1
|
Yao K, Zheng L, Chen W, Xie Y, Liao C, Zhou T. Characteristics, pathogenic and therapeutic role of gut microbiota in immunoglobulin A nephropathy. Front Immunol 2025; 16:1438683. [PMID: 39981255 PMCID: PMC11839611 DOI: 10.3389/fimmu.2025.1438683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent glomerulonephritis in the world, and it is one of the leading causes of end-stage kidney disease. It is now believed that the pathogenesis of IgAN is the mesangial deposition of immune complex containing galactose-deficient IgA1, resulting in glomerular injury. Current treatments for IgAN include supportive care and immunosuppressive therapy. A growing number of studies found that the gut microbiota in IgAN was dysregulated. Gut microbiota may be involved in the development and progression of IgAN through three main aspects: destruction of intestinal barrier, changes in metabolites and abnormal mucosal immunity. Interestingly, therapies by modulating the gut microbiota, such as fecal microbiota transplantation, antibiotic treatment, probiotic treatment, Chinese herbal medicine Zhen Wu Tang treatment, gluten-free diet, and hydroxychloroquine treatment, can improve IgAN. In this review, the alteration of gut microbiota in IgAN, potential pathogenic roles of gut microbiota on IgAN and potential approaches to treat IgAN by modulating the gut microbiota are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Sallustio F, Picerno A, Cimmarusti MT, Montenegro F, Curci C, De Palma G, Sivo C, Annese F, Fontò G, Stasi A, Pesce F, Tafuri S, Di Leo V, Gesualdo L. Elevated levels of IL-6 in IgA nephropathy patients are induced by an epigenetically driven mechanism modulated by viral and bacterial RNA. Eur J Intern Med 2023; 118:108-117. [PMID: 37550110 DOI: 10.1016/j.ejim.2023.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis and the role of IL-6 in pathogenesis is becoming increasingly important. A recent whole genome DNA methylation screening in IgAN patients identified a hypermethylated region comprising the non-coding RNA Vault RNA 2-1 (VTRNA2-1) that could explain the high IL-6 levels. METHODS The pathway leading to IL-6 secretion controlled by VTRNA2-1, PKR, and CREB was analyzed in peripheral blood mononuclear cells (PBMCs) isolated from healthy subjects (HS), IgAN patients, transplanted patients with or without IgAN. The role of double and single-strand RNA in controlling the pathway was investigated. RESULTS VTRNA2-1 was downregulated in IgAN compared to HS and in transplanted IgAN patients (TP-IgAN) compared to non-IgAN transplanted (TP). The loss of the VTRNA2-1 natural restrain in IgAN patients caused PKR hyperphosphorylation, and consequently the activation of CREB by PKR, which, in turn, led to high IL-6 production, both in IgAN and in TP-IgAN patients. IL-6 levels could be decreased by the PKR inhibitor imoxin. In addition, PKR is normally activated by bacterial and viral RNA, and we found that both the RNA poly(I:C), and the COVID-19 RNA-vaccine stimulation significantly increased the IL-6 levels in PBMCs from HS but had an opposite effect in those from IgAN patients. CONCLUSION The discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide a novel approach to treating the disease and may be useful for the development of precision nephrology and personalized therapy by checking the VTRNA2-1 methylation level in IgAN patients.
Collapse
Affiliation(s)
- Fabio Sallustio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy.
