment of breast cancer, and special attention was paid to the mechanisms of action.
Collapse
|
19
|
Fruit and vegetable intake and breast cancer prognosis: a meta-analysis of prospective cohort studies. Br J Nutr 2017; 117:737-749. [DOI: 10.1017/s0007114517000423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe effect of fruit and vegetable intake on breast cancer prognosis is controversial. Thus, a meta-analysis was carried out to explore their associations. A comprehensive search was conducted in PubMed, Web of Science, OVID, ProQuest and Chinese databases from inception to April 2016. The summary hazard ratios (HR) and 95 % CI were estimated using a random effects model if substantial heterogeneity existed and using a fixed effects model if not. Subgroup analyses and sensitivity analyses were also performed. In total, twelve studies comprising 41 185 participants were included in the meta-analysis. Comparing the highest with the lowest, the summary HR for all-cause mortality were 1·01 (95 % CI 0·72, 1·42) for fruits and vegetables combined, 0·96 (95 % CI 0·83, 1·12) for total vegetable intake, 0·99 (95 % CI 0·89, 1·11) for cruciferous vegetable intake and 0·88 (95 % CI 0·74, 1·05) for fruit intake; those for breast cancer-specific mortality were 1·05 (95 % CI 0·77, 1·43) for total vegetable intake and 0·94 (95 % CI 0·69, 1·26) for fruit intake; and those for breast cancer recurrence were 0·89 (95 % CI 0·53, 1·50) for total vegetable intake and 0·98 (95 % CI 0·76, 1·26) for cruciferous vegetable intake. This meta-analysis found no significant associations between fruit and vegetable intake and breast cancer prognosis.
Collapse
|
20
|
Gerhardt C, Lier JM, Burmühl S, Struchtrup A, Deutschmann K, Vetter M, Leu T, Reeg S, Grune T, Rüther U. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J Cell Biol 2015; 210:115-33. [PMID: 26150391 PMCID: PMC4494006 DOI: 10.1083/jcb.201408060] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rpgrip1l regulates proteasomal activity at the basal body via Psmd2 and thereby controls ciliary signaling. Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Burmühl
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kathleen Deutschmann
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maik Vetter
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Reeg
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Wang W, He Y, Yu G, Li B, Sexton DW, Wileman T, Roberts AA, Hamilton CJ, Liu R, Chao Y, Shan Y, Bao Y. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity. PLoS One 2015; 10:e0138771. [PMID: 26402917 PMCID: PMC4581733 DOI: 10.1371/journal.pone.0138771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/10/2015] [Indexed: 12/28/2022] Open
Abstract
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.
Collapse
Affiliation(s)
- Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Guodong Yu
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Baolong Li
- Center of Safety Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Darren W Sexton
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Alexandra A Roberts
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Chris J Hamilton
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Ruoxi Liu
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
22
|
Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Antioxid Redox Signal 2015; 22:1382-424. [PMID: 25364882 PMCID: PMC4432495 DOI: 10.1089/ars.2014.6097] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. CRITICAL ISSUES In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. FUTURE DIRECTIONS Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
23
|
Licznerska B, Szaefer H, Matuszak I, Murias M, Baer-Dubowska W. Modulating Potential of L
-Sulforaphane in the Expression of Cytochrome P450 to Identify Potential Targets for Breast Cancer Chemoprevention and Therapy Using Breast Cell Lines. Phytother Res 2014; 29:93-9. [DOI: 10.1002/ptr.5232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 08/31/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry; Poznan University of Medical Sciences; Poznań Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry; Poznan University of Medical Sciences; Poznań Poland
| | - Iwona Matuszak
- Department of Pharmaceutical Biochemistry; Poznan University of Medical Sciences; Poznań Poland
| | - Marek Murias
- Department of Toxicology; Poznan University of Medical Sciences; Poznań Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry; Poznan University of Medical Sciences; Poznań Poland
| |
Collapse
|
24
|
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 2013; 71:585-99. [DOI: 10.1111/nure.12051] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
A review of the phytochemistry and pharmacological activities of raphani semen. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:636194. [PMID: 23935670 PMCID: PMC3723324 DOI: 10.1155/2013/636194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/09/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
Abstract
The dried ripe seed of Raphanus sativus L., commonly known as radish seed (or Raphani Semen), is used as traditional Chinese medicine (TCM) to treat constipation, chronic tracheitis, and hypertension. The major active compounds in Raphani Semen are alkaloids, glucosinolates, brassinosteroids, and flavonoids. Fatty acids are its main nutritional contents. Raphani Semen has been demonstrated to have beneficial effects on hypertension, obesity, diabetes mellitus, constipation, and cough. So far, there is no report about the adverse/toxic effects of this herb on humans. However, Raphani Semen processed by roasting was reported to exhibit some adverse effects on mice. Additionally, erucic acid, the main fatty acid in Raphani Semen, was shown to enhance the toxicity of doxorubicin. Thus, Raphani Semen has a potential risk of causing toxicity and drug interaction. In summary, Raphani Semen is a valuable TCM herb with multiple pharmacological effects. More studies on Raphani Semen could help better understand its pharmacological mechanisms so as to provide clear scientific evidence to explain its traditional uses, to identify its therapeutic potential on other diseases, and to understand its possible harmful effects.
