1
|
Xie X, Liao Y, Lin Z, Luo H, Wei G, Huang N, Li Y, Chen J, Su Z, Yu X, Chen L, Liu Y. Patchouli alcohol alleviates metabolic dysfunction-associated steatohepatitis via inhibiting mitochondria-associated endoplasmic reticulum membrane disruption-induced hepatic steatosis and inflammation in rats. Int Immunopharmacol 2024; 138:112634. [PMID: 38971107 DOI: 10.1016/j.intimp.2024.112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by abnormal hepatic steatosis and inflammation. Previous studies have shown that Patchouli alcohol (PA), the primary component of Pogostemonis Herba, can alleviate digestive system diseases. However, its protection against MASH remains unclear. This study explored the protective effects and underlying mechanism of PA against high-fat diet-induced MASH in rats. Results showed that PA considerably reduced body weight, epididymal fat, and liver index and attenuated liver histological injury in MASH rats. PA alleviated hepatic injury by inhibiting steatosis and inflammation. These effects are associated with the improvement of SREBP-1c- and PPARα-mediated lipid metabolism and inhibition of the STING-signaling pathway-mediated inflammatory response. Moreover, PA-inhibited hepatic endoplasmic reticulum (ER) stress and mitochondrial dysfunction, reducing SREBP-1c and STING expressions and enhance PPARα expression. PA treatment had the strongest effect on the regulation of mitogen fusion protein 2 (Mfn2) in inhibiting mitochondrial dysfunction. Mfn2 is an important structural protein for binding ERs and mitochondria to form mitochondria-associated ER membranes (MAMs). MASH-mediated disruption of MAMs was inhibited after PA treatment-induced Mfn2 activation. Therefore, the pharmacological effect of PA on MASH is mainly attributed to the inhibition of MAM disruption-induced hepatic steatosis and inflammation. The findings of this study may have implications for MASH treatment that do not neglect the role of Mfn2-mediated MAMs.
Collapse
Affiliation(s)
- Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zixin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huijuan Luo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Yu
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Pharmaceutical Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
2
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
3
|
Huang SM, Hsieh CY, Ting JU, De Castro-Cruz KA, Wang CC, Lee CJ, Tsai PW. Anti-COVID-19, Anti-Inflammatory, and Anti-Osteoarthritis Activities of Sesamin from Sesamum indicum L. Bioengineering (Basel) 2023; 10:1263. [PMID: 38002386 PMCID: PMC10669907 DOI: 10.3390/bioengineering10111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
During the COVID-19 (coronavirus disease 2019) outbreak, many people were infected, and the symptoms may persist for several weeks or months for recovering patients. This is also known as "long COVID" and includes symptoms such as fatigue, joint pain, muscle pain, et cetera. The COVID-19 virus may trigger hyper-inflammation associated with cytokine levels in the body. COVID-19 can trigger inflammation in the joints, which can lead to osteoarthritis (OA), while long-term COVID-19 symptoms may lead to joint damage and other inflammation problems. According to several studies, sesame has potent anti-inflammatory properties due to its major constituent, sesamin. This study examined sesamin's anti-inflammatory, anti-osteoarthritis, and anti-COVID-19 effects. Moreover, in vivo and in vitro assays were used to determine sesamin's anti-inflammatory activity against the RAW264.7 and SW1353 cell lines. Sesamin had a dose-dependent effect (20 mg/kg) in a monoiodoacetic acid (MIA)-induced osteoarthritis rat model. Sesamin reduced paw swelling and joint discomfort. In addition, the findings indicated that sesamin suppressed the expression of iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) in the RAW264.7 cell line within the concentration range of 6.25-50 μM. Furthermore, sesamin also had a suppressive effect on MMP (matrix metalloproteinase) expression in chondrocytes and the SW1353 cell line within the same concentration range of 6.25-50 μM. To examine the anti-viral activity, an in silico analysis was performed to evaluate sesamin's binding affinity with SARS-CoV-2 RdRp (severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase) and human ACE2 (angiotensin-converting enzyme 2). Compared to the controls, sesamin exhibited strong binding affinities towards SARS-CoV-2 RdRp and human ACE2. Furthermore, sesamin had a higher binding affinity for the ACE2 target protein. This study suggests that sesamin shows potential anti-SARS-CoV-2 activity for drug development.
Collapse
Affiliation(s)
- Shu-Ming Huang
- Department of Nutrition, College of Medical and Health Care, Hungkuang University, Taichung 433, Taiwan;
- Department of Nutrition, Nantou Hospital of Ministry of Health and Welfare, Nantou 540, Taiwan
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-C.W.)
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jasmine U. Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, Philippines;
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines;
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-C.W.)
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (C.-C.W.)
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| |
Collapse
|
4
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, Brenner DA, Kisseleva T. The Origin and Fate of Liver Myofibroblasts. Cell Mol Gastroenterol Hepatol 2023; 17:93-106. [PMID: 37743012 PMCID: PMC10665929 DOI: 10.1016/j.jcmgh.2023.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Wonseok Lee
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Kevin Lam
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Karin Diggle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
5
|
Li Y, Lv M, Shen M, Gu X, Zhang L, Liu X, Chen J, Gong L, Zuo Z. Identification of 3H-benzo[b] [1,4] diazepine derivatives as PPARα agonists by in silico studies and biochemical evaluation. J Biomol Struct Dyn 2023; 42:10256-10271. [PMID: 37702197 DOI: 10.1080/07391102.2023.2256867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, whose pathologic features include dysregulated glucose homeostasis and lipid accumulation. Peroxisome proliferators-activated receptor α (PPARα) is a key regulator of fatty acid metabolism and ketogenesis due to its regulatory pathways involve activating fatty acid uptake, accelerating fatty acid oxidation, inhibiting gluconeogenesis, and suppressing inflammation and fibrosis. Therefore, PPARα is considered as a potential target for the treatment of NAFLD and some agonists have entered clinical trials, which drove us to discover more novel PPARα agonists. In current work, new 3H-benzo[b] [1,4] diazepine PPARα agonists were identified from the ChemDiv database by pharmacophore modeling, molecular docking, derivative structure search, and bioassays, where compound LY-2 and its derivatives (LY-10∼LY-19) were discovered to promote the expression of PPARα downstream gene, carnitine palmitoyl transterase-1 α (cpt1α). Among these active compounds, the EC50 value of LY-2 against increasing cpt1α was 2.169 μΜ. Furthermore, the effect of LY-2 on cpt1α was weakened when PPARα knock down, which confirmed that it is a PPARα agonist again. Finally, the results from molecular dynamics simulations and binding free energy calculations showed that π-π stacking and hydrogen bonding interactions played key roles in the binding of LY-2 and PPARα protein and their complex maintained a stable structure to facilitate LY-2 to have a better binding affinity with PPARα protein. Taken together, compound LY-2 might be a novel lead compound for the development of potent PPARα agonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yue Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mengjia Lv
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
6
|
