1
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Athanasiou A, Charalambous M, Anastasiou T, Soteriades ES. Pre- and post-operative administration of omega-3 polyunsaturated fatty acids in cardiac surgery patients. A narrative review. Ann Med Surg (Lond) 2025; 87:2068-2092. [PMID: 40212170 PMCID: PMC11981254 DOI: 10.1097/ms9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/03/2025] [Indexed: 04/13/2025] Open
Abstract
Eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are two biologically active omega-3 polyunsaturated fatty acids (n-3 PUFA), acquired by nutrition and incorporated in cell membranes' phospholipids, thus playing a crucial role in human health and homeostasis. Due to their potential cardioprotective, anti-inflammatory, and anti-arrhythmic actions, n-3 PUFA emerge as an interesting therapeutic option for cardiac surgery (CS) patients. The aim of this review was to assess the effects of perioperative administration of n-3 PUFA in CS patients. A comprehensive literature search was conducted in order to identify prospective cohort studies and randomized controlled trials (RCT) reporting on the perioperative effects of n-3 PUFA among adult patients undergoing CS. A total of 31 articles, published between 1995 and 2022, including 10 543 patients, met the inclusion criteria. There seems to be a beneficial effect of n-3 PUFA supplementation for arrhythmias such as in Postoperative Atrial Fibrillation (POAF), reduction of Intensive Care Unit Length of Stay (ICULOS) & Hospital Length of Stay (HLOS), reduction in postoperative ventilation time, in inotropic demand, in postoperative fatigue, as well as in overall morbidity and mortality. Moreover, n-3 PUFA increase antioxidant potential, attenuate oxidative stress and inflammation with subsequent significant reduction in myocardial ischemia/reperfusion (I/R) injury, thus promoting early metabolic recovery of the heart after elective CS leading to improved myocardial protection. They represent a readily available and cost-effective strategy that could improve the outcome of patients undergoing CS, by reducing the risks of serious cardiovascular adverse events (AE), both peri- and post-operatively.
Collapse
Affiliation(s)
| | - Marinos Charalambous
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Elpidoforos S. Soteriades
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Korac L, Golestani N, MacNicol J, Souccar-Young J, Witherspoon S, Wildish A, Topfer S, Pearson W. Effect of a dietary nutraceutical "STRUCTURE-Joint" on response of horses to intra-articular challenge with IL-1: implications for tissue adaptation to stress. Transl Anim Sci 2024; 8:txae172. [PMID: 39713786 PMCID: PMC11660166 DOI: 10.1093/tas/txae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
The purpose was to determine local (articular) and systemic effects of intra-articular interleukin-1 in horses supplemented with a dietary PUFA supplement [STRUCTURE-Joint (ST-J)]. Sixteen (16) healthy, mature, light breed horses were randomly assigned to diets containing 0 or 120 mL (n = 8 per group) of ST-J for 30 d. On days 0 (prior to beginning supplementation) and 27, recombinant equine interleukin-1β (reIL-1 β) (75 ng) was injected into the left or right intercarpal joint to induce mild, transient synovitis. Synovial fluid was obtained by aseptic arthrocentesis at postinjection hour 0 (immediately prior to IL-1 injection), 6, 12, and 72. ST-J supplementation for 30 d significantly increased synovial fluid nitric oxide, and resolvin D1 compared with the unsupplemented control group and significantly increased PGE2 levels and reduced joint circumference in the ST-J treated horses on day 30 compared to the same group of horses on day 0. There was also a significant increase in plasma hemoglobin, free and total bilirubin, and decrease in plasma glucose. These data provide evidence for the usefulness of ST-J to modulate physiological variables with importance in exercise performance and tissue adaptation to exercise stress and further research on this product is warranted.
Collapse
Affiliation(s)
- Lindsay Korac
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nadia Golestani
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer MacNicol
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jamie Souccar-Young
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sophie Witherspoon
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arayih Wildish
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sydney Topfer
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Liu Q, Wang X, Wang X, Chen H, Lyu S, Zhang Z, Tian F, Zhang L, Ma S. Dynamic impacts of short-term bath administration of enrofloxacin on juvenile black seabream Acanthopagrus schlegelii. CHEMOSPHERE 2024; 361:142573. [PMID: 38852630 DOI: 10.1016/j.chemosphere.2024.142573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Dynamic impacts of short-term enrofloxacin (ENR) exposure on juvenile marine fish are not well understood, and the underlying mechanisms remain unclear. We therefore investigated the accumulation and elimination of ENR in the liver of juvenile black seabream Acanthopagrus schlegelii. Meanwhile, the dynamic alterations of biochemical parameters and liver transcriptomes after short-term bath immersion and withdrawal treatment were explored. The results indicated that the contents of ENR in the liver were significantly increased after bath administration for 24 h, and then quickly declined to very low concentrations along with the decontamination time increasing. Judging from the changes in biochemical indicators and liver transcriptomic alterations, 0.5 and 1 mg/L ENR exposure for 24 h triggered oxidative stress, impairment of immune system, as well as aberrant lipid metabolism via differential molecular pathways. Interestingly, biochemical and transcriptome analysis as well as integrated biomarker response (IBR) values showed that more significant changes appeared in 1 mg/L ENR group at decontamination periods, which indicated that the impact of high dose ENR on juvenile A. schlegelii may persist even after depuration for 7 days. These results revealed that the risk of short-term bath of 1 mg/L ENR should not be overlooked even after depuration period. Therefore, attention should be paid to the dosage control when administering the drug to juvenile A. schlegelii, and the restoration of physiological disturbance may be an important factor in formulating a reasonable treatment plan.