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Teresa Cimmarusti
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Giuseppe De Palma
- Institutional Biobank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Bari Giovanni Paolo II, Bari, Italy
| | - Carmen Sivo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesca Annese
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Giulia Fontò
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Francesco Pesce
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Silvio Tafuri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Vincenzo Di Leo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare, Bari 11 70124, Italy
| |
Collapse
|
3
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Wang C, Lin R, Qi X, Xu Q, Sun X, Zhao Y, Jiang T, Jiang J, Sun Y, Deng Y, Wen J. Alternative glucose uptake mediated by β-catenin/RSK1 axis under stress stimuli in mammalian cells. Biochem Pharmacol 2023:115645. [PMID: 37321415 DOI: 10.1016/j.bcp.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Cells adapt to stress conditions by increasing glucose uptake as cytoprotective strategy. The efficiency of glucose uptake is determined by the translocation of glucose transporters (GLUTs) from cytosolic vesicles to cellular membranes in many tissues and cells. GLUT translocation is tightly controlled by the activation of Tre-2/BUB2/CDC16 1 domain family 4 (TBC1D4) via its phosphorylation. The mechanisms of glucose uptake under stress conditions remain to be clarified. In this study, we surprisingly found that glucose uptake is apparently increased for the early response to three stress stimuli, glucose starvation and the exposure to lipopolysaccharide (LPS) or deoxynivalenol (DON). The stress-induced glucose uptake was mainly controlled by the increment of β-catenin level and the activation of RSK1. Mechanistically, β-catenin directly interacted with RSK1 and TBC1D4, acting as the scaffold protein to recruit activated RSK1 to promote the phosphorylation of TBC1D4. In addition, β-catenin was further stabilized due to the inhibition of GSK3β kinase activity which is caused by activated RSK1 phosphorylating GSK3β at Ser9. In general, this triple protein complex consisting of β-catenin, phosphorylated RSK1, and TBC1D4 were increased in the early response to these stress signals, and consequently, further promoted the phosphorylation of TBC1D4 to facilitate the translocation of GLUT4 to the cell membrane. Our study revealed that the β-catenin/RSK1 axis contributed to the increment of glucose uptake for cellular adaption to these stress conditions, shedding new insights into cellular energy utilization under stress.
Collapse
Affiliation(s)
- Caizhu Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xueying Qi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qiang Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xingsheng Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
5
|
EPA and DHA confer protection against deoxynivalenol-induced endoplasmic reticulum stress and iron imbalance in IPEC-1 cells. Br J Nutr 2022; 128:161-171. [PMID: 34519265 DOI: 10.1017/s0007114521003688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+ and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.
Collapse
|
6
|
Wang Y, Tian L, Sun L, Zhou W, Zhi W, Qing J, Abdi Saed Y, Dong L, Zhang X, Li Y. Gut Microbes in Immunoglobulin A Nephropathy and Their Potential Therapeutic Applications. Front Med (Lausanne) 2022; 9:823267. [PMID: 35655857 PMCID: PMC9152025 DOI: 10.3389/fmed.2022.823267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial ecosystem consists of a complex community of bacterial interactions and its host microenvironment (tissue, cell, metabolite). Because the interaction between gut microbiota and host involves many diseases and seriously affects human health, the study of the interaction mechanism between gut microbiota and host has attracted great attention. The gut microbiome is made up of 100 trillion bacteria that have both beneficial and adverse effects on human health. The development of IgA Nephropathy results in changes in the intestinal microbial ecosystem that affect host physiology and health. Similarly, changes in intestinal microbiota also affect the development of IgA Nephropathy. Thus, the gut microbiome represents a novel therapeutic target for improving the outcome of IgA Nephropathy, including hematuria symptoms and disease progression. In this review, we summarize the effect of intestinal microbiota on IgA Nephropathy in recent years and it has been clarified that the intestinal microbiota has a great influence on the pathogenesis and treatment of IgA Nephropathy.
Collapse
Affiliation(s)
- Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Lin Sun
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Wenqiang Zhi
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jianbo Qing
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yasin Abdi Saed
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xiadong Zhang
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.,Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China.,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Individual and Combined Effects of Fumonisin B₁, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats. Toxins (Basel) 2017; 10:toxins10010004. [PMID: 29271890 PMCID: PMC5793091 DOI: 10.3390/toxins10010004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
(1) Background and (2) Methods: A 14-day in vivo, multitoxic (pure mycotoxins) rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day), deoxynivalenol (DON; 30 μg/animal/day) and fumonisin B1 (FB1; 150 μg/animal/day), as individual mycotoxins, binary (FD, FZ and DZ) and ternary combinations (FDZ), via gavage in 1 mL water boluses. (3) Results: Body weight was unaffected, while liver (ZEA↑ vs. DON) and kidney weight (ZEA↑ vs. FDZ) increased. Hepatocellular membrane lipid fatty acids (FAs) referred to ceramide synthesis disturbance (C20:0, C22:0), and decreased unsaturation (C22:5 n3 and unsat. index), mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0) and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0) or DON (C18:2 n6, C20:1 n9). Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase), while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde) in the DON treatment. (4) Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.