Kosmalski M, Frankowski R, Deska K, Różycka-Kosmalska M, Pietras T. Exploring the Impact of Nutrition on Non-Alcoholic Fatty Liver Disease Management: Unveiling the Roles of Various Foods, Food Components, and Compounds. Nutrients 2023; 15:2838. [PMID: 37447164 DOI: 10.3390/nu15132838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
There is a need to introduce standardized treatment options for non-alcoholic fatty liver disease (NAFLD) due to its global prevalence and the complications of this disease. Many studies have revealed that food-derived substances may be beneficial in dealing with this disease. Therefore, this review aims to evaluate the recently published studies on the food-derived treatment options for NAFLD. A comprehensive search of the PubMed database using keywords such as "NAFLD", "nutrition", "food", "derived", "therapy", and "guidelines" yielded 219 relevant papers for our analysis, published from 2004 to 2023. The results show the significant benefits of food-derived treatment in NAFLD therapy, including improvements in liver histology, hepatic fat amounts, anthropometric measures, lipid profile, and other metabolic measures. The availability of the substances discussed makes them a significant adjuvant in the treatment of this disease. The usefulness of Viusid as additional therapy to diet and physical activity should be emphasized due to improvements in liver histology; however, many other substances lead to a decrease in liver fat amounts including, e.g., berberine or omega-3 fatty acids. In addition, the synbiotic Protexin seems to be useful in terms of NAFLD treatment, especially because it is effective in both obese and lean subjects. Based on the latest research results, we suggest revising the therapeutic recommendations for patients suffering from NAFLD.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kacper Deska
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
7
|
Ismael LQ, Abdulhameed AR, Keong YY, Abdullah MNH, Bahari H, Jie TJ, Yin KB. Bisphenol A is a carcinogen that induces lipid accumulation, peroxisome proliferator‑activated receptor‑γ expression and liver disease. Exp Ther Med 2022; 24:735. [PMID: 36466761 PMCID: PMC9709766 DOI: 10.3892/etm.2022.11671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022] Open
Abstract
Bisphenol (BP) A is an exogenous endocrine disruptor that mimics hormones closely associated with health complications, e.g., obesity and cancers. The present study aimed to evaluate the effects of BPA on human liver cells and tissue. The peroxisome proliferator-activated receptor (PPAR)-γ expression profile across tumour samples and paired normal tissue was first analysed using GEPIA. Subsequently, BPA-treated liver THLE-2 cell viability was evaluated using an MTT assay. Clusterin, PPARα and PPARγ gene expression in BPA-treated THLE-2 cells was assessed using GEPIA before validating the gene expression using real-time PCR and analysing overall survival using TCGA data in GEPIA. Cytoplasmic lipid accumulation was examined in BPA-treated THLE-2 cells using Oil Red O staining, and liver tissue was examined using haematoxylin and eosin staining. Finally, cytochrome P450 (CYP) gene expression was assessed in BPA-treated THLE-2 cells using real-time PCR. PPARγ is likely the primary nuclear receptor protein involved in lipid accumulation in THLE-2 cells following BPA treatment and is associated with liver disease. THLE-2 cells exposed to BPA showed a decrease in viability and lipid accumulation after 48 h treatment. Higher PPARγ gene expression was significantly associated with survival of patients with liver cancer, with an average survival time of <80 months. Haematoxylin and eosin-stained sections showed notable disruption of the liver architecture in tissue exposed to BPA. Downregulated CYP1A1 and CYP1B1 gene expression implied that BPA-treated THLE-2 cells decreased capacity for carcinogen metabolism, while upregulated CYP2S1 gene expression exerted minimal cytotoxicity. The present study revealed that BPA served as a carcinogen, enhanced tumorigenesis susceptibility and may induce other types of liver disease.
Collapse
Affiliation(s)
- Layla Qasim Ismael
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden, Penang 11800, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Ahmed Rashid Abdulhameed
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Yong Yoke Keong
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Hasnah Bahari
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tan Jun Jie
- Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang 13200, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden, Penang 11800, Malaysia
| |
Collapse
|
8
|
Samira KE, Hossein IV. Chitosan/gelatin/starch-based films plasticized with olive oil and aloe-vera extract as a potential wound dressing. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2145746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Izadi-Vasafi Hossein
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| |
Collapse
|
9
|
Yu J, Sun H, Yang Y, Yan Y. Sesamolin Alleviates Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites in High-Fat and High-Fructose Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232213853. [PMID: 36430326 PMCID: PMC9694049 DOI: 10.3390/ijms232213853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major public health problem. The effects of sesamolin on obesity-associated NAFLD and its possible mechanism are still poorly understood. The present study investigated the effects of sesamolin on NAFLD and changes in gut microbiota and serum metabolites in high-fat and high-fructose (HF-HF) diet-fed mice. Mice with NAFLD were treated with or without sesamolin. Sesamolin effectively suppressed obesity-associated metabolic disorder, attenuated hepatic steatosis and the infiltration of inflammatory cells, and decreased levels of hepatic proinflammatory cytokines. Sesamolin also altered the composition of gut microbiota at the genus level. Additionally, differential serum metabolite biomarkers identified in an untargeted metabolomics analysis showed that sesamolin changed the levels of metabolites and influenced metabolomics pathways including caffeine metabolism, steroid hormone biosynthesis, and cysteine and methionine metabolism. Changes in metabolite biomarkers and the abundances of Faecalibaculum, Lachnoclostridium, Mucispirillum, Allobaculum, and Bacteroides are highly correlated with those factors involved in the progression of NAFLD. These results are important in deciphering new mechanisms by which changes in bacteria and metabolites in sesamolin treatment might be associated with the alleviation of obesity-associated NAFLD in HF-HF diet-fed mice. Thus, sesamolin may be a potential compound for obesity-associated NAFLD treatment.
Collapse
|
10
|
Langyan S, Yadava P, Sharma S, Gupta NC, Bansal R, Yadav R, Kalia S, Kumar A. Food and nutraceutical functions of sesame oil: An underutilized crop for nutritional and health benefits. Food Chem 2022; 389:132990. [PMID: 35569244 DOI: 10.1016/j.foodchem.2022.132990] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Sesame is the oldest oilseed crop known to humanity, though it contributes a small share in the global vegetable oil production. Sesame oil contains nutrients, including lignans, tocopherols, phytosterols, natural antioxidants, and bioactive compounds. It provides various health benefits such as anti-lipogenic, hypo-cholesterolemic, anti-degenerative, and neural health-promoting properties. Being an under-utilized minor crop, it has not received enough research attention for its food and nutraceutical potential. The sesame crop is a potential candidate to maintain the diversity of food oils and harness its benefits for improving human health. The present review will provide detailed research on sesame oil contents, health effects, nutraceuticals, oil quality, and value addition strategies. Also, the sesame oil nutritional quality was compared with other vegetable oils, highlighting the potential health and nutrition-related benefits. The way forward for further sesame improvement through value addition traits was also discussed.
