1
|
Kim DY, Oh S, Ko HS, Park S, Jeon YJ, Kim J, Yang DK, Park KW. Sesamolin suppresses adipocyte differentiation through Keap1-dependent Nrf2 activation in adipocytes. Nutr Res 2024; 128:14-23. [PMID: 39002358 DOI: 10.1016/j.nutres.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/15/2024]
Abstract
Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Da-Young Kim
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hae-Sun Ko
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Sanghee Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
2
|
Gina NNT, Kuo JL, Wu ML, Chuang SM. Sesamin and sesamolin potentially inhibit adipogenesis through downregulating the peroxisome proliferator-activated receptor γ protein expression and activity in 3T3-L1 cells. Nutr Res 2024; 123:4-17. [PMID: 38228077 DOI: 10.1016/j.nutres.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Sesamin and sesamolin are major sesame lignans that have demonstrated anti-inflammatory, anticancer, and neuroprotective properties and potential benefits in the liver, cardiovascular diseases, and metabolic syndrome. However, despite previous research on their antiobesity effects and underlying mechanisms, a comprehensive investigation of these aspects is still lacking. In this study, we evaluated the regulatory effects of 20 to 80 µM sesamin and sesamolin on adipogenesis in vitro using 3T3-L1 cells as a model cell line. We hypothesized that the lignans would inhibit adipogenic differentiation in 3T3-L1 cells through the regulation of peroxisome proliferator-activated receptor γ (PPARγ). Our data indicate that sesamin and sesamolin inhibited the adipogenic differentiation of 3T3-L1 cells by dose-dependently decreasing lipid accumulation and triglyceride formation. Sesamin and sesamolin reduced the mRNA and protein expression of the adipogenesis-related transcription factors, PPARγ and CCAAT/enhancer-binding protein α, leading to the dose-dependent downregulations of their downstream targets, fatty acid binding protein 4, hormone-sensitive lipase, lipoprotein lipase, and glucose transporter 4. In addition, glucose uptake was dose-dependently attenuated by sesamin and sesamolin in both differentiated 3T3-L1 cells and HepG2 cells. Interestingly, our results suggested that sesamin and sesamolin might directly bind to PPARγ to inhibit its transcriptional activity. Finally, sesamin and sesamolin decreased the phosphorylation of 3 mitogen-activated protein kinase signaling components in differentiated 3T3-L1 cells. Taken together, our findings suggest that sesamin and sesamolin may exhibit antiobesity effects by potentially downregulating PPARγ and its downstream genes through the mitogen-activated protein kinase signaling pathway, offering important insights into the molecular mechanisms underlying the potential antiobesity effects of sesamin and sesamolin.
Collapse
Affiliation(s)
- Nelma Nyvonne Tiqu Gina
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan
| | - Jui-Ling Kuo
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan
| | - Mei-Li Wu
- Food Science Department, National Pingtung University of Science and Technology, Pingtung 91012, Taiwan.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Department of Law, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway. Pharmacol Res 2022; 184:106461. [PMID: 36152739 DOI: 10.1016/j.phrs.2022.106461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/β-catenin signaling pathway. The activation of Wnt/β-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor β-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/β-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/β-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.
Collapse
|
4
|
A Comprehensive Review on Distribution, Pharmacological Properties, and Mechanisms of Action of Sesamin. J CHEM-NY 2022. [DOI: 10.1155/2022/4236525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sesamin is a kind of fat-soluble lignan extracted from sesame seeds or other plants. It has attracted more and more attention because of its extensive pharmacological activities. In this study, we systematically summarized the pharmacological activities of sesamin including antioxidant, anti-inflammatory, anticancer, protection of liver and kidney, prevention of diabetes, hypertension, and atherosclerosis. Studies focus on the abilities of sesamin to attenuate oxidative stress by reducing the levels of ROS and MDA, to inhibit the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, etc.), and to induce apoptosis and autophagy in cancer cells through a variety of signaling pathways such as NF-κB, JNK, p38 MAPK, PI3K/AKT, caspase-3, and p53. By inhibiting the production of ROS, sesamin can also enhance the biological activities of NO in blood vessels, improve endothelial dysfunction and hypertension, and change the process of atherosclerotic lesion formation. In line with this, the various pharmacological properties of sesamin have been discussed in this review so that we can have a deeper understanding of the pharmacological activities of sesamin and clear the future development direction of sesamin.
