1
|
Johnson BJ, Smith ZKF, Urso PM, Kim J. International Symposium on Ruminant Physiology: Nutrient signaling to skeletal muscle and adipose tissue. J Dairy Sci 2025:S0022-0302(25)00213-9. [PMID: 40221042 DOI: 10.3168/jds.2024-25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Accretion of key carcass tissues such as skeletal muscle and adipose tissue is a direct effect of the specific nutrients available to support the growth and development of these key tissues. While these nutrients vary greatly, many often are key regulators of important cell signaling pathways that regulate the growth and differentiation of these tissues. Postnatal skeletal muscle growth is a result of hypertrophy of the existing skeletal muscle fibers in animals. A major driver of skeletal muscle hypertrophy is protein accretion in the existing muscle fibers. This is a result of the balance between rate of protein synthesis and rate of protein degradation. Certain signaling pathways can alter the myosin heavy chain isoform (MyHC) type in postnatal skeletal muscle. Alterations in the various MyHC isoforms result in different degrees of postnatal skeletal muscle hypertrophy. An enzyme, AMP-activated protein kinase α (AMPK-α), has been shown to affect expression of MyHC depending on sources and availability of energy to the skeletal muscle. The mammalian target of rapamycin (mTOR) signaling pathway has been shown to be a critical regulator of protein synthesis in tissues such as skeletal muscle. Different components of this mTOR pathway are regulated by key nutrients such as individual amino acids. In many meat animals, such as cattle and sheep, there are different types of adipose tissue depots that grow and differentiate differently from each other. Two key types of adipose tissue in ruminants that have economic importance are subcutaneous and intramuscular adipose tissue. Many of the genes that control preadipocyte differentiation of these different adipose tissues in cattle are regulated by fatty acids circulating in plasma. It appeared that various fatty acids could affect cell signaling through a membrane bound GPR signaling pathway. These nutrients, as well as micronutrients such as chromium, all have economic viability in the cattle feeding industry.
Collapse
Affiliation(s)
- Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409.
| | - Zachary K F Smith
- Department of Animal Science, South Dakota State University, Brookings, SD, 57007
| | - Philip M Urso
- Department of Animal Science, South Dakota State University, Brookings, SD, 57007
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
2
|
Vielee ST, Isibor J, Buchanan WJ, Roof SH, Patel M, Meaza I, Williams A, Toyoda JH, Lu H, Wise SS, Kouokam JC, Young Wise J, Abouiessa AM, Cai J, Cai L, Wise JP. Employing a Toxic Aging Coin approach to assess hexavalent chromium (Cr[VI])-induced neurotoxic effects on behavior: Heads for age differences. Toxicol Appl Pharmacol 2024; 489:117007. [PMID: 38901695 PMCID: PMC11342792 DOI: 10.1016/j.taap.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
We are facing a rapidly growing geriatric population (65+) that will live for multiple decades and are challenged with environmental pollution far exceeding that of previous generations. Consequently, we currently have a poor understanding of how environmental pollution will impact geriatric health distinctly from younger populations. Few toxicology studies have considered age differences with geriatric individuals. Critically, all top ten most prevalent age-related diseases are linked to metal exposures. Hexavalent chromium [Cr(VI)] is a metal of major environmental health concern that can induce aging phenotypes and neurotoxicity. However, there are many knowledge gaps for Cr(VI) neurotoxicity, including how Cr(VI) impacts behavior. To address this, we exposed male rats across three ages (3-, 7-, and 18-months old) to Cr(VI) in drinking water (0, 0.05, 0.1 mg/L) for 90 days. These levels reflect the maximum contaminant levels determined by the World Health Organization (WHO) and the U.S. Environmental Protection Agency (US EPA). Here, we report how these Cr(VI) drinking water levels impacted rat behaviors using a battery of behavior tests, including grip strength, open field assay, elevated plus maze, Y-maze, and 3-chamber assay. We observed adult rats were the most affected age group and memory assays (spatial and social) exhibited the most significant effects. Critically, the significant effects were surprising as rats should be particularly resistant to these Cr(VI) drinking water levels due to the adjustments applied in risk assessment from rodent studies to human safety, and because rats endogenously synthesize vitamin C in their livers (vitamin C is a primary reducer of Cr[VI] to Cr[III]). Our results emphasize the need to broaden the scope of toxicology research to consider multiple life stages and suggest the current regulations for Cr(VI) in drinking water need to be revisited.