Collapse
Affiliation(s)
- Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India.
| | - Pranjal Yadava
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sanjula Sharma
- Oilseed Section, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | | | - Ruchi Bansal
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| | | | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India
| |
Collapse
|
11
|
Ran X, Hu G, He F, Li K, Li F, Xu D, Liu J, Fu S. Phytic Acid Improves Hepatic Steatosis, Inflammation, and Oxidative Stress in High-Fat Diet (HFD)-Fed Mice by Modulating the Gut-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11401-11411. [PMID: 36040330 DOI: 10.1021/acs.jafc.2c04406] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) induced by obesity is a grave threat to human health. Phytic acid (PA) is a natural compound found in high-fiber diets, such as soybeans. This study investigated the effects and mechanisms of PA on obesity, hepatic lipid metabolism, and gut-liver axis homeostasis in high-fat diet (HFD)-fed mice. PA was observed to significantly inhibit obesity and alleviate liver steatosis in mice. PA improved HFD-induced liver inflammation, oxidative stress and fibrosis. Moreover, PA improved HFD-induced colonic inflammation, gut barrier damage and systemic inflammation in mice. Furthermore, PA effectively ameliorated the decreased diversity and gut microbiota composition in HFD-fed mice. Additionally, PA decreased the abundance of harmful bacteria Proteobacteria and Desulfovibrionaceae and increased the abundance of probiotic bacteria Muribaculaceae and Lachnospiraceae. Thus, PA is effective in restoring the homeostasis of the gut-liver axis. It further provides a theoretical basis for the prevention and treatment of NAFLD in patients with obesity by the rational intake of foods containing PA.
Collapse
Affiliation(s)
- Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Fuding He
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Kefei Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Feng Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
12
|
Vahedi H, Atefi M, Entezari MH, Hassanzadeh A. The effect of sesame oil consumption compared to sunflower oil on lipid profile, blood pressure, and anthropometric indices in women with non-alcoholic fatty liver disease: a randomized double-blind controlled trial. Trials 2022; 23:551. [PMID: 35804451 PMCID: PMC9264500 DOI: 10.1186/s13063-022-06451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the world. There is strong evidence that dyslipidemia and other cardio-metabolic disorders are highly prevalent in patients with NAFLD. This trial aimed at examining the effect of sesame oil (SO) in the context of a weight loss program on lipid profile, blood pressure, and anthropometric indices in women with NAFLD. METHODS This randomized, double-blind, controlled trial was carried out on 60 women with NAFLD. Subjects were randomly assigned to the SO group (n = 30) and sunflower oil (SFO) group (n = 30), each person consuming 30 g of oil per day for 12 weeks. All the participants received a hypocaloric diet (- 500 kcal/day) during the study. Lipid profile, blood pressure, and anthropometric indices were assessed at pre- and post-intervention phases. RESULTS In total, 53 participants completed the study. Following 12 weeks of intervention, anthropometric indices (p < 0.001) and systolic blood pressure (SBP) (p < 0.05) were significantly decreased in both groups and diastolic blood pressure (DBP) was significantly decreased in So group (p = 0.03). There was no significant change in lipid profile in both groups (p > 0.05). After adjusting for confounders, DBP (p = 0.031) and total cholesterol (TC) divided by high-density lipoprotein cholesterol (HDL-C) (p = 0.039) in the SO group were significantly reduced compared to the SFO group (p < 0.05). CONCLUSIONS The present clinical trial revealed that SO and SFO may not differently affect anthropometric indices, SBP, and lipid profile except for TC/HDL-C. In addition, SO may be effective in improvement of DBP and TC/HDL-C compared to the SFO group. TRIAL REGISTRATION Ethical approval of this trial was obtained at Isfahan University of Medical Sciences with the reference number of IR.MUI. RESEARCH REC.1399.548 ( https://ethics. RESEARCH ac.ir/ProposalCertificateEn.php?id=158942&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true ), and it was registered before the start of the patient recruitment on December 12th, 2020 in the Iranian Registry of Clinical Trials (IRCT) with the registration number of IRCT20140208016529N6 .
Collapse
Affiliation(s)
- Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Islamic Republic of Iran
| | - Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mohammad Hassan Entezari
- Food Security Research Centre and Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Akbar Hassanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| |
Collapse
|
13
|
Wen S, An R, Li ZG, Lai ZX, Li DL, Cao JX, Chen RH, Zhang WJ, Li QH, Lai XF, Sun SL, Sun LL. Citrus maxima and tea regulate AMPK signaling pathway to retard the progress of nonalcoholic fatty liver disease. Food Nutr Res 2022; 66:7652. [PMID: 35757439 PMCID: PMC9199835 DOI: 10.29219/fnr.v66.7652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease that easily induces hepatitis, cirrhosis, and even liver cancer. The long-term use of NAFLD therapeutic drugs produces toxicity and drug resistance. Therefore, it is necessary to develop high efficiency and low-toxicity active ingredients to alleviate NAFLD. Objective This study aimed to reveal the role and mechanism of a new functional food CMT in alleviating NAFLD. Results In the ob/ob fatty liver mice models, the CMT extracts significantly inhibited the weight gain of the mice and reduced the accumulation of white fat. The anatomical and pathological results showed that CMT relieved fatty liver in mice and reduced excessive lipid deposition and inflammatory infiltration. Serological and liver biochemical indicators suggest that CMT reduced dyslipidemia and liver damage caused by fatty liver. CMT obviously activated the adenosine 5′-monophosphate-activated protein kinase (AMPK)/acetyl-coA carboxylase (ACC) and AMPK/fatty acid synthase (FAS) signaling pathways, promoted fat oxidation, and inhibited synthesis. Moreover, CMT regulated the expression of inflammatory factors to relieve hepatitis caused by NAFLD. Conclusion The study explained the role and mechanism of CMT in alleviating NAFLD and suggested that the active ingredients of CMT might be beneficial in NAFLD therapy.