Collapse
|
8
|
Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Li L, Zhang X, Kuca K. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget 2017; 8:110708-110726. [PMID: 29299181 PMCID: PMC5746416 DOI: 10.18632/oncotarget.22800] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
9
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L, Ma X, Fang J. Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicol In Vitro 2015; 29:558-63. [DOI: 10.1016/j.tiv.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/14/2014] [Accepted: 12/05/2014] [Indexed: 11/26/2022]
|
11
|
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014; 6:3406-25. [PMID: 25521494 PMCID: PMC4280541 DOI: 10.3390/toxins6123406] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Katika MR, Hendriksen PJM, van Loveren H, A. C. M. Peijnenburg A. Characterization of the modes of action of deoxynivalenol (DON) in the human Jurkat T-cell line. J Immunotoxicol 2014; 12:206-16. [DOI: 10.3109/1547691x.2014.925995] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Pestka JJ, Vines LL, Bates MA, He K, Langohr I. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse. PLoS One 2014; 9:e100255. [PMID: 24945254 PMCID: PMC4063768 DOI: 10.1371/journal.pone.0100255] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022] Open
Abstract
Mortality from systemic lupus erythematosus (SLE), a prototypical autoimmune disease, correlates with the onset and severity of kidney glomerulonephritis. There are both preclinical and clinical evidence that SLE patients may benefit from consumption of n-3 polyunsaturated fatty acids (PUFA) found in fish oil, but the mechanisms remain unclear. Here we employed the NZBWF1 SLE mouse model to compare the effects of dietary lipids on the onset and severity of autoimmune glomerulonephritis after consuming: 1) n-3 PUFA-rich diet containing docosahexaenoic acid-enriched fish oil (DFO), 2) n-6 PUFA-rich Western-type diet containing corn oil (CRN) or 3) n-9 monounsaturated fatty acid (MUFA)-rich Mediterranean-type diet containing high oleic safflower oil (HOS). Elevated plasma autoantibodies, proteinuria and glomerulonephritis were evident in mice fed either the n-6 PUFA or n-9 MUFA diets, however, all three endpoints were markedly attenuated in mice that consumed the n-3 PUFA diet until 34 wk of age. A focused PCR array was used to relate these findings to the expression of 84 genes associated with CD4+ T cell function in the spleen and kidney both prior to and after the onset of the autoimmune nephritis. n-3 PUFA suppression of autoimmunity in NZBWF1 mice was found to co-occur with a generalized downregulation of CD4+ T cell-related genes in kidney and/or spleen at wk 34. These genes were associated with the inflammatory response, antigen presentation, T cell activation, B cell activation/differentiation and leukocyte recruitment. Quantitative RT-PCR of representative affected genes confirmed that n-3 PUFA consumption was associated with reduced expression of CD80, CTLA-4, IL-10, IL-18, CCL-5, CXCR3, IL-6, TNF-α and osteopontin mRNAs in kidney and/or spleens as compared to mice fed n-6 PUFA or n-9 MUFA diets. Remarkably, many of the genes identified in this study are currently under consideration as biomarkers and/or biotherapeutic targets for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- James J. Pestka
- Department of Food Science and Human Nutrition, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
| | - Laura L. Vines
- Department of Food Science and Human Nutrition, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
| | - Kaiyu He
- Center for Integrative Toxicology, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
| | - Ingeborg Langohr
- Division of Anatomic Pathology, Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
14
|
Pan X, Whitten DA, Wilkerson CG, Pestka JJ. Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 2013; 138:217-33. [PMID: 24284785 DOI: 10.1093/toxsci/kft270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates cereal-based food, interacts with the ribosome to cause translation inhibition and activate stress kinases in mononuclear phagocytes via the ribotoxic stress response (RSR). The goal of this study was to test the hypothesis that the ribosome functions as a platform for spatiotemporal regulation of translation inhibition and RSR. Specifically, we employed stable isotope labeling of amino acids in cell culture (SILAC)-based proteomics to quantify the early (≤ 30 min) DON-induced changes in ribosome-associated proteins in RAW 264.7 murine macrophage. Changes in the proteome and phosphoproteome were determined using off-gel isoelectric focusing and titanium dioxide chromatography, respectively, in conjunction with LC-MS/MS. Following exposure of RAW 264.7 to a toxicologically relevant concentration of DON (250 ng/ml), we observed an overall decrease in translation-related proteins interacting with the ribosome, concurrently with a compensatory increase in proteins that mediate protein folding, biosynthesis, and cellular organization. Alterations in the ribosome-associated phosphoproteome reflected proteins that modulate translational and transcriptional regulation, and others that converged with signaling pathways known to overlap with phosphorylation changes characterized previously in intact RAW 264.7 cells. These results suggest that the ribosome plays a central role as a hub for association and phosphorylation of proteins involved in the coordination of early translation inhibition as well as recruitment and maintenance of stress-related proteins-both of which enable cells to adapt and respond to ribotoxin exposure. This study provides a template for elucidating the molecular mechanisms of DON and other ribosome-targeting agents.