Collapse
Affiliation(s)
- Samuel T Vielee
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jessica Isibor
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - William J Buchanan
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Spencer H Roof
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Maitri Patel
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Idoia Meaza
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Aggie Williams
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer H Toyoda
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haiyan Lu
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sandra S Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - J Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jamie Young Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | - Jun Cai
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John P Wise
- Pediatric Research Institute, the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
3
|
Vielee ST, Isibor J, Buchanan WJ, Roof SH, Patel M, Meaza I, Williams A, Toyoda JH, Lu H, Wise SS, Kouokam JC, Young Wise J, Aboueissa AM, Cai J, Cai L, Wise JP. Female Rat Behavior Effects from Low Levels of Hexavalent Chromium (Cr[VI]) in Drinking Water Evaluated with a Toxic Aging Coin Approach. APPLIED SCIENCES 2024; 14:6206. [DOI: 10.3390/app14146206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
We are facing a critical aging crisis, with geriatric populations (65+) growing to unprecedented proportions and ~4 million people (a 6.5-fold increase) expected to become centenarians by 2050. This is compounded by environmental pollution, which affects individuals of all ages and contributes to age-related diseases. As we have a limited understanding of how environmental pollutants affect older populations distinctly from younger populations, these longer-lived geriatric populations present a key knowledge gap. To address this knowledge gap, we employ a “Toxic Aging Coin” approach: heads consider how age impacts chemical toxicity, and tails consider how chemicals act as gerontogens—or how they accelerate biological aging. We employed this approach to investigate hexavalent chromium (Cr[VI]) impacts on female rats exposed to 0.05 or 0.1 mg Cr(VI)/L in drinking water for 90 days; these are the maximum contaminant levels (i.e., the highest levels permitted) from the World Health Organization and U.S. Environmental Protection Agency, respectively. During exposure, rats performed a battery of behavior assays to assess grip strength, locomotor coordination, anxiety, spatial memory, sociability, and social novelty preference. We observed age differences in Cr(VI) neurotoxicity, with grip strength, locomotor function, and spatial memory in middle-aged females being particularly affected. We further compared these results in females to results in males, noting many sex differences, especially in middle-aged rats. These data emphasize the need to consider age and sex as variables in toxicology and to revisit drinking water regulations for Cr(VI).
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jessica Isibor
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - William J. Buchanan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Spencer H. Roof
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Maitri Patel
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Idoia Meaza
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Aggie Williams
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer H. Toyoda
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haiyan Lu
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sandra S. Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jamie Young Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John P. Wise
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
4
|
Mattos Pereira V, Nair S. Targeting Mitochondrial ATP-Synthase: Evolving Role of Chromium as a Regulator of Carbohydrate and Fat Metabolism. Biol Trace Elem Res 2024; 202:1318-1324. [PMID: 38133723 DOI: 10.1007/s12011-023-04017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The micronutrient trivalent chromium, 3 + (Cr(III)), is postulated to play a role in carbohydrate, lipid, and protein metabolism. Although the mechanisms by which chromium mediates its actions are largely unknown, previous studies have suggested that pharmacological doses of chromium improve cardiometabolic symptoms by augmenting carbohydrate and lipid metabolism. Activation of AMP-activated protein kinase (AMPK) was among the many mechanisms proposed to explain the salutary actions of chromium on carbohydrate metabolism. However, the molecular pathways leading to the activation of AMPK by chromium remained elusive. In an elegant series of studies, Sun and coworkers recently demonstrated that chromium augments AMPK activation by binding to the beta-subunit of ATP synthase and inhibiting its enzymatic activity. This mini-review attempts to trace the evolving understanding of the molecular mechanisms of chromium leading to the hitherto novel pathway unraveled by Sun and coworkers and its potential implication to our understanding of the biological actions of chromium.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA
| | - Sreejayan Nair
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA.