Collapse
Affiliation(s)
- Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Zhi-Gang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Zhao-Xiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jun-Xi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ruo-Hong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Wen-Ji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Qiu-Hua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ling-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| |
Collapse
|
14
|
Atefi M, Entezari MH, Vahedi H, Hassanzadeh A. The effects of sesame oil on metabolic biomarkers: a systematic review and meta-analysis of clinical trials. J Diabetes Metab Disord 2022; 21:1065-1080. [PMID: 35673414 PMCID: PMC9167273 DOI: 10.1007/s40200-022-00997-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
Background Clinical evidences showing the effects of sesame oil on metabolic biomarkers led to inconsistent results. Propose This meta-analysis was designed to examine the effects of sesame oil on metabolic biomarkers in adults, including the maximum number of clinical trials. Methods Google Scholar, PubMed, Web of Science, and Scopus were systematically searched to date up to July 2021 to identify eligible clinical trial studies. We obtained the pooled estimates of weighted mean differences (WMDs) with their 95% confidence intervals (CIs) using random-effects meta-analysis. Result Meta-analysis showed that sesame oil consumption significantly lowered the levels of fasting blood glucose (FBG) (WMD: -3.268 mg/dl; 95% CI: -4.677, -1.86; P < 0.001), and malondialdehyde (MDA) (WMD: -4.847 nmol/dL; 95% CI: -7.051, -2.698; P < 0.001) between the intervention and control groups. Also, this study showed sesame oil consumption significantly decreased HbA1C (WMD: -2.057%; 95% CI: -3.467, -0.646; P = 0.004), systolic blood pressure (SBP) (WMD: -2.679 mmHg; 95% CI: -5.257, -0.101; P < 0.001), diastolic blood pressure (DBP) (WMD: -1.981 mmHg; 95% CI: -3.916, -0.046; P = 0.045), body weight (WMD: -0.346 kg; 95% CI: -0.641, -0.051; P = 0.021), and body mass index (BMI) (WMD: -0.385 kg/m2; 95% CI:-0.721, -0.049; P = 0.025) after intervention. No significant effect was seen in serum insulin levels (p > .05). Conclusions The current study provided some evidence regarding the beneficial effects of sesame oil on metabolic biomarkers. Further studies are still required to confirm our results. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-00997-2.
Collapse
Affiliation(s)
- Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Hassan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, PO Box 81745, Isfahan, I.R Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, I.R Iran
| | - Akbar Hassanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, I.R Iran
| |
Collapse
|
15
|
Atefi M, Entezari MH, Vahedi H, Hassanzadeh A. Sesame Oil Ameliorates Alanine Aminotransferase, Aspartate Aminotransferase, and Fatty Liver Grade in Women with Nonalcoholic Fatty Liver Disease Undergoing Low-Calorie Diet: A Randomized Double-Blind Controlled Trial. Int J Clin Pract 2022; 2022:4982080. [PMID: 35685535 PMCID: PMC9159187 DOI: 10.1155/2022/4982080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background The type and amount of dietary fats play an important role in fat accumulation in the liver. Sesame oil (SO) is a good source of monounsaturated acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Objective This trial aimed at examining the effect of SO consumption on the levels of liver enzymes and the severity of fatty liver in women with nonalcoholic fatty liver disease (NAFLD) undergoing a weight loss diet. Methods This randomized, double-blind, controlled trial was carried out on 60 women with NAFLD. Subjects were randomly assigned to the SO group (n = 30) and sunflower oil (SFO) group (n = 30), each person consuming 30 grams of oil per day for 12 weeks. All the participants received a hypocaloric diet (-500 kcal/day) during the study. Fatty liver grade and liver enzymes were assessed at pre- and postintervention phases. Results 53 patients completed the study. Significant reductions in body weight, body mass index (BMI), waist circumference (WC), and fatty liver grade were observed in both groups (P < 0.05). Following SO, significant decreases in serum aspartate and alanine aminotransferases (AST and ALT) were observed. After adjusting for confounders, ALT, AST, and fatty liver grade of the SO group were significantly reduced compared to the SFO group (P < 0.05). However, the changes in serum alkaline phosphatase (ALP) were not significant (P > 0.05). Conclusions The desired effects of weight loss were reinforced by the consumption of SO through improving fatty liver severity and serum ALT and AST levels in NAFLD patients. Moreover, low-calorie diets may lead to favorable outcomes for NAFLD patients through mitigation of obesity and fatty liver grade.
Collapse
Affiliation(s)
- Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Entezari
- Food Security Research Centre and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akbar Hassanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Che DN, Shin JY, Kang HJ, Cho BO, Park JH, Wang F, Hao S, Sim JS, Sim DJ, Jang SI. Ameliorative effects of Cirsium japonicum extract and main component cirsimaritin in mice model of high-fat diet-induced metabolic dysfunction-associated fatty liver disease. Food Sci Nutr 2021; 9:6060-6068. [PMID: 34760237 PMCID: PMC8565240 DOI: 10.1002/fsn3.2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to determine biological effects of Cirsium japonicum extract and its main component cirsimaritin on high-fat diet (HFD)-induced metabolic dysfunction-associated fatty liver disease (MAFLD) in a mouse model. Mice were fed with a HFD to induce MAFLD and simultaneously administered with C. japonicum extract (CJE) or cirsimaritin. Various MAFLD biomarkers were evaluated using biological methods. Results demonstrated that triglyceride, aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels in the liver of mice were significantly reduced upon administration of CJE or cirsimaritin. Treatment with CJE or cirsimaritin also reduced the severity of liver injury in the experimental mouse model of MAFLD by inhibiting hepatic steatosis, oxidative stress, inflammation, and liver fibrosis. These results demonstrate that CJE and cirsimaritin as its main compound have a preventive action against the progression of hepatic steatosis to fibrosis and cirrhosis. Our study suggests that CJE and cirsimaritin might be promising agents for preventing and/or treating MAFLD.
Collapse
Affiliation(s)
- Denis Nchang Che
- Institute of Health Science Jeonju University Jeonju-si Republic of Korea
| | - Jae Young Shin
- Department of Food Science and Technology Jeonbuk National University Jeonju-si Republic of Korea
| | - Hyun Ju Kang
- Institute of Health Science Jeonju University Jeonju-si Republic of Korea
| | - Byoung Ok Cho
- Institute of Health Science Jeonju University Jeonju-si Republic of Korea
| | - Ji Hyeon Park
- Department of Environmental Science and Biotechnology Jeonju University Jeonju-si Republic of Korea
| | - Feng Wang
- Department of Environmental Science and Biotechnology Jeonju University Jeonju-si Republic of Korea
| | - Suping Hao
- Department of Environmental Science and Biotechnology Jeonju University Jeonju-si Republic of Korea
| | - Jae Suk Sim
- Research Institute Imsil Herbal Medicine Association Imsil Republic of Korea
| | - Dong Jun Sim
- Research Institute Imsil Herbal Medicine Association Imsil Republic of Korea
| | - Seon Il Jang
- Institute of Health Science Jeonju University Jeonju-si Republic of Korea
- Department of Health Management Jeonju University Jeonju-si Republic of Korea
| |
Collapse
|
17
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
18
|
Zhang R, Yin L, Chen J, Zhang X. Antioxidant Capacity of Proteins and Hydrolysates from the Liver of Newborn Piglets, and Their Inhibitory Effects on Steatosis in vitro. Food Technol Biotechnol 2021; 58:455-464. [PMID: 33505208 PMCID: PMC7821780 DOI: 10.17113/ftb.58.04.20.6657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Research background Non-alcoholic steatohepatitis is a potentially progressive hepatic disorder that can lead to end-stage liver disease and hepatocellular carcinoma. The inhibitory effects of proteins and hydrolysates from the liver of newborn piglets on hepatic steatosis in oleic acid-induced hepatocellular carcinoma (HepG2) cells were investigated in vitro. Experimental approach The extracted proteins from the liver of newborn piglets were hydrolysed with papain, pepsin, trypsin and Alcalase. Based on the comparison of different enzyme digestion conditions, a protein hydrolysis protocol was established to obtain hydrolysates with lipid-lowering effect. Results and conclusions Trypsin-digested liver protein hydrolysate from newborn piglets exhibited strong antioxidant activity and good inhibitory effects against lipogenesis and cholesterol accumulation in HepG2 cells at the concentration of 150 μg/mL, with a triglyceride decrease of (43±3) % and cholesterol decrease of (31±5) %, compared with model group induced with 0.75 mM oleic acid. The addition of trypsin-digested liver protein hydrolysate from newborn piglets (300 μg/mL) decreased alanine aminotransferase and aspartate aminotransferase activities and increased superoxide dismutase activity. Novelty and scientific contribution This study demonstrated that the trypsin-digested liver protein hydrolysate from newborn piglets has a potential preventive effect against non-alcoholic fatty liver disease in its early stage, and a potential use as the modulator of lipid overaccumulation in form of food supplements.