Collapse
Affiliation(s)
- Xiao Pan
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
15
|
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Early phosphoproteomic changes in the mouse spleen during deoxynivalenol-induced ribotoxic stress. Toxicol Sci 2013; 135:129-43. [PMID: 23811945 DOI: 10.1093/toxsci/kft145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) targets the innate immune system and is of public health significance because of its frequent presence in human and animal food. DON-induced proinflammatory gene expression and apoptosis in the lymphoid tissue have been associated with a ribotoxic stress response (RSR) that involves rapid phosphorylation of mitogen-activated protein kinases (MAPKs). To better understand the relationship between protein phosphorylation and DON's immunotoxic effects, stable isotope dimethyl labeling-based proteomics in conjunction with titanium dioxide chromatography was employed to quantitatively profile the immediate (≤ 30min) phosphoproteome changes in the spleens of mice orally exposed to 5mg/kg body weight DON. A total of 90 phosphoproteins indicative of novel phosphorylation events were significantly modulated by DON. In addition to critical branches and scaffolds of MAPK signaling being affected, DON exposure also altered phosphorylation of proteins that mediate phosphatidylinositol 3-kinase/AKT pathways. Gene ontology analysis revealed that DON exposure affected biological processes such as cytoskeleton organization, regulation of apoptosis, and lymphocyte activation and development, which likely contribute to immune dysregulation associated with DON-induced RSR. Consistent with these findings, DON impacted phosphorylation of proteins within diverse immune cell populations, including monocytes, macrophages, T cells, B cells, dendritic cells, and mast cells. Fuzzy c-means clustering analysis further indicated that DON evoked several distinctive temporal profiles of regulated phosphopeptides. Overall, the findings from this investigation can serve as a template for future focused exploration and modeling of cellular responses associated with the immunotoxicity evoked by DON and other ribotoxins.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
16
|
Liu L, Martin R, Chan C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 2013; 34:540-50. [PMID: 22727944 PMCID: PMC3459302 DOI: 10.1016/j.neurobiolaging.2012.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes play a critical role in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free fatty acid, palmitic acid (PA), upregulates β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) level and amyloidogenesis in primary rat neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned media from PA-treated astrocytes upregulates BACE1 level in neurons are unknown. This study demonstrates that serine palmitoyltransferase (SPT) in the astrocytes increases ceramide levels, which enhances the release of cytokines that mediate the activation of neural and acidic sphingomyelinase (SMase) in the neurons, to propagate the deleterious effects of PA (i.e., BACE1 upregulation). In support of the relevance of SPT in AD, our laboratory recently measured and found SPT levels to be significantly upregulated in AD brains as compared with controls. Cytokines, namely tumor necrosis factor-α and interleukin-1β, released into the conditioned media of PA-treated astrocytes activate neural and acidic SMase in the neurons. Neutralizing the cytokines in the PA-treated astrocyte conditioned media reduced BACE1 upregulation. However, inhibiting SPT in the astrocytes decreased the levels of both tumor necrosis factor-α and interleukin-1β in the conditioned media, which in turn reduced the SMase activities and BACE1 level in primary neurons. Thus, our results suggest that the activation of the astrocytes by PA is mediated by SPT, and the activated astrocytes increases BACE1 level in the neurons; the latter is mediate by the SMases.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Rebecca Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
17
|