Collapse
|
5
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Majdalawieh AF, Yousef SM, Abu-Yousef IA, Nasrallah GK. Immunomodulatory and anti-inflammatory effects of sesamin: mechanisms of action and future directions. Crit Rev Food Sci Nutr 2021; 62:5081-5112. [PMID: 33544009 DOI: 10.1080/10408398.2021.1881438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with the development and progression of various disorders including atherosclerosis, diabetes mellitus and cancer. Sesamin, a fat-soluble lignan derived from Sesamum indicum seeds and oil, has received increased attention due to its wide array of pharmacological properties including its immunomodulatory and anti-inflammatory potential. To date, no review has been conducted to summarize or analyze the immunomodulatory and anti-inflammatory roles of sesamin. Herein, we provide a comprehensive review of experimental findings that were reported with regards to the ability of sesamin to modulate inflammation, cellular and humoral adaptive immune responses and Th1/Th2 paradigm. The potential influence of sesamin on the cytotoxic activity of NK cells against cancer cells is also highlighted. The molecular mechanisms and the signal transduction pathways underlying such effects are underscored. The metabolism, pharmacokinetics, absorption, tissue distribution and bioavailability of sesamin in different species, including humans, are reviewed. Moreover, we propose future preclinical and clinical investigations to further validate the potential preventive and/or therapeutic efficacy of sesamin against various immune-related and inflammatory conditions. We anticipate that sesamin may be employed in future therapeutic regimens to enhance the efficacy of treatment and dampen the adverse effects of synthetic chemical drugs currently used to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Majdalawieh A, Yousef S, Abu-Yousef I. Potential immunomodulatory role of sesamin in combating immune dysregulation associated with COVID-19. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.326096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
8
|
Dalibalta S, Majdalawieh AF, Manjikian H. Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharm J 2020; 28:1276-1289. [PMID: 33132721 PMCID: PMC7584802 DOI: 10.1016/j.jsps.2020.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023] Open
Abstract
Sesamin, a major lignin isolated from sesame (Sesamum indicum) seeds and sesame oil, is known to possess antioxidant and anti-inflammatory properties. Several studies have revealed that oxidative stress and inflammation play a major role in a variety of cardiovascular diseases (CVDs). This comprehensive review summarizes the evidence on the effects of sesamin on CVD and its risk factors, principally due to its antioxidant properties. Specifically, this review highlights the mechanisms underlying the anti-hypertensive, anti-atherogenic, anti-thrombotic, anti-diabetic, and anti-obesity, lipolytic effects of sesamin both in vivo and in vitro, and identifies the signaling pathways targeted by sesamin and its metabolites. The data indicates that RAS/MAPK, PI3K/AKT, ERK1/2, p38, p53, IL-6, TNFα, and NF-κB signaling networks are all involved in moderating the various effects of sesamin on CVD and its risk factors. In conclusion, the experimental evidence suggesting that sesamin can reduce CVD risk is convincing. Thus, sesamin can be potentially useful as an adjuvant therapeutic agent to combat CVD and its multitude of risk factors.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amin F. Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Herak Manjikian
- Department of Biology, Chemistry, and Environmental Sciences, Faculty of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Behl T, Bungau S, Kumar K, Zengin G, Khan F, Kumar A, Kaur R, Venkatachalam T, Tit DM, Vesa CM, Barsan G, Mosteanu DE. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed Pharmacother 2020; 130:110714. [PMID: 34321158 DOI: 10.1016/j.biopha.2020.110714] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Numerous epidemiological and clinical studies demonstrate the beneficial effects of naturally occurring, polyphenol supplementations, on cardiovascular system. The present review emphasizes on the risk factors associated with cardiovascular disorders (involving heart and blood vessels), and overview of preclinical and clinical trials on polyphenols for the treatment of cardiovascular diseases. The review collaborates PUBMED, Google Scholar and Research gate databases, which were explored using keywords and their combinations such as polyphenols, cardiovascular disease, flavonoids, atherosclerosis, cardiovascular risk factors and several others, to create an eclectic manuscript. The potency and efficacy of these polyphenols are mainly depending upon the amount of consumption and bioavailability. Recent data showed that polyphenols also exert beneficial actions on vascular system by blocking platelet aggregation and oxidation of low-density lipoprotein (LDL), ameliorating endothelial dysfunction, reducing blood pressure, improving antioxidant defenses and alleviating inflammatory responses. Several studies evidently support the cardioprotective actions mediated by polyphenols, however, some studies or long-term follow-up of human studies, did not demonstrate decisive outcomes because of variations in dose regimen and lack of appropriate controls. Therefore, more data is required to explore the therapeutic benefits of bioactive compounds as a preventive therapy for CVDs.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania.