Collapse
Affiliation(s)
- Ruilin Zhang
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Lasheng Yin
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Jian Chen
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| |
Collapse
|
19
|
Gholami M, Torabi Davan S, Gholami M, Bolandparvaz S, Gholami M, Chamanpara P, Shayan L. Effects of Topical Sesame Oil Extracted from Tahini ( Ardeh) on Pain Severity in Trauma Patients: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Bull Emerg Trauma 2020; 8:179-185. [PMID: 32944578 PMCID: PMC7468223 DOI: 10.30476/beat.2020.82561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate the effects of sesame oil extracted from tahini (Ardeh) on pain severity in patients with upper or lower limbs trauma. Methods This double-blinded randomized clinical trial study was conducted on 120 patients with upper or lower trauma in Shahid Rajaee Hospital, Shiraz, Iran, from May the 1st through November 30th, 2016. The patients were randomly assigned to two groups using block randomization. The intervention group received topical sesame oil extracted from tahini (Ardeh) and the placebo group received cooking oil. Pain severity, pain sensitivity and heaviness of painful site were assessed. Results Overall, we included 90 patients with traumatic limb injuries in this study who were randomized to two study groups. The mean age of the patients was 28.3 ± 6.8 (ranging from 25 to 35) years and there were 63 (70%) men and 27 (30%) women among the patients. In the sesame oil group, the mean changes in the pain severity (-1.53 ± 0.57, P<0.001), pain sensitivity (-1.45 ± 0.64, P<0.001) and heaviness of painful site (-1.56 ± 0.68, P<0.001) were significantly lower when compared to the placebo group in the second day of the intervention. None of the patients experience adverse drug effects. Conclusion Our findings suggest that the topical use of sesame oil extracted from Tahini has a pain reliever effect on the skin after bruising and it helps prevent skin discoloration in patients with traumatic injuries of limbs.
Collapse
Affiliation(s)
- Maryam Gholami
- Clinical Research Development Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Torabi Davan
- Transplantation Unit, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholami
- Intensive Care Unit, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Bolandparvaz
- Trauma Research Center, Department of Surgery, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Gholami
- School of Management and Medical Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Cognitive Neuroscience, Institute for Cognitive Science Studies, Shahid Beheshti University, Tehran, Iran; Cognitive Science (Brain, Mind, and Education), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parisa Chamanpara
- Clinical Research Development Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Shayan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
21
|
Eweda SM, Newairy ASA, Abdou HM, Gaber AS. Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Exp Ther Med 2019; 19:33-44. [PMID: 31853270 PMCID: PMC6909485 DOI: 10.3892/etm.2019.8193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an environmental pollutant that is widely produced throughout the world. It is primarily used in the manufacture of polycarbonate plastics, epoxy resins, paints and dental materials. BPA has been reported to promote hepatotoxicity and cardiotoxicity. The antioxidant activity of sesame lignans is well established. The current study assessed the protective efficiency of sesame lignans against BPA-induced hepatotoxicity and cardiotoxicity. Rats were divided into 4 groups: A control group, a BPA-treated group, a sesame lignans-treated group and a sesame lignans and BPA-treated group. Rats were orally administered their respective doses daily [30 mg/kg body weight (BW) BPA and/or 20 mg/kg BW sesame lignans] for 6 weeks. Liver function tests were performed using serum of all groups. Lipid profile and antioxidant status were also measured in liver tissue of the studied groups. The results were confirmed by histopathological examination of liver and heart tissues. The oral administration of BPA was revealed to elicit significant decreases in the activities of hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione. It also significantly increased levels of malondialdehyde. Furthermore, BPA-treatment resulted in lipid accumulation, elevated activities of alanine aminotransferase, creatine kinase MB and lactate dehydrogenase, and histological changes of liver and heart tissues. However, the co-administration of sesame lignans and BPA attenuated hepatotoxicity, cardiotoxicity and BPA-induced histological changes. The results of the current study indicated that sesame lignans may be helpful in the development of novel natural drugs to treat hepatic and cardiovascular disorders.
Collapse
Affiliation(s)
- Saber M Eweda
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Al Sayeda A Newairy
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Assmaa S Gaber
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Faraji F, Hashemi M, Ghiasabadi A, Davoudian S, Talaie A, Ganji A, Mosayebi G. Combination therapy with interferon beta-1a and sesame oil in multiple sclerosis. Complement Ther Med 2019; 45:275-279. [PMID: 31331574 DOI: 10.1016/j.ctim.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Several effector mechanisms are involved in the immunopathology of MS and a variety of medications such as beta interferons are applied to treat the disease. This study was conducted to evaluate the anti-inflammatory and immunomodulatory effects of sesame oil in combination with interferon beta-1a in MS treatment. METHODS Ninety-three MS patients were enrolled in the study. The patients were randomly divided into two groups. The control group (n = 39) received 30 μg/week of interferon beta-1a intra-muscularly. The sesame oil-treated group (n = 54) received interferon beta-1a the same as the control group with the addition of 0.5 ml/kg/day of oral sesame oil for 6 months. RESULTS After the 6-month study period, the interleukin (IL)-10 concentration in the sesame oil-treated group was significantly greater than that of the control group (p = 0.04). The concentrations of interferon-γ (IFN-γ), nitric oxide (NO), and tumor necrosis factor-α (TNF-α) in the sesame oil group after treatment were significantly less than those of the control group (p = 0.029, p = 0.0001, and p = 0.01, respectively). Lymphocyte proliferation in the sesame oil-treated group was significantly lower at the end of the study than at the beginning (p = 0.001). CONCLUSION Sesame oil, through a decrease in IFN-γ secretion and anti-inflammatory and anti-oxidant activities, may have beneficial effects for MS patients.