| |
Collapse
|
5
|
Komorowski JR, Ojalvo SP, Sylla S, Tastan H, Orhan C, Tuzcu M, Sahin N, Sahin K. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J Int Soc Sports Nutr 2020; 17:26. [PMID: 32460884 PMCID: PMC7251890 DOI: 10.1186/s12970-020-00355-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A previous clinical study reported that the addition of an amylopectin/chromium complex (ACr; Velositol®) to 6 g of whey protein (WP) significantly enhanced muscle protein synthesis (MPS). Branched-chain amino acids (BCAAs) are also well-known to enhance MPS. The aim of this study was to determine if the addition of ACr to BCAAs can enhance MPS and activate expression of the mammalian target of the rapamycin (mTOR) pathway compared to BCAAs and exercise alone in exercise-trained rats. METHODS Twenty-four male Wistar rats were randomly divided into three groups (n = 8 per group): (I) Exercise control, (II) Exercise plus BCAAs (0.465 g/kg BW, a 6 g human equivalent dose (HED)), and (III) Exercise plus BCAAs (0.465 g/kg BW) and ACr (0.155 g/kg BW, a 2 g HED). All animals were trained with treadmill exercise for 10 days. On the day of the single-dose experiment, rats were exercised at 26 m/min for 2 h and then fed, via oral gavage, study product. One hour after the consumption of study product, rats were injected with a bolus dose (250 mg/kg BW, 25 g/L) of phenylalanine labeled with deuterium to measure the fractional rate of protein synthesis (FSR). Ten minutes later, muscle tissue samples were taken to determine MPS measured by FSR and the phosphorylation of proteins involved in the mTOR pathway including mTOR, S6K1, and 4E-BP1. RESULTS ACr combined with BCAAs increased MPS by 71% compared to the exercise control group, while BCAAs alone increased MPS by 57% over control (p < 0.05). ACr plus BCAAs significantly enhanced phosphorylation of mTOR, S6K1 and 4E-BP1 compared to exercise control rats (p < 0.05). The addition of ACr to BCAAs enhanced insulin levels, mTOR and S6K1 phosphorylation compared to BCAAs alone (p < 0.05). Serum insulin concentration was positively correlated with the levels of mTOR, (r = 0.923), S6K1 (r = 0.814) and 4E-BP1 (r = 0.953). CONCLUSIONS In conclusion, the results of this study provide evidence that the addition of ACr to BCAAs significantly enhances exercise-induced MPS, and the phosphorylation of mTOR signaling proteins, compared to BCAAs and exercise alone.
Collapse
Affiliation(s)
- James R Komorowski
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA.