| | - Keshav Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., Oradea, Romania
| | - Ghita Barsan
- "Nicolae Balcescu" Land Force Academy, Sibiu, Romania
| | | |
Collapse
|
10
|
Yang J, Peng S, Zhang B, Houten S, Schadt E, Zhu J, Suh Y, Tu Z. Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience 2020; 42:353-372. [PMID: 31637571 PMCID: PMC7031474 DOI: 10.1007/s11357-019-00106-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
A key goal of geroscience research is to identify effective interventions to extend human healthspan, the years of healthy life. Currently, majority of the geroprotectors are found by screening compounds in model organisms; whether they will be effective in humans is largely unknown. Here we present a new strategy called ANDRU (aging network based drug discovery) to help the discovery of human geroprotectors. It first identifies human aging subnetworks that putatively function at the interface between aging and age-related diseases; it then screens for pharmacological interventions that may "reverse" the age-associated transcriptional changes occurred in these subnetworks. We applied ANDRU to human adipose gene expression data from the Genotype Tissue Expression (GTEx) project. For the top 31 identified compounds, 19 of them showed at least some evidence supporting their function in improving metabolic traits or lifespan, which include type 2 diabetes drugs such as pioglitazone. As the query aging genes were refined to the ones with more intimate links to diseases, ANDRU identified more meaningful drug hits than the general approach without considering the underlying network structures. In summary, ANDRU represents a promising human data-driven strategy that may speed up the discovery of interventions to extend human healthspan.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Sander Houten
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Eric Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, New York City, USA
- Department of Medicine Endocrinology, Albert Einstein College of Medicine, New York, New York City, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA.
| |
Collapse
|
11
|
Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS One 2017; 12:e0170077. [PMID: 28103258 PMCID: PMC5245904 DOI: 10.1371/journal.pone.0170077] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/28/2016] [Indexed: 12/25/2022] Open
Abstract
Propolis is a bee product that has been extensively used in alternative medicine and recently has gained interest on a global scale as an essential ingredient of healthy foods and cosmetics. Propolis is also considered to improve human health and to prevent diseases such as inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora alignment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalcoholic extracts. Amongst them, nine phenolic compounds are herein reported for the first time in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling eight additional newly reported compounds. The antioxidant activity study of the propolis samples verified the potential of these extracts to effectively scavenge radicals, with the extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin.
Collapse
|
12
|
Zanella I, Biasiotto G, Holm F, di Lorenzo D. Cereal Lignans, Natural Compounds of Interest for Human Health? Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cereals are suggested to be the most important sources of lignan in the diets of western populations. Recent epidemiological studies show that European subpopulations in which the major source of lignans are cereals, display lower disease frequency regarding metabolic and cardiovascular diseases. The biological mechanisms of lignan are several. Beyond their antioxidant and anti-inflammatory actions at nutritional doses some lignans regulate the activity of specific nuclear receptors (NRs), such as the estrogen receptors (ERs), and also NRs that are central switches in glucose and fatty acid metabolism such as PPARα, PPARγ and LXRs, highlighting them as selective nuclear receptor modulators (SNRMs). These include enterodiol (END) and enterolactone (ENL), the metabolites produced by the gut microbiota from food lignans. The available knowledge suggests that given some additional research it should be possible to make ‘function' claims for a regular intake of lignans-rich foods related to maintaining a healthy metabolism.
Collapse
Affiliation(s)
- Isabella Zanella
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgio Biasiotto
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Finn Holm
- Foodgroup Denmark, Rugårdsvej 14 A1, Dk-8400 Ebeltoft, Denmark
| | - Diego di Lorenzo
- Laboratory of Biotechnology, Civic Hospital of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans. J Ginseng Res 2016; 41:257-267. [PMID: 28701865 PMCID: PMC5489751 DOI: 10.1016/j.jgr.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 01/11/2023] Open
Abstract
Background Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with 10 μg/mL of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment downregulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype γ (PPARγ) and CCAAT/enhancer-binding protein-alpha (C/EBPα) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of PPARγ and C/EBPα, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.
Collapse
|
14
|
Tutino V, Orlando A, Russo F, Notarnicola M. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line. J Cell Physiol 2016; 231:483-9. [PMID: 26189725 DOI: 10.1002/jcp.25094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022]
Abstract
The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Bari, Italy
| |
Collapse
|
15
|
Grootaert C, Kamiloglu S, Capanoglu E, Van Camp J. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health. Nutrients 2015; 7:9229-55. [PMID: 26569293 PMCID: PMC4663590 DOI: 10.3390/nu7115462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| | - Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| |
Collapse
|
16
|
Freise C, Sommer K, Querfeld U. Protective effects of the polyphenols (+)-episesamin and sesamin against PDGF-BB-induced activation of vascular smooth muscle cells are mediated by induction of haem oxygenase-1 and inhibition of mitogenic signalling. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira MB, Gouveia CH, Bianco AC, Kapiloff MS, Balkan W, Hare JM. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest 2015; 125:1679-91. [PMID: 25798618 DOI: 10.1172/jci73780] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/06/2015] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase-deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase-deficient MSCs exhibited equivalent PPARγ expression; however, S-nitrosylation of PPARγ was elevated in S-nitrosoglutathione reductase-deficient MSCs, diminishing binding to its downstream target fatty acid-binding protein 4 (FABP4). We further identified Cys 139 of PPARγ as an S-nitrosylation site and demonstrated that S-nitrosylation of PPARγ inhibits its transcriptional activity, suggesting a feedback regulation of PPARγ transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase-dependent modification of PPARγ alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis.