Collapse
Affiliation(s)
- Fardin Faraji
- Department of Neurology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahya Hashemi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Atefeh Ghiasabadi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Sadaf Davoudian
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Afsoon Talaie
- Department of Health, Islamic Azad University, Arak Branch, Arak, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
23
|
Sesame oil and vitamin E co-administration may improve cardiometabolic risk factors in patients with metabolic syndrome: a randomized clinical trial. Eur J Clin Nutr 2019; 73:1403-1411. [DOI: 10.1038/s41430-019-0438-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 01/26/2023]
|
24
|
Yang Y, Wang J, Zhang Y, Li J, Sun W. Black Sesame Seeds Ethanol Extract Ameliorates Hepatic Lipid Accumulation, Oxidative Stress, and Insulin Resistance in Fructose-Induced Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10458-10469. [PMID: 30244573 DOI: 10.1021/acs.jafc.8b04210] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to investigate the effect of black sesame seeds ethanol extract (BSSEE) against nonalcoholic fatty liver disease (NAFLD) in fructose-fed mice. Mice were fed a standard diet without or with 30% fructose in drinking water for 8 consecutive weeks, while mice in three BSSEE tested groups received different doses of BSSEE (0.5, 1, and 2 mL/kg) once a day from the fifth week to the eighth week. Administration of BSSEE dose-dependently exerted antiobesity and protective effect against metabolism disorder in fructose-fed mice. Histological examinations indicated that administration of BSSEE obviously reduced hepatic lipid accumulation. Insulin tolerance test (ITT) and glucose tolerance test (GTT) along with decreases of serum insulin and glucose levels by BSSEE treatment suggested the improvement of body insulin resistance, and administration of 1 and 2 mL/kg BSSEE mitigated liver insulin resistance as the evidence of downregulated expression of phospho-JNK1/2/3, phospho-NF-κB p65, phospho-IRS1, and phospho-IKK alpha/beta, up-regulated XBP1 expression, and reductions of TNF-α and IL-6 levels. In addition, BSSEE treatment ameliorated hepatic oxidative stress through increasing GSH, vitamin C, and Nrf2 levels, decreasing MDA and NO levels, and enhancing SOD, CAT, and GSH-Px activities. These results demonstrated that BSSEE showed protective effects against NAFLD-related metabolic diseases in fructose-fed mice. Therefore, BSSEE may be a potent dietary supplement to ameliorate the diseases.
Collapse
Affiliation(s)
- Yang Yang
- Ministry of Education , Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) , Xi'an 710069 , China
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jingjing Wang
- Ministry of Education , Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) , Xi'an 710069 , China
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yongmin Zhang
- Ministry of Education , Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) , Xi'an 710069 , China
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences , Northwest University , Xi'an 710069 , China
- Sorbonne Université, Institut Parisien de Chimie Moléculaire , CNRS UMR 8232, 4 place Jussieu , 75005 Paris , France
| | - Jing Li
- Ministry of Education , Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) , Xi'an 710069 , China
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Wenji Sun
- Ministry of Education , Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) , Xi'an 710069 , China
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences , Northwest University , Xi'an 710069 , China
| |
Collapse
|
25
|
Liu Y, Liu Q, Hesketh J, Huang D, Gan F, Hao S, Tang S, Guo Y, Huang K. Protective effects of selenium-glutathione-enriched probiotics on CCl 4-induced liver fibrosis. J Nutr Biochem 2018; 58:138-149. [PMID: 29933196 DOI: 10.1016/j.jnutbio.2018.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Hepatic fibrosis is a common pathological basis of liver cirrhosis and hepatocellular carcinomas. So, prevention and treatment of liver fibrosis is one of the crucial therapeutic goals in hepatology. Organic selenium, glutathione or probiotics supplementation could ameliorate hepatic fibrosis, respectively. The purpose of this study is to develop a novel selenium-glutathione-enriched probiotics (SGP) and to investigate its protective effect on CCl4-induced liver fibrosis in rats. Yeast strains with the high-yield glutathione were isolated and identified by analysis of 26S ribosomal DNA sequences. The fermentation parameters of SGP were optimized through single-factor, Plackett-Burman (PB) design and response surface methodology (RSM). The final SGP contained 38.4 μg/g of organic selenium, 34.1 mg/g of intracellular glutathione, approximately 1×1010 CFU/g live Saccharomyces cerevisiae and 1×1012 CFU/g live Lactobacillus acidophilus. SGP had better protective effects on liver fibrosis than selenium, glutathione or probiotics, respectively. The hepatic silent information regulator 1 (SIRT1) level was down-regulated and oxidative stress, endoplasmic reticulum (ER) stress, inflammation and phosphorylated MAPK was increased in CCl4-treated rats. However, SGP can significantly reverse these changes caused by CCl4. Our findings suggest that SGP was effective in attenuating liver fibrosis by the activation of SIRT1 signaling and attenuating hepatic oxidative stress, ER stress, inflammation and MAPK signaling.
Collapse
Affiliation(s)
- Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Da Huang
- Department of Chemistry, Department of Electrical and Computer Engineering Laboratory for Nanophotonics, Rice University, Houston, TX 77005, United States
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shu Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shan Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yanxia Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
26
|
Sung J, Ho CT, Wang Y. Preventive mechanism of bioactive dietary foods on obesity-related inflammation and diseases. Food Funct 2018; 9:6081-6095. [DOI: 10.1039/c8fo01561a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on the molecular biological mechanism of obesity-induced inflammation and the reciprocal interactions between the major molecular mechanisms and a range of dietary bioactive compounds.
Collapse
Affiliation(s)
- Jeehye Sung
- Food Science and Human Nutrition
- Citrus Research and Education Center, University of Florida
- 700 Experiment Station Rd, Lake Alfred
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Yu Wang
- Food Science and Human Nutrition
- Citrus Research and Education Center, University of Florida
- 700 Experiment Station Rd, Lake Alfred
- USA
| |
Collapse
|
27
|
Sesame oil lignans inhibit hepatic endoplasmic reticulum stress and apoptosis in high-fat diet-fed mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Temiz HT, Tamer U, Berkkan A, Boyaci IH. Synchronous fluorescence spectroscopy for determination of tahini adulteration. Talanta 2017; 167:557-562. [DOI: 10.1016/j.talanta.2017.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 02/05/2023]
|
29
|
Cheng F, Ma C, Wang X, Zhai C, Wang G, Xu X, Mu J, Li C, Wang Z, Zhang X, Yue W, Du X, Lian Y, Zhu W, Yin X, Wei Z, Song W, Wang Q. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced nonalcoholic fatty liver disease: a rat study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:203. [PMID: 28388904 PMCID: PMC5383977 DOI: 10.1186/s12906-017-1707-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) represents one of the most common forms of liver disease worldwide, and it is always regarded as a consequence of a sedentary, food-abundant lifestyle, sitting for an extended time, and a low physical activity level, which often coincide with chronic and long-lasting psychological stress. A Chinese medicine Sinisan (SNS) may be a potential formula for treating this kind of disease. Methods In this study, a long-term chronic restraint stress protocol was used to investigate the mechanism underlying stress-induced NALFD. To investigate the effect of SNS treatment on stress-induced NAFLD, we measured the liver and serum values of total cholesterol (TC), triglyceride (TG), liver free fatty acids (FFA), low-density lipoprotein, superoxide dismutase, tumor necrosis factor-α, malondialdehyde, interleukin (IL)-6, and serum values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase. Results are shown as a mean ± standard deviation. Significant differences between the groups were evaluated using the Student t-test. For multiple comparisons, one-way analysis of variance (ANOVA) was used. If the results of ANOVA indicated significant differences, post hoc analysis was performed with the Tukey test or Dunnett test, and p < 0.05 was considered statistically significant. Results Long-term chronic stress led to steatosis and non-alcoholic steatohepatitis. Additionally, SNS treatment significantly increased body weight gain (p < 0.01) and sucrose preference (p < 0.001), and it reduced the liver values of TC, TG, and FFA (p < 0.05). SNS also reduced the serum values of AST and ALT (p < 0.001), and the liver value of IL-6 (p < 0.01). Conclusions This study’s results demonstrate that psychological stress may be a significant risk factor of NAFLD. Furthermore, the traditional Chinese medicine formula SNS may have some beneficial effect in antagonizing psychological stress and stress-related NAFLD.