Collapse
Affiliation(s)
- Qian Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuefeng Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Haigang Chen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Shaoliang Lyu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Fei Tian
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China.
| | - Shengwei Ma
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China.
| |
Collapse
|
5
|
Pacifici F, Andreadi A, Arriga R, Pastore D, Capuani B, Bonanni R, Della-Morte D, Bellia A, Lauro D, Donadel G. Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity. Life (Basel) 2023; 13:2245. [PMID: 38137846 PMCID: PMC10744818 DOI: 10.3390/life13122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Space travel has always been one of mankind's greatest dreams. Thanks to technological innovation, this dream is becoming more of a reality. Soon, humans (not only astronauts) will travel, live, and work in space. However, a microgravity environment can induce several pathological alterations that should be, at least in part, controlled and alleviated. Among those, glucose homeostasis impairment and insulin resistance occur, which can lead to reduced muscle mass and liver dysfunctions. Thus, it is relevant to shed light on the mechanism underlaying these pathological conditions, also considering a nutritional approach that can mitigate these effects. METHODS To achieve this goal, we used Prdx6-/- mice exposed to Hindlimb Unloading (HU), a well-established experimental protocol to simulate microgravity, fed with a chow diet or an omega-3-enriched diet. RESULTS Our results innovatively demonstrated that HU-induced metabolic alterations, mainly related to glucose metabolism, may be mitigated by the administration of omega-3-enriched diet. Specifically, a significant improvement in insulin resistance has been reported. CONCLUSIONS Although preliminary, our results highlight the importance of specific nutritional approaches that can alleviate microgravity-induced harmful effects. These findings should be considered soon by those planning trips around the earth.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy;
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy;
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (A.A.); (R.A.); (B.C.); (D.D.-M.); (A.B.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
He T, Chen Q, Yuan Z, Yang Y, Cao K, Luo J, Dong G, Peng X, Yang Z. Effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles. Food Funct 2023; 14:9391-9406. [PMID: 37791601 DOI: 10.1039/d3fo02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal-placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs-miRNAs-mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhidong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yulian Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Kai Cao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Guozhong Dong
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xie Peng
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Guriec N, Le Foll C, Delarue J. Long-chain n-3 PUFA given before and throughout gestation and lactation in rats prevent high-fat diet-induced insulin resistance in male offspring in a tissue-specific manner. Br J Nutr 2023; 130:1121-1136. [PMID: 36688295 DOI: 10.1017/s000711452300017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigated whether long-chain n-3 PUFA (LC n-3 PUFA) given to pregnant rats fed a high-fat (HF) diet may prevent fetal programming in male offspring at adulthood. Six weeks before mating, and throughout gestation and lactation, female nulliparous Sprague-Dawley rats were given a chow (C) diet, HF (60·6 % fat from maize, rapeseed oils and lard) or HF in which one-third of fat was replaced by fish oil (HF n-3). At weaning, the three offspring groups were randomly separated in two groups fed C diet, or HF without LC n-3 PUFA, for 7 weeks until adulthood. Glucose tolerance and insulin sensitivity were assessed by an oral glucose tolerance test both at weaning and at adulthood. Insulin signalling was determined in liver, muscle and adipose tissue by quantification of the phosphorylation of Akt on Ser 473 at adulthood. At weaning, as at adulthood, offspring from HF-fed dams were obese and displayed glucose intolerance (GI) and insulin resistance (IR), but not those from HFn-3 fed dams. Following the post-weaning C diet, phosphorylation of Akt was strongly reduced in all tissues of offspring from HF dams, but to a lesser extent in liver and muscle of offspring from HFn-3 dams. However, it was abolished in all tissues of all offspring groups fed the HF post-weaning diet. Thus, LC n-3 PUFA introduced in a HF in dams partially prevented the transmission of GI and IR in adult offspring even though they were fed without LC n-3 PUFA from weaning.
Collapse
Affiliation(s)
- Nathalie Guriec
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Jacques Delarue
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
- ER 7479 SPURBO, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| |
Collapse
|
8
|
Abubakar B, Usman D, Sanusi KO, Azmi NH, Imam MU. Preventive Epigenetic Mechanisms of Functional Foods for Type 2 Diabetes. DIABETOLOGY 2023; 4:259-277. [DOI: 10.3390/diabetology4030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Type 2 diabetes (T2D) is a growing global health problem that requires new and effective prevention and management strategies. Recent research has highlighted the role of epigenetic changes in the development and progression of T2D, and the potential of functional foods as a complementary therapy for the disease. This review aims to provide an overview of the current state of knowledge on the preventive epigenetic mechanisms of functional foods in T2D. We provide background information on T2D and its current treatment approaches, an explanation of the concept of epigenetics, and an overview of the different functional foods with demonstrated preventive epigenetic effects in T2D. We also discuss the epigenetic mechanisms by which these functional foods prevent or manage T2D, and the studies that have investigated their preventive epigenetic effects. In addition, we revisit works on the beneficial influence of functional foods against the programming and complications of parentally-triggered offspring diabetes. We also suggest, albeit based on scarce data, that epigenetic inheritance mechanistically mediates the impacts of functional nutrition against the metabolic risk of diabetes in offspring. Finally, our review highlights the importance of considering the preventive epigenetic mechanisms of functional foods as a potential avenue for the development of new prevention and management strategies for T2D.