Collapse
|
18
|
Baez MC. Pharmacological treatment of atherosclerosis: an unresolved issue. Acta Physiol (Oxf) 2015; 213:554-5. [PMID: 25565359 DOI: 10.1111/apha.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. C. Baez
- Instituto de Investigación en Ciencias de la Salud Humana (IICSHUM); Universidad Nacional de La Rioja; La Rioja Argentina
- Cátedra de Física Biomédica; Facultad de Ciencias Médicas; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
19
|
Freise C, Querfeld U. The lignan (+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-ĸB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol (Oxf) 2015; 213:642-52. [PMID: 25267105 DOI: 10.1111/apha.12400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
AIM Activation of vascular smooth muscle cells (VSMC), a key event in the pathogenesis of atherosclerosis, is triggered by inflammatory stimuli such as tumour necrosis factor-alpha (TNF-α) causing a mitogenic VSMC response. The polyphenol (+)-episesamin (ES) was shown to counteract TNF-α-induced effects, for example in macrophages. Aiming for novel therapeutic options, we here investigated whether ES protects VSMC from TNF-α-induced growth and migration, which both contribute to the onset and progression of atherosclerosis. METHODS Human and murine VSMC were treated with combinations of ES and TNF-α. Expressions of mRNA were analyzed by RT-PCR. Enzymatic activities and proliferation were determined by specific substrate assays. Cell signalling was analyzed by Western blot and reporter gene assays. Migration was assessed by wound healing assays. RESULTS ES at 1-10 μm reduced basal and TNF-α-induced VSMC proliferation and migration due to impaired activation of extracellular signal-regulated kinases (ERK)1/2, Akt (protein kinase B), nuclear factor-kappa B (NF-ĸB) and vascular cell adhesion molecule (VCAM)-1. This was accompanied by reduced expression and secretion of matrix metalloproteinases (MMP)-2/-9, which are known to promote VSMC migration. Specific inhibitors of Akt, NF-ĸB and MMP-2/-9 reduced TNF-α-induced VSMC proliferation, confirming ES-specific effects. Besides, ES reduced TNF-α- and H₂O₂ -induced oxidative stress and in parallel induces anti-inflammatory haem oxygenase (HO)-1 expression. CONCLUSION ES interferes with inflammation-associated VSMC activation and subsequent decreased proliferation and migration due to anti-oxidative properties and impaired activation of NF-ĸB, known contributors to atherogenesis. These results suggest ES as a complemental treatment of VSMC specific vascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- C. Freise
- Department of Pediatric Nephrology and Center for Cardiovascular Research; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| | - U. Querfeld
- Department of Pediatric Nephrology; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| |
Collapse
|
20
|
Beg M, Chauhan P, Varshney S, Shankar K, Rajan S, Saini D, Srivastava MN, Yadav PP, Gaikwad AN. A withanolide coagulin-L inhibits adipogenesis modulating Wnt/β-catenin pathway and cell cycle in mitotic clonal expansion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:406-414. [PMID: 24252344 DOI: 10.1016/j.phymed.2013.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
Abstract
Obesity is a result of adipocyte hypertrophy followed by hyperplasia. It is a risk factor for several metabolic disorders such as dyslipidemia, type-2 diabetes, hypertension, and cardiovascular diseases. Coagulanolides, particularly coagulin-L isolated from W. coagulan has earlier been reported for anti-hyperglycemic activity. In this study, we investigated the effect of coagulin-L on in vitro models of adipocyte differentiation including 3T3-L1 pre-adipocyte, mouse stromal mesenchymal C3H10T1/2 cells and bone marrow derived human mesenchymal stem cells (hMSCs). Our results showed that, coagulin-L reduces the expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), the major transcription factors orchestrating adipocyte differentiation. Detailed analysis further proved that early exposure of coagulin-L is sufficient to cause significant inhibition during adipogenesis. Coagulin-L inhibited mitotic clonal expansion (MCE) by delayed entry in G1 to S phase transition and S-phase arrest. This MCE blockade was caused apparently by decreased phosphorylation of C/EBPβ, modulation in expression of cell cycle regulatory proteins, and upregulation of Wnt/β-catenin pathway, the early stage regulatory proteins of adipogenic induction. Taken together all evidences, a known anti-hyperglycemic agent coagulin-L has shown potential to inhibit adipogenesis significantly, which can be therapeutically exploited for treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Parul Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Deepika Saini
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - M N Srivastava
- Division of Botany, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem P Yadav
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|