n-3 Fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. Br J Nutr 2012; 109:990-1000. [PMID: 22849952 DOI: 10.1017/s0007114512002917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fish oil supplementation during pregnancy has been associated with lower levels of cord blood IL-13, suggesting that the administration of n-3 fatty acids may attenuate the development of allergic disease. The present study aimed to investigate the mechanism by which n-3 fatty acid administration influences the production of IL-13. Pregnant BALB/c mice were fed nutritionally complete high-fat diets (15 %, w/w) with an n-3 fatty acid-enriched (DHA 1 %, w/w) or control diet (0 % DHA) immediately following delivery. Pups were exposed during suckling and weaned to the maternal diet for the remainder of the study. The production of IL-13, IL-4, IL-10 and interferon-γ from the splenocytes of ovalbumin (ova)-sensitised animals was assessed following in vitro ova stimulation or unstimulated conditions. Human T helper type 2 (Th2) cells were mitogen-stimulated in the presence or absence of DHA (10 μM) and assessed for IL-13 and IL-4 expression using intracellular flow cytometry. The influence on transcriptional activation was studied using a human IL-13 promoter reporter construct and electromobility shift assay. Ova-activated splenocytes from DHA-fed mice produced less IL-13 (57.2 (se 21.7) pg/ml) and IL-4 (7.33 (SE 3.4) pg/ml) compared with cells from the animals fed the control diet (161.5 (SE 45.0), P< 0.05; 33.2 (SE 11.8), P< 0.05). In vitro, DHA inhibited the expression of IL-13 protein from human Th2 cells as well as transcriptional activation and binding of the transcription factors cyclic AMP response element binding and activating transcription factor 2 to the human IL-13 promoter. These data indicate the potential of n-3 fatty acids to attenuate IL-13 expression, and suggest that they may subsequently reduce allergic sensitisation and the development of allergic disease.
Collapse
|
18
|
Magdalon J, Vinolo MAR, Rodrigues HG, Paschoal VA, Torres RP, Mancini-Filho J, Calder PC, Hatanaka E, Curi R. Oral Administration of Oleic or Linoleic Acids Modulates the Production of Inflammatory Mediators by Rat Macrophages. Lipids 2012; 47:803-12. [DOI: 10.1007/s11745-012-3687-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/23/2012] [Indexed: 11/30/2022]
|
19
|
Barakat LAA, Mahmoud RH. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2011; 3:411-7. [PMID: 22362450 PMCID: PMC3271396 DOI: 10.4297/najms.2011.3351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Atherosclerosis remains one of the leading causes of death all over the world. Flax, pumpkin and purslane seeds are rich sources of unsaturated fatty acids, antioxidants and fibers, known to have antiatherogenic activities. AIMS This study was to examine the efficiency of using either flax/pumpkin or purslane/pumpkin seed mixture (components of ω-3 and ω-6) on hyperlipidemia, kidney function and as immunomodulators in rats fed high cholesterol diets. MATERIALS AND METHODS 40 male albino rats were divided into four groups: control group, hypercholesterolemic rats, fed the balanced diet supplemented with cholesterol at a dose level of 2 g/100 g diet; the other two groups of animals fed the same previous hypercholesterolemic diet supplemented with either flax/pumpkin seed mixture or pumpkin/purslane seed mixture at ratio of (5/1) (ω-3 and ω-6). RESULTS The present study showed that 2% cholesterol administration caused a significant increase in total cholesterol, total lipids, and triacylglycerol in both serum and liver. Serum phospholipids, LDL-C, and atherogenic index AI also significantly increased compared to control group. Cholesterol-enriched diet significantly increased serum urea, creatinine, sodium and potassium levels as well as significantly increased serum IgG and IgM compared to healthy control. Consumption of flax/pumpkin or purslane/pumpkin seed mixtures by hypercholesterolemic rats resulted in a significantly decrement in lipid parameters and significant improvement in IgG and IgM levels as compared with hypercholesterolemic rats. CONCLUSION Our results suggests that both flax/pumpkin and purslane/pumpkin seed mixtures had anti-atherogenic hypolipidemic and immunmodulator effects which were probably mediated by unsaturated fatty acids (including alpha linolenic acid) present in seed mixture.