Collapse
|
26
|
The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 2013; 270:139-48. [DOI: 10.1016/j.taap.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022]
|
27
|
Pawlik A, Wiczk A, Kaczyńska A, Antosiewicz J, Herman-Antosiewicz A. Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur J Nutr 2013; 52:1949-58. [PMID: 23389114 PMCID: PMC3832756 DOI: 10.1007/s00394-013-0499-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/22/2013] [Indexed: 02/07/2023]
Abstract
Purpose Cancer development and resistance to chemotherapy correlates with aberrant activity of mitogenic pathways. In breast cancers, pro-survival PI3K-AktmTOR-S6K1 signaling pathway is often hyperactive due to overexpression of genes coding for growth factors or estrogen receptors, constitutive activation of PI3K or Akt and loss of PTEN, a negative regulator of the pathway. Since epidemiologic as well as rodent tumor studies indicate that sulforaphane (SFN), a constituent of many edible cruciferous vegetables, might be a potent inhibitor of mammary carcinogenesis, we analyzed the response of four breast cancer cell lines representing different abnormalities in ErbB2/ER-PI3K-AktmTOR-S6K1 signaling pathway to this compound. Methods Four different breast cancer cell lines were used: MDA MB 231, MCF-7, SKBR-3 and MDA MB 468. Cell viability and ultrastructure, protein synthesis, autophagy induction and phosphorylation status of Akt and S6K1 kinases upon SFN treatment were determined. Results We observed that all four cell lines are similarly sensitive to SFN. SFN decreased phosphorylation of Akt and S6K1 kinases and at higher concentrations induced autophagy in all studied cell lines. Moreover, global protein synthesis was inhibited by SFN in investigated cell lines in a dose-dependent manner. Conclusion These results indicate that SFN is a potent inhibitor of the viability of breast cancer cells representing different activity of the ErbB2/ER-PI3K-AktmTOR-S6K1 pro-survival pathway and suggest that it targets downstream elements of the pathway.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
28
|
Sharma R, Sharma A, Chaudhary P, Sahu M, Jaiswal S, Awasthi S, Awasthi YC. Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. Free Radic Biol Med 2012; 52:2177-85. [PMID: 22579574 PMCID: PMC3377772 DOI: 10.1016/j.freeradbiomed.2012.04.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022]
Abstract
Chemoprevention of cancer via herbal and dietary supplements is a logical approach to combating cancer and currently it is an attractive area of research investigation. Over the years, isothiocyanates, such as sulforaphane (SFN) found in cruciferous vegetables, have been advocated as chemopreventive agents, and their efficacy has been demonstrated in cell lines and animal models. In vivo studies with SFN suggest that in addition to protecting normal healthy cells from environmental carcinogens, it also exhibits cytotoxicity and apoptotic effects against various cancer cell types. Among several mechanisms for the chemopreventive activity of SFN against chemical carcinogenesis, its effect on drug-metabolizing enzymes that cause activation/neutralization of carcinogenic metabolites is well established. Recent studies suggest that SFN exerts its selective cytotoxicity to cancer cells via reactive oxygen species-mediated generation of lipid peroxidation products, particularly 4-hydroxynonenal (HNE). Against the background of the known biochemical effects of SFN on normal and cancer cells, in this article we review the underlying molecular mechanisms responsible for the overall chemopreventive effects of SFN, focusing on the role of HNE in these mechanisms, which may also contribute to its selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- Rajendra Sharma
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| | - Abha Sharma
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| | - Pankaj Chaudhary
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| | - Mukesh Sahu
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| | - Shailesh Jaiswal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| | - Sanjay Awasthi
- Department of Diabetes, Endocrinology & Metabolism, City of Hope-NCI designated comprehensive Cancer Center, Duarte, CA
| | - Yogesh C. Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX
| |
Collapse
|
29
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
30
|
Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; 2:579-87. [PMID: 21935537 PMCID: PMC3204939 DOI: 10.1039/c1fo10114e] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Fei Li
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
31
|
Jakubikova J, Cervi D, Ooi M, Kim K, Nahar S, Klippel S, Cholujova D, Leiba M, Daley JF, Delmore J, Negri J, Blotta S, McMillin DW, Hideshima T, Richardson PG, Sedlak J, Anderson KC, Mitsiades CS. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica 2011; 96:1170-9. [PMID: 21712538 DOI: 10.3324/haematol.2010.029363] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Isothiocyanates, a family of phytochemicals found in cruciferous vegetables, have cytotoxic effects against several types of tumor cells. Multiple myeloma is a fatal disease characterized by clonal proliferation of plasma cells in the bone marrow. The growing body of preclinical information on the anti-cancer activity of isothiocyanates led us to investigate their anti-myeloma properties. DESIGN AND METHODS We evaluated the anti-myeloma activity of the isothiocyanates, sulforaphane and phenethyl isothiocyanate, on a panel of human myeloma cell lines as well as primary myeloma tumor cells. Cell viability, apoptosis, cell cycle alterations and cell proliferation were then analyzed in vitro and in a xenograft mouse model in vivo. The molecular sequelae of isothiocyanate treatment in multiple myeloma cells were evaluated by multiplex analyses using bead arrays and western blotting. RESULTS We observed that sulforaphane and phenylethyl isothiocyanate have activity against myeloma cell lines and patients' myeloma cells both in vitro and in vivo using a myeloma xenograft mouse model. Isothiocyanates induced apoptotic death of myeloma cells; depletion of mitochondrial membrane potential; cleavage of PARP and caspases-3 and -9; as well as down-regulation of anti-apoptotic proteins including Mcl-1, X-IAP, c-IAP and survivin. Isothiocyanates induced G(2)/M cell cycle arrest accompanied by mitotic phosphorylation of histone H3. Multiplex analysis of phosphorylation of diverse components of signaling cascades revealed changes in MAPK activation; increased phosphorylation of c-jun and HSP27; as well as changes in the phosphorylation of Akt, and GSK3α/β and p53. Isothiocyanates suppressed proliferation of myeloma cells alone and when co-cultured with HS-5 stromal cells. Sulforaphane and phenylethyl isothiocyanate enhanced the in vitro anti-myeloma activity of several conventional and novel therapies used in multiple myeloma. CONCLUSIONS Our study shows that isothiocyanates have potent anti-myeloma activities and may enhance the activity of other anti-multiple myeloma agents. These results indicate that isothiocyanates may have therapeutic potential in multiple myeloma and provide the preclinical framework for future clinical studies of isothiocyanates in multiple myeloma.
Collapse
Affiliation(s)
- Jana Jakubikova
- Jerome Lipper Multiple Myeloma Center, Dept. of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vegetable intake is associated with reduced breast cancer recurrence in tamoxifen users: a secondary analysis from the Women’s Healthy Eating and Living Study. Breast Cancer Res Treat 2010; 125:519-27. [DOI: 10.1007/s10549-010-1014-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/22/2010] [Indexed: 12/30/2022]
|
33
|
Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS JOURNAL 2009; 12:87-97. [PMID: 20013083 DOI: 10.1208/s12248-009-9162-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/14/2009] [Indexed: 02/08/2023]
Abstract
Development of cancer is a long-term and multistep process which comprises initiation, progression, and promotion stages of carcinogenesis. Conceivably, it can be targeted and interrupted along these different stages. In this context, many naturally occurring dietary compounds from our daily consumption of fruits and vegetables have been shown to possess cancer preventive effects. Phenethyl isothiocyanate (PEITC) and sulforaphane (SFN) are two of the most widely investigated isothiocyanates from the crucifers. Both have been found to be very potent chemopreventive agents in numerous animal carcinogenesis models as well as cell culture models. They exert their chemopreventive effects through regulation of diverse molecular mechanisms. In this review, we will discuss the molecular targets of PEITC and SFN potentially involved in cancer chemoprevention. These include the regulation of drug-metabolizing enzymes phase I cytochrome P450s and phase II metabolizing enzymes. In addition, the signaling pathways including Nrf2-Keap 1, anti-inflammatory NFkappaB, apoptosis, and cell cycle arrest as well as some receptors will also be discussed. Furthermore, we will also discuss the similarities and their potential differences in the regulation of these molecular targets by PEITC and SFN.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | |
Collapse
|
34
|
Skupinska K, Misiewicz-Krzeminska I, Lubelska K, Kasprzycka-Guttman T. The effect of isothiocyanates on CYP1A1 and CYP1A2 activities induced by polycyclic aromatic hydrocarbons in Mcf7 cells. Toxicol In Vitro 2009; 23:763-71. [PMID: 19362136 DOI: 10.1016/j.tiv.2009.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 12/13/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs)--environmental carcinogens--are metabolized by CYP1A1 and CYP1A2 enzymes to oxy-derivatives, which are able to bind to DNA and initiate carcinogenesis. PAHs induce CYP1A1 and CYP1A2 activity, which increases the risk of development of carcinogenesis. Isothiocyanates (ITCs), naturally occurring in Brassica vegetables, possess chemopreventive properties and are able to reduce the CYP1A enzyme activity. In this paper we report our study of the ability of ITCs: sulforaphane and its analogues: isothiocyanate-2-oxohexyl and alyssin, to inhibit CYP1A1 and CYP1A2 enzyme activity induced by the PAHs, anthracene (ANT) and dibenzo[a,h]anthracene (DBA) in human breast cancer cell line Mcf7. The aim was to determine whether the differences in structure of ITCs change their inhibitory properties, and whether these properties depend on the type of inducer. The results indicate that the properties of ITCs depend on the type of PAH: ITCs are more potent in inhibiting activity induced by the weaker inducer. It was also found that the change in ITCs' structure influences their activities. ITC 2-oxohexyl was the weakest inhibitor, whereas sulforaphane and alyssin exhibited similar potency. The study revealed that inhibition of CYP1A1 activity is direct whereas inhibition of CYP1A2 activity is not only direct but is also caused by the level of protein disturbance.
Collapse
|