Collapse
Affiliation(s)
- Bilyaminu Abubakar
- Department of Pharmacology and Toxicology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| |
Collapse
|
9
|
Zhao YC, Wang CC, Yang JY, Li XY, Yanagita T, Xue CH, Zhang TT, Wang YM. N-3 PUFA Deficiency from Early Life to Adulthood Exacerbated Susceptibility to Reactive Oxygen Species-Induced Testicular Dysfunction in Adult Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6908-6919. [PMID: 37098125 DOI: 10.1021/acs.jafc.2c07328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237 Shandong Province, P. R. China
| |
Collapse
|
10
|
Patrakeeva VP, Shtaborov VA. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The literature review presents the results of modern studies of the relationship between diet and intestinal microbiota in the regulation of metabolic disorders. Metabolic syndrome, which is a symptom complex that combines abdominal obesity, insulin resistance, hyperglycemia, dyslipidemia and arterial hypertension, remains an important problem, being a risk factor for cardiovascular, neurodegenerative, oncological diseases and the development of type 2 diabetes mellitus. Although the pathogenesis of the metabolic syndrome has not yet been fully elucidated, it is known that visceral obesity and its associated complications, such as dyslipidemia and increased levels of pro-inflammatory cytokines, play a central role. The article presents data on the impact of the consumption of certain food products, the inclusion of plant biologically active substances (flavonoids, polyphenols, etc.) in the diet, as well as the use of elimination diets with the exclusion of carbohydrates or fats from the diet, on reducing the risk of cardiovascular accidents, levels of fasting glucose, total cholesterol, LDL, triglycerides, C-reactive protein, leptin, insulin, reduction in body weight and waist circumference, reduction in the level of circulating endotoxins and changes in the activity of immunocompetent cells. Data are presented on the possible influence of the intestinal microbiota in maintaining inflammation and the formation of degenerative changes in the body. The role of changes in the ratio of the levels of pathogenic microflora, bifidobacteria and lactobacilli in the formation of a pathological condition is shown.
Collapse
Affiliation(s)
- V. P. Patrakeeva
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - V. A. Shtaborov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| |
Collapse
|
11
|
Qing Q, Huang L, Sun W, Chen J, Yu N, Chen Y, Xu D, Zhao M. Maternal and fetal metabolomic alterations in maternal lipopolysaccharide exposure-induced male offspring glucose metabolism disorders. Biomed Chromatogr 2021; 36:e5234. [PMID: 34477231 DOI: 10.1002/bmc.5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/06/2022]
Abstract
Maternal lipopolysaccharide (LPS) exposure during pregnancy induces metabolic abnormalities in male offspring, but the underlying mechanisms remain unclear. The purpose of this study was to investigate the effects of maternal LPS exposure during pregnancy on metabolic profiling of maternal serum and male fetal liver using Liquid Chromatograph Mass Spectrometer techniques. From day 15 to day 17 of gestation, pregnant mice were administered intraperitoneal LPS (experimental group) (50 μg/kg/d) or saline (control group). On day 18 of gestation, maternal serum and male fetal liver were collected. After LPS exposure, levels of 38 and 75 metabolites, mainly glycerophospholipid and fatty acid metabolites, were altered in maternal serum and male fetal liver, respectively. It was found that in maternal serum and male fetal livers, the glycerophospholipids containing saturated fatty acids (SFAs) and the SFAs were upregulated, while the glycerophospholipids containing polyunsaturated fatty acids (PUFAs) and the PUFAs were downregulated. This concordance between maternal and fetal alterations in glycerophospholipid and fatty acid metabolites may be a metabolomic signature of the early intrauterine period and may provide insight into the mechanisms by which maternal LPS exposure induces disorders of glucose metabolism in male offspring.
Collapse
Affiliation(s)
- Qiting Qing
- School of Nursing, Anhui Medical University, Hefei, China
| | - Lili Huang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wanxiao Sun
- School of Nursing, Anhui Medical University, Hefei, China
| | - Jing Chen
- School of Nursing, Anhui Medical University, Hefei, China
| | - Ningning Yu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Yuanhua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Different Dietary N-3 Polyunsaturated Fatty Acid Formulations Distinctively Modify Tissue Fatty Acid and N-Acylethanolamine Profiles. Nutrients 2021; 13:nu13020625. [PMID: 33671938 PMCID: PMC7919039 DOI: 10.3390/nu13020625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.
Collapse
|