Collapse
Affiliation(s)
- Lamiaa A A Barakat
- Department of Biochemistry and Nutrition, Women College, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
20
|
Zhong JL, Yang L, Lü F, Xiao H, Xu R, Wang L, Zhu F, Zhang Y. UVA, UVB and UVC induce differential response signaling pathways converged on the eIF2α phosphorylation. Photochem Photobiol 2011; 87:1092-104. [PMID: 21707633 DOI: 10.1111/j.1751-1097.2011.00963.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is clear that solar UV irradiation is a crucial environmental factor resulting in skin diseases partially through activation of cell signaling toward altered gene expression and reprogrammed protein translation. Such a key translational control mechanism is executed by the eukaryotic initiation factor 2α subunit (eIF2α) and the downstream events provoked by phosphorylation of eIF2α at Ser(51) are clearly understood, but the upstream signaling mechanisms on the eIF2α-Ser(51) phosphorylation responses to different types of UV irradiations, namely UVA, UVB and UVC, are still not well elucidated. Herein, our evidence reveals that UVA, UVB and UVC all induce a dose- and time-dependent phosphorylation of eIF2α-Ser(51) through distinct signaling mechanisms. UVA-induced eIF2α phosphorylation occurs through MAPKs, including ERKs, JNKs and p38 kinase, and phosphatidylinositol (PI)-3 kinase. By contrast, UVB-induced eIF2α phosphorylation is through JNKs and p38 kinase, but not ERKs or PI-3 kinase, whereas UVC-stimulated response to eIF2α phosphorylation is via JNKs alone. Furthermore, we have revealed that ATM is involved in induction of the intracellular responses to UVA and UVB, rather than UVC. These findings demonstrate that wavelength-specific UV irradiations activate differential response signaling pathways converged on the eIF2α phosphorylation. Importantly, we also show evidence that a direct eIF2α kinase PKR is activated though phosphorylation by either RSK1 or MSK1, two downstream kinases of MAPKs/PI-3 kinase-mediated signaling pathways.
Collapse
Affiliation(s)
- Julia Li Zhong
- The Base of 111 Project for Biomechanics & Tissue Repair Engineering, College of Medical Bioengineering, University of Chongqing, Shapingba District, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kanda N, Kamata M, Tada Y, Ishikawa T, Sato S, Watanabe S. Human β-defensin-2 enhances IFN-γ and IL-10 production and suppresses IL-17 production in T cells. J Leukoc Biol 2011; 89:935-44. [PMID: 21367976 DOI: 10.1189/jlb.0111004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Psoriasis is an inflammatory dermatosis with enhanced expression of hBD-2 in keratinocytes and infiltration of cytokine-producing T cells, which in turn, up- or down-regulate hBD-2 expression. We determined the serum levels of hBD-2 and cytokines in psoriasis patients and analyzed the effects of hBD-2 on cytokine production in human peripheral blood T cells. Serum hBD-2 levels in patients were higher than those in controls and correlated with PASI, serum IFN-γ, and IL-10 levels and correlated inversely with serum IL-17 levels. IFN-γ, IL-17, IL-22, TNF-α, IL-1β, and IL-6 enhanced, and IL-10, IL-4, and IL-13 suppressed hBD-2 secretion from keratinocytes. hBD-2 enhanced secretion and mRNA levels of IFN-γ, TNF-α, IL-10, IL-1β, IL-6, and IL-22 and reduced those of IL-17 in CD3/28-stimulated T cells. These effects of hBD-2 were counteracted by PTX. hBD-2 induced phosphorylation of JNK, ERK, and Akt in T cells. Inhibitors of these signals attenuated hBD-2-induced production of IFN-γ, TNF-α, IL-10, IL-1β, IL-6, and IL-22. hBD-2 suppressed phosphorylation of STAT3 and enhanced expression of SOCS3 in CD3/28-stimulated T cells. siRNA against SOCS3 reversed hBD-2-induced suppression of IL-17 production and STAT3 phosphorylation. JNK and MEK inhibitors suppressed hBD-2-induced expression of SOCS3. In conclusion, hBD-2 may bind PTX-sensitive GPCR(s) on T cells and act as a stimulator by enhancing IFN-γ, TNF-α, IL-1β, IL-6, and IL-22 production via JNK, MEK/ERK, and PI3K/Akt and as a regulator by suppressing IL-17 production via SOCS3 or by stimulating IL-10 production.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Kobayashi-Hattori K, Amuzie CJ, Flannery BM, Pestka JJ. Body composition and hormonal effects following exposure to mycotoxin deoxynivalenol in the high-fat diet-induced obese mouse. Mol Nutr Food Res 2011; 55:1070-8. [PMID: 21538849 DOI: 10.1002/mnfr.201000640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/06/2011] [Accepted: 02/24/2011] [Indexed: 11/08/2022]
Abstract