Collapse
|
30
|
Characterization of sesame (Sesamum indicum L.) seed oil from Pakistan for phenolic composition, quality characteristics and potential beneficial properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9514-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Interleukin-17A exacerbates high-fat diet-induced hepatic steatosis by inhibiting fatty acid β-oxidation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1510-1518. [PMID: 28153707 DOI: 10.1016/j.bbadis.2017.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/09/2017] [Accepted: 01/28/2017] [Indexed: 02/07/2023]
Abstract
There is a growing body of evidence that the interleukin-17A (IL-17A) signaling pathway contributes to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanism by which IL-17A signaling induces hepatocyte injury is unclear. The aim of the present study was to investigate the significance of the IL-17A axis in NAFLD and to explore the role of IL-17A in high-fat diet (HFD)-induced NAFLD in C57BL/6 mice and oleic acid (OA)-induced lipid accumulation in hepatocytes. Firstly, Consistent upregulation of IL-17A was observed in the HFD-induced steatosis mice but not the normal chow-fed control mice. Administration of IL-17A impaired liver function, aggravated hepatic lipid accumulation by inhibiting fatty acid oxidation in the HFD mice. Conversely, inhibition of IL-17A using an anti-IL-17A monoclonal antibody (mAb) significantly attenuated HFD-induced liver injury. Furthermore, IL-17A accelerated hepatic steatosis through activation of the JNK-PPARα pathway in the HFD mice and OA-preloaded hepatocytes. CONCLUSION The present study demonstrated that a high fat diet induces IL-17A expression, which exacerbates the progression of NAFLD by inhibiting fatty acid β-oxidation and promoting the accumulation of triglycerides (TG).
Collapse
|
32
|
Yashaswini PS, Sadashivaiah B, Ramaprasad TR, Singh SA. In vivo modulation of LPS induced leukotrienes generation and oxidative stress by sesame lignans. J Nutr Biochem 2016; 41:151-157. [PMID: 28095362 DOI: 10.1016/j.jnutbio.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
The role of inflammation and oxidative stress is critical during onset of metabolic disorders and this has been sufficiently established in literature. In the present study, we evaluated the effects of sesamol and sesamin, two important bioactive molecules present in sesame oil, on the generation of inflammatory and oxidative stress factors in LPS injected rats. Sesamol and sesamin lowered LPS induced expression of cPLA2 (61 and 56%), 5-LOX (44 and 51%), BLT-1(32 and 35%) and LTC4 synthase (49 and 50%), respectively, in liver homogenate. The diminished serum LTB4 (53 and 64%) and LTC4 (67 and 44%) levels in sesamol and sesamin administered groups, respectively, were found to be concurrent with the observed decrease in the expression of cPLA2 and 5-LOX. The serum levels of TNF-α (29 and 19%), MCP-1 (44 and 57%) and IL-1β (43 and 42%) were found to be reduced in sesamol and sesamin group, respectively, as given in parentheses, compared to LPS group. Sesamol and sesamin offered protection against LPS induced lipid peroxidation in both serum and liver. Sesamol, but not sesamin, significantly restored the loss of catalase and glutathione reductase activity due to LPS (P<.05). However, both sesamol and sesamin reverted SOD activities by 92 and 98%, respectively. Thus, oral supplementation of sesamol and sesamin beneficially modulated the inflammatory and oxidative stress markers, as observed in the present study, in LPS injected rats. Our report further advocates the potential use of sesamol and sesamin as an adjunct therapy wherein, inflammatory and oxidative stress is of major concern.
Collapse
Affiliation(s)
| | - Bettadahalli Sadashivaiah
- Department of Biochemistry, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India
| | | | - Sridevi Annapurna Singh
- Department of Protein Chemistry & Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
33
|
Periasamy S, Liu CT, Chien SP, Chen YC, Liu MY. Daily sesame oil supplementation mitigates ketoconazole-induced oxidative stress-mediated apoptosis and hepatic injury. J Nutr Biochem 2016; 37:67-75. [PMID: 27619544 DOI: 10.1016/j.jnutbio.2016.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/25/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022]
Abstract
Ketoconazole (KCZ) is the most commonly used systemic antifungal drug. However, long-term treatment of KCZ induces hepatic injury. Oxidative stress is involved in KCZ-induced hepatic injury. Oxidative stress plays an important role in apoptosis-associated hepatic damage. Sesame oil is rich in potent antioxidants and antifungal constituents. It attenuates hepatic injury by inhibiting oxidative stress. Thus, sesame oil may protect against KCZ-induced oxidative stress, apoptosis and hepatic damage. The aim of the present study was to investigate the protective effect of sesame oil as a nutritional supplement on KCZ-induced hepatic injury in mice. KCZ (300 mg/kg/day) was administered by gastric intubation; 30 min later, sesame oil (0, 0.0625, 0.125, 0.25 or 0.5 ml/kg/day; p.o.) was administered to mice for 14 days. Blood and liver tissue were collected. Hepatic injury was evaluated by serum biochemistry and histology. Oxidative stress was evaluated by myeloperoxidase activity, p47-phox, reactive oxygen species generation, lipid peroxidation and glutathione level. Apoptosis was evaluated by p53, caspase-3, Bcl-2, Bax and Cyto-C expression. Osteopontin was measured to assess liver healing. Sesame oil attenuated hepatic injury; it also decreased oxidative stress and apoptosis in KCZ-treated mice. Sesame oil may be used as a nutritional supplement with existing antifungal therapies to neutralize the adverse hepatotoxic nature of antifungal drugs by attenuating hepatic apoptosis through redox system to protect and heal liver injury in KCZ-treated mice.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chuan-Teng Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Se-Ping Chien
- Department of Food and Beverage Services, Tainan University of Technology, Tainan 71002, Taiwan
| | - Ying-Chien Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| |
Collapse
|
34
|
Hsu DZ, Chu PY, Jou IM. Enteral sesame oil therapeutically relieves disease severity in rat experimental osteoarthritis. Food Nutr Res 2016; 60:29807. [PMID: 27032670 PMCID: PMC4816814 DOI: 10.3402/fnr.v60.29807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common cause of joint pain, affecting approximately 15% of the population. Recent studies indicate that quadriceps muscle weakness is directly involved in the pathogenesis of OA-associated joint pain. Oxidative stress plays an important role in skeletal muscle dysfunction. Sesame oil is a natural product with excellent antioxidative property. However, whether sesame oil can decrease OA-induced joint pain has never been investigated. Objective The aim of the present study was to examine the effect of sesame oil on OA-induced joint pain in rats. Design OA-associated joint pain in rats was induced by medial meniscal transection in rats. Sesame oil (0, 1, 2, or 4 ml/kg/day, orally) was given to rats 7 days after OA induction, while the parameters were determined 7 days after sesame oil administration. Results Daily sesame oil treatment for 7 days significantly decreased OA-associated joint pain. Sesame oil decreased muscular interleukin-6 and increased citrate synthase activity and myosin heavy chain IIa mRNA expression. Furthermore, sesame oil decreased muscular lipid peroxidation, nuclear Nrf2 protein expression, and reactive oxygen species generations as well as increased glutathione production and glutathione peroxidase activity in OA rats. Conclusions Sesame oil may relieve OA-associated joint pain by inhibiting quadriceps muscular oxidative stress, at least partially, in rats.