| | - Sara Perez Ojalvo
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Sarah Sylla
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Hakki Tastan
- Division of Biology, Faculty of Science, Gazi University, 06100, Ankara, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
6
|
AHCC Supplementation Attenuates Muscle Atrophy via Akt Activation in Hindlimb-suspended Rat. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
De Naeyer H, Lamon S, Russell AP, Everaert I, De Spaey A, Jamart C, Vanheel B, Taes Y, Derave W. Effects of tail suspension on serum testosterone and molecular targets regulating muscle mass. Muscle Nerve 2015; 52:278-88. [PMID: 25524358 DOI: 10.1002/mus.24542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 11/07/2022]
Abstract
INTRODUCTION The contribution of reduced testosterone levels to tail suspension (TS)-induced muscle atrophy remains equivocal. The molecular mechanism by which testosterone regulates muscle mass during TS has not been investigated. METHODS Effects of TS on serum testosterone levels, muscle mass, and expression of muscle atrophy- and hypertrophy-inducing targets were measured in soleus (SOL) and extensor digitorum longus (EDL) muscles after testosterone administration during 1, 5, and 14 days of TS in male mice. RESULTS TS produced an increase followed by a transient drop in testosterone levels. Muscle atrophy was associated with downregulation of Igf1 and upregulation of Mstn, Redd1, Atrogin-1, and MuRF1 mRNA with clear differences in Igf1, Mstn, and MAFbx/Atrogin-1 gene expression between SOL and EDL. Testosterone supplementation did not affect muscle mass or protein expression levels during TS. Conclusions The known anabolic effects of testosterone are not sufficient to ameliorate loss of muscle mass during TS.
Collapse
Affiliation(s)
- Hélène De Naeyer
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Victoria, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Victoria, Australia
| | - Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Annelies De Spaey
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Cécile Jamart
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bert Vanheel
- Department of Basic Medical Sciences, Division of Physiology, Ghent University, Ghent, Belgium
| | - Youri Taes
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Peng M, Yang X. Controlling diabetes by chromium complexes: The role of the ligands. J Inorg Biochem 2015; 146:97-103. [DOI: 10.1016/j.jinorgbio.2015.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022]
|
10
|
Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev 2013; 26:149-65. [PMID: 23930668 DOI: 10.1017/s0954422413000115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Periods of immobilisation are often associated with pathologies and/or ageing. These periods of muscle disuse induce muscle atrophy which could worsen the pathology or elderly frailty. If muscle mass loss has positive effects in the short term, a sustained/uncontrolled muscle mass loss is deleterious for health. Muscle mass recovery following immobilisation-induced atrophy could be critical, particularly when it is uncompleted as observed during ageing. Exercise, the best way to recover muscle mass, is not always applicable. So, other approaches such as nutritional strategies are needed to limit muscle wasting and to improve muscle mass recovery in such situations. The present review discusses mechanisms involved in muscle atrophy following disuse and during recovery and emphasises the effect of age in these mechanisms. In addition, the efficiency of nutritional strategies proposed to limit muscle mass loss during disuse and to improve protein gain during recovery (leucine supplementation, whey proteins, antioxidants and anti-inflammatory compounds, energy intake) is also discussed.
Collapse
|
11
|
Acupuncture ameliorated skeletal muscle atrophy induced by hindlimb suspension in mice. Biochem Biophys Res Commun 2011; 410:434-9. [PMID: 21672518 DOI: 10.1016/j.bbrc.2011.05.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 11/24/2022]
Abstract
Preventing skeletal muscle atrophy is critical for maintaining quality of life, but it is often a challenging goal for the elderly and patients with severe conditions. We hypothesized that acupuncture in place of exercise training is an alternative non-pharmacological intervention that can help to prevent muscle atrophy. To elucidate the effects of acupuncture on skeletal muscle atrophy caused by hindlimb suspension (HS), we performed acupuncture on mice according to two different methods: acupuncture with electrical stimulation (EA: electroacupuncture) and without electrical stimulation (MA: manual acupuncture). A needle was retained in the gastrocnemius muscle for 30 min every day for 2 weeks in the EA and MA groups. In the EA group, 30 min of repetitive electrical stimulation (1 Hz, 1 ms pulse width, 6.5 mA intensity) was also applied. HS significantly reduced muscle mass and the cross-sectional area of the soleus muscles. This HS-induced reduction was significantly improved in the EA group, although the level of improvement remained insufficient when compared with the control group. We found that the mRNA expression levels of atrogin-1 and MuRF1, which play a principal role in muscle-specific degradation as E3 ubiquitin ligases, were significantly increased in the HS group compared to the control group. EA and MA reduced the HS-induced upregulation of atrogin-1 (p<0.01 in EA and MA) and MuRF1 (p<0.01 in EA) mRNAs. We also found that the expression levels of PI3K, Akt1, TRPV4, adenosine A1 receptor, myostatin, and SIRT1 mRNAs tended to be increased by HS. EA and MA further increased the HS-induced upregulation of Akt1 (p<0.05 in MA) and TRPV4 (p<0.05 in MA) mRNAs. We concluded that acupuncture partially prevented skeletal muscle atrophy. This effect might be due to an increase in protein synthesis and a decrease in protein degradation.