SCOPE To characterize the effects of ingesting the common foodborne mycotoxin deoxynivalenol (DON) on body weight and composition in the high-fat (HF) diet-induced obese mice, a model of human obesity. METHODS AND RESULTS Female B6C3F1 mice were initially fed HF diets containing 45% kcal (HF45) or 60% kcal (HF60) as fat for 94 days to induce obesity. Half of each group was either continued on unamended HF diets or fed HF diets containing 10 mg/kg DON (DON-HF45 or DON-HF60) for another 54 days. Additional control mice were fed a low-fat (LF) diet containing 10% kcal as fat for the entire 148-day period. DON induced rapid decreases in body weights and fat mass, which stabilized to those of the LF control within 11 days. These effects corresponded closely to a robust transient decrease in food consumption. While lean body mass did not decline in DON-fed groups, further increases were suppressed. DON exposure reduced plasma insulin, leptin, insulin-like growth factor 1, and insulin-like growth factor acid labile subunit as well as increased hypothalamic mRNA level of the orexigenic agouti-related protein. CONCLUSION DON-mediated effects on body weight, fat mass, food intake, and hormonal levels in obese mice were consistent with a state of chronic energy restriction.
Collapse
Affiliation(s)
- Kazuo Kobayashi-Hattori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
23
|
The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr 2011; 105:1798-807. [DOI: 10.1017/s0007114510005635] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several mechanisms have been proposed for the positive health effects associated with dietary consumption of long-chain n-3 PUFA (n-3 LC-PUFA) including DHA (22 : 6n-3) and EPA (20 : 5n-3). After dietary intake, LC-PUFA are incorporated into membranes and can be converted to their corresponding N-acylethanolamines (NAE). However, little is known on the biological role of these metabolites. In the present study, we tested a series of unsaturated NAE on the lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Among the compounds tested, docosahexaenoylethanolamine (DHEA), the ethanolamide of DHA, was found to be the most potent inhibitor, inducing a dose-dependent inhibition of NO release. Immune-modulating properties of DHEA were further studied in the same cell line, demonstrating that DHEA significantly suppressed the production of monocyte chemotactic protein-1 (MCP-1), a cytokine playing a pivotal role in chronic inflammation. In LPS-stimulated mouse peritoneal macrophages, DHEA also reduced MCP-1 and NO production. Furthermore, inhibition was also found to take place at a transcriptional level, as gene expression of MCP-1 and inducible NO synthase was inhibited by DHEA. To summarise, in the present study, we showed that DHEA, a DHA-derived NAE metabolite, modulates inflammation by reducing MCP-1 and NO production and expression. These results provide new leads in molecular mechanisms by which DHA can modulate inflammatory processes.
Collapse
|
24
|
Van De Walle J, During A, Piront N, Toussaint O, Schneider YJ, Larondelle Y. Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicol In Vitro 2010; 24:1890-8. [DOI: 10.1016/j.tiv.2010.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 01/08/2023]
|
25
|
Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, Gardner EM, Fenton JI. Dietary Fish Oil Alters T Lymphocyte Cell Populations and Exacerbates Disease in a Mouse Model of Inflammatory Colitis. Cancer Res 2010; 70:7960-9. [DOI: 10.1158/0008-5472.can-10-1396] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Abstract
Consumption of n-3 polyunsaturated fatty acids (PUFAs) found in fish oil suppresses inflammatory processes making these fatty acids attractive candidates for both the prevention and amelioration of several organ-specific and systemic autoimmune diseases. Both pre-clinical and clinical studies have been conducted to determine whether fish oils containing the n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can be used in the prevention and treatment of immunoglobulin A nephropathy (IgAN) and lupus nephritis. In a toxin-induced mouse model that mimics the early stages of IgAN, n-3 PUFA consumption suppresses aberrant interleukin (IL)-6-driven IgA production and mesangial IgA immune complex deposition by impairing phosphorylation of upstream kinases and activation of transcription factors essential for IL-6 gene transcription. n-3 PUFAs can also suppress production of anti-double-stranded DNA IgG antibodies and the resultant development of lupus nephritis in the NZBW F1 mouse and related models. These