Collapse
Affiliation(s)
- Dur-Zong Hsu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan;
| |
Collapse
|
35
|
Influence of bio-lubricants on the orthodontic friction. J Mech Behav Biomed Mater 2015; 60:1-7. [PMID: 26773645 DOI: 10.1016/j.jmbbm.2015.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022]
Abstract
The Friction force of Stainless Steel (SS) and Nickel-Titanium (Ni-Ti) rectangular archwires against stainless steel brackets was investigated. Two types of brackets were used namely: Self-ligating brackets (SLB) and conventional brackets (CB). The friction tests were conducted on an adequate developed device under dry and lubricated conditions. Human saliva, olive oil, Aloe Vera oil, sesame oil and sunflower oil were used as bio-lubricants. The friction force was examined as a function of the ligation method and oil temperature. It is found that under oil lubrication, the friction behavior in the archwire/bracket assembly were the best. The SLB ligation was better than the conventional ligation system. The enhancement of the frictional behavior with natural oils was linked to their main components: fatty acids.
Collapse
|
36
|
Hsu DZ, Chu PY, Jou IM. Daily sesame oil supplement attenuates joint pain by inhibiting muscular oxidative stress in osteoarthritis rat model. J Nutr Biochem 2015; 29:36-40. [PMID: 26895663 DOI: 10.1016/j.jnutbio.2015.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the population. The aim of this study was to evaluate the efficacy of sesame oil in controlling OA pain in rats. Rat joint pain was induced by medial meniscal transection in Sprague-Dawley rats and assessed by using hindlimb weight distribution method. Muscular oxidative stress was assessed by determining lipid peroxidation, reactive oxygen species and circulating antioxidants. Sesame oil significantly decreased joint pain compared with positive control group in a dose-dependent manner. Sesame oil decreased lipid peroxidation in muscle but not in serum. Further, sesame oil significantly decreased muscular superoxide anion and peroxynitrite generations but increased muscular glutathione and glutathione peroxidase levels. Further, sesame oil significantly increased nuclear factor erythroid-2-related factor (Nrf2) expression compared with positive control group. We concluded that daily sesame oil supplement may attenuate early joint pain by inhibiting Nrf2-associated muscular oxidative stress in OA rat model.
Collapse
Affiliation(s)
- Dur-Zong Hsu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
37
|
Singh V, Pal K, Banerjee I, Pramanik K, Anis A, Al-Zahrani S. Novel organogel based lyotropic liquid crystal physical gels for controlled delivery applications. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Singh VK, Pramanik K, Ray SS, Pal K. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech 2015; 16:293-305. [PMID: 25277240 PMCID: PMC4370955 DOI: 10.1208/s12249-014-0223-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023] Open
Abstract
The current study explains the development of sorbitan monostearate and sesame oil-based organogels for topical drug delivery. The organogels were prepared by dissolving sorbitan monostearate in sesame oil (70°C). Metronidazole was used as a model antimicrobial. The formulations were characterized using phase contrast microscopy, infrared spectroscopy, viscosity, mechanical test, and differential scanning calorimetry. Phase contrast microscopy showed the presence of needle-shaped crystals in the organogel matrix. The length of the crystals increased with the increase in the sorbitan monostearate concentration. XRD studies confirmed the amorphous nature of the organogels. Viscosity study demonstrated shear thinning behavior of the organogels. The viscosity and the mechanical properties of the organogels increased linearly with the increase in the sorbitan monostearate concentration. Stress relaxation study confirmed the viscoelastic nature of the organogels. The organogels were biocompatible. Metronidazole-loaded organogels were examined for their controlled release applications. The release of the drug followed zero-order release kinetics. The drug-loaded organogels showed almost similar antimicrobial activity against Escherichia coli when compared to the commercially available Metrogyl® gel. In gist, it can be proposed that the developed organogels had sufficient properties to be used for controlled delivery of drugs.
Collapse
Affiliation(s)
- Vinay K. Singh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sirsendu S. Ray
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
39
|
Singh VK, Banerjee I, Agarwal T, Pramanik K, Bhattacharya MK, Pal K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf B Biointerfaces 2014; 123:582-92. [PMID: 25444661 DOI: 10.1016/j.colsurfb.2014.09.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/28/2014] [Indexed: 11/28/2022]
Abstract
Bigels are novel semi-solid formulations which have been drawing attention of many research scientists due to their numerous advantages over the conventional gels. The objective of this study was to develop and characterize novel bigels by mixing guar gum hydrogel and sorbitan monostearate-sesame oil based organogel for controlled drug delivery applications. The confocal microscopy suggested the existence of both aqueous and oil phases together as bigel. Micro-scale deformation (viscometric) analysis in conjugation with macro-scale deformation studies suggested shear-thinning and viscoelastic nature of the bigels. Thermal study suggested an increase in thermal stability with the increase in organogel proportion in the bigels. The developed bigels were biocompatible in nature. The in vitro drug release study showed that the release of ciprofloxacin (lipophilic drug) increased with a decrease in the organogel content. Further analysis showed that the drug release from all the bigels followed zero order diffusion kinetics which is desirable for a controlled release system. The drug loaded gels showed good antimicrobial efficiency against Bacillus subtilis. In conclusion, the developed bigels may be tried as matrices for topical drug delivery.
Collapse
Affiliation(s)
- Vinay K Singh
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Indranil Banerjee
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Tarun Agarwal
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Krishna Pramanik
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Kunal Pal
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|