Collapse
|
12
|
Kandadi MR, Unnikrishnan MK, Warrier AKS, Du M, Ren J, Sreejayan N. Chromium (D-phenylalanine)3 alleviates high fat-induced insulin resistance and lipid abnormalities. J Inorg Biochem 2011; 105:58-62. [PMID: 21134603 DOI: 10.1016/j.jinorgbio.2010.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 11/19/2022]
Abstract
High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (D-phenylalanine)(3) [Cr(D-Phe)(3)] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(D-Phe)(3) (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[(3)H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-(32)P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)(3). These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling.
Collapse
Affiliation(s)
- Machender Reddy Kandadi
- School of Pharmacy, Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mukai R, Nakao R, Yamamoto H, Nikawa T, Takeda E, Terao J. Quercetin prevents unloading-derived disused muscle atrophy by attenuating the induction of ubiquitin ligases in tail-suspension mice. JOURNAL OF NATURAL PRODUCTS 2010; 73:1708-10. [PMID: 20853873 DOI: 10.1021/np100240y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effects of quercetin (1) were investigated on disused muscle atrophy using mice that underwent tail suspension. Periodic injection of 1 into the gastrocnemius muscle suppressed muscle weight loss and ubiquitin ligase expression. Compound 1 reduced the enhancement of lipid peroxidation in the muscle. Injection of N-acetyl-l-cysteine, but not flavone (2), also prevented muscle weight loss and enhancement of lipid peroxidation. These findings demonstrate that 1 can prevent disused muscle atrophy by attenuating the expression of ubiquitin ligases and that such prevention originates from its antioxidant activity.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
14
|
You JS, Park MN, Song W, Lee YS. Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl Physiol Nutr Metab 2010; 35:310-8. [PMID: 20555375 DOI: 10.1139/h10-022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reduced muscle activity leads to impaired insulin signaling, which leads to loss of contractile proteins and muscle mass via the Akt pathway. Dietary fish oil rich in long chain n-3 polyunsaturated fatty acids has been shown to prevent insulin signaling resistance in skeletal muscle. This study was conducted to elucidate the protective effect of dietary fish oil on disuse-induced perturbations in insulin signaling and soleus muscle atrophy. To accomplish this, rats were fed a corn-oil- (control) or fish-oil-based diet for 2 weeks, and then subjected to hindlimb immobilization while still receiving the same diets. After 10 days of immobilization, the soleus muscle mass and myosin heavy chain level had markedly decreased; however, these losses were significantly suppressed in rats fed dietary fish oil, compared with the control group. Dietary fish oil nearly completely attenuated the disturbances in activation of the Akt and p70 S6 kinase proteins, as well as the gene expression of muscle-specific E3 ubiquitin ligases (muscle atrophy F-box and muscle RING finger 1). However, insulin receptor substrate 1 associated with the p85 subunit of phosphoinositide 3-kinase was not altered during immobilization. Dietary fish oil also inhibited alterations in the gene expression of cyclooxygenase-2 and inducible nitric oxide synthase, with no additional observation of oxidative stress. Collectively, these findings indicate that dietary fish oil prior to and during immobilization may alleviate the immobilization-induced soleus muscle atrophy, at least in part, via the Akt pathway through E3 ubiquitin ligases and p70s6k.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|