effects have been linked in part to impaired expression of proinflammatory cytokines and adhesion molecules as well as increases in antioxidant enzymes in kidney and immune organs. Several recent clinical trials have provided compelling evidence that n-3 PUFA supplementation could be useful in treatment of human IgAN and lupus nephritis, although some other studies suggest such supplementation might be without benefit. Future investigations employing genomics/proteomics and novel genetically altered mice should provide further insight into how n-3 PUFAs modulate these diseases as well help to identify clinically relevant biomarkers. The latter could be employed in future well-designed, long-term clinical studies that will resolve current controversies on n-3 PUFA efficacy in autoimmune-mediated glomerulonephritis.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Kim JH, Sung NY, Raghavendran HB, Yoon Y, Song BS, Choi JI, Yoo YC, Byun MW, Hwang YJ, Lee JW. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Influence of epinastine hydrochloride, an H1-receptor antagonist, on the function of mite allergen-pulsed murine bone marrow-derived dendritic cells in vitro and in vivo. Mediators Inflamm 2009; 2009:738038. [PMID: 19381339 PMCID: PMC2667935 DOI: 10.1155/2009/738038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/14/2008] [Accepted: 01/16/2009] [Indexed: 11/17/2022] Open
Abstract
There is established concept that dendritic cells (DCs) play essential roles in the development of allergic immune responses. However, the influence of H(1) receptor antagonists on DC functions is not well defined. The aim of the present study was to examine the effect of epinastine hydrochloride (EP), the most notable histamine H(1) receptor antagonists in Japan, on Dermatophagoides farinae (Der f)-pulsed mouse bone marrow-derived DCs in vitro and in vivo. EP at more than 25 ng/mL could significantly inhibit the production of IL-6, TNF-alpha and IL-10 from Der f-pulsed DCs, which was increased by Der f challenge in vitro. On the other hand, EP increased the ability of Der f-pulsed DCs to produce IL-12. Intranasal instillation of Der f-pulsed DCs resulted in nasal eosinophilia associated with a significant increase in IL-5 levels in nasal lavage fluids. Der f-pulsed and EP-treated DCs significantly inhibited nasal eosinophila and reduced IL-5. These results indicate that EP inhibits the development of Th2 immune responses through the modulation of DC functions and results in favorable modification of clinical status of allergic diseases.
Collapse
|
29
|
Shi Y, Porter K, Parameswaran N, Bae HK, Pestka JJ. Role of GRP78/BiP degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the macrophage. Toxicol Sci 2009; 109:247-55. [PMID: 19336499 DOI: 10.1093/toxsci/kfp060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) induces systemic expression of the interleukin-6 (IL-6) and other proinflammatory cytokines in the mouse. The purpose of this study was to test the hypothesis that DON triggers an endoplasmic reticulum (ER) stress response in murine macrophages capable of driving IL-6 gene expression. DON at concentrations up 5000 ng/ml. was not cytotoxic to peritoneal cells. However, DON markedly decreased protein levels but not the mRNA levels of glucose-regulated protein (GRP) 78 (BiP), a chaperone known to mediate ER stress. Inhibitor studies suggested that DON-induced GRP78 degradation was cathepsin and calpain dependent but was proteosome-independent. RNAi-mediated knockdown of GRP78 resulted in increased IL-6 gene expression indicating a potential downregulatory role for this chaperone. GRP78 is critical to the regulation of the two transcription factors, X-box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6), which bind to cAMP-response element (CRE) and drive expression of CRE-dependent genes such as IL-6. DON exposure was found to increase IRE1alpha protein, its modified products spliced XBP1 mRNA and XBP1 protein as well as ATF6. Knockdown of ATF6 but not XBP1 partially inhibited DON-induced IL-6 expression in the macrophages. Three other trichothecenes (satratoxin G, roridin, T-2 toxin) and the ribosome inhibitory protein ricin were also found to induce GRP78 degradation suggesting that other translation inhibitors might evoke ER stress. Taken together, these data suggest that in the macrophage DON induces GRP78 degradation and evokes an ER stress response that could contribute, in part, to DON-induced IL-6 gene expression.
Collapse
Affiliation(s)
- Yuhui Shi
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|