1
|
Carey AE, Weeraratna AT. Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response. Pharmacol Ther 2024; 262:108698. [PMID: 39098769 DOI: 10.1016/j.pharmthera.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Collapse
Affiliation(s)
- Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
von Hegedus JH, de Jong AJ, Hoekstra AT, Spronsen E, Zhu W, Cabukusta B, Kwekkeboom JC, Heijink M, Bos E, Berkers CR, Giera MA, Toes REM, Ioan-Facsinay A. Oleic acid enhances proliferation and calcium mobilization of CD3/CD28 activated CD4 + T cells through incorporation into membrane lipids. Eur J Immunol 2024; 54:e2350685. [PMID: 38890809 DOI: 10.1002/eji.202350685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.
Collapse
Affiliation(s)
- Johannes Hendrick von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anja J de Jong
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna T Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Spronsen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wahwah Zhu
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin A Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Nedal TMV, Moen SH, Roseth IA, Tryggestad SS, Aass KR, Hov GG, Hella H, Sponaas AM, Standal T. Diet-induced obesity reduces bone marrow T and B cells and promotes tumor progression in a transplantable Vk*MYC model of multiple myeloma. Sci Rep 2024; 14:3643. [PMID: 38351079 PMCID: PMC10864380 DOI: 10.1038/s41598-024-54193-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Obesity is associated with an increased risk of developing multiple myeloma (MM). The molecular mechanisms causing this association is complex and incompletely understood. Whether obesity affects bone marrow immune cell composition in multiple myeloma is not characterized. Here, we examined the effect of diet-induced obesity on bone marrow immune cell composition and tumor growth in a Vk*MYC (Vk12653) transplant model of multiple myeloma. We find that diet-induced obesity promoted tumor growth in the bone marrow and spleen and reduced the relative number of T and B cells in the bone marrow. Our results suggest that obesity may reduce MM immune surveillance and thus may contribute to increased risk of developing MM.
Collapse
Affiliation(s)
- Tonje Marie Vikene Nedal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv Helen Moen
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Research, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Ingrid Aass Roseth
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synne Stokke Tryggestad
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gunhild Garmo Hov
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Chemistry, St. Olavs Hospital, Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Hematology, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
4
|
Liu Y, Hu G, Jia Y, Qin L, Xu L, Chang Y, Li B, Li H. Wnt10b knockdown regulates the relative balance of adipose tissue-resident T cells and inhibits white fat deposition. Mol Biol Rep 2024; 51:272. [PMID: 38302806 DOI: 10.1007/s11033-024-09249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wnt10b is one of critical Wnt family members that being involved in networks controlling stemness, pluripotency and cell fate decisions. However, its role in adipose-resident T lymphocytes and further in fat metabolism yet remains largely unknown. METHODS AND RESULTS In the present study, we demonstrated a distinctive effect for Wnt10b on the relative balance of T lymphocytes in adipose tissue by using a Wnt10b knockdown mouse model. Wnt10b knockdown led to a reduction of adipose-resident CD4+ T cells and an elevation of Foxp3+/CD4+ Treg cells. Wnt10b-knockdown mice fed with standard diet showed less white fat deposition owing to the suppressed adipogenic process. Moreover, under high fat diet conditions, Wnt10b knockdown resulted in an alleviated obesity symptoms, as well as an improvement of glucose homeostasis and hepatic steatosis. CONCLUSIONS Collectively, we reveal an unexpected and novel function for Wnt10b in mediating the frequency of adipose-resident T cell subsets, that when knockdown skewing toward a Treg-dominated phenotype and further improving fat metabolism.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Lining Qin
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Longfei Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yaxin Chang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Bin Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
6
|
Ortega-Gomez A, Lopez S, Varela LM, Jaramillo S, Muriana FJ, Abia R. New evidence for dietary fatty acids in the neutrophil traffic between the bone marrow and the peripheral blood. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100133. [PMID: 36111060 PMCID: PMC9467871 DOI: 10.1016/j.fochms.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022]
Abstract
Chronic administration of a high-fat diet in mice has been established to influence the generation and trafficking of immune cells such as neutrophils in the bone marrow, the dysregulation of which may contribute to a wide range of diseases. However, no studies have tested the hypothesis that a short-term, high-fat diet could early modulate the neutrophil release from bone marrow at fasting and at postprandial in response to a high-fat meal challenge, and that the predominant type of fatty acids in dietary fats could play a role in both context conditions. Based on these premises, we aimed to establish the effects of different fats [butter, enriched in saturated fatty acids (SFAs), olive oil, enriched in monounsaturated fatty acids (MUFAs), and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on neutrophil navigation from bone marrow to blood in mice. The analysis of cellular models for mechanistic understanding and of postprandial blood samples from healthy volunteers for translational purposes was assessed. The results revealed a powerful effect of dietary SFAs in promotion the neutrophil traffic from bone marrow to blood via the CXCL2-CXCR2 axis. Dietary SFAs, but not MUFAs or EPA and DHA, were also associated with increased neutrophil apoptosis and bone marrow inflammation. Similar dietary fatty-acid-induced postprandial neutrophilia was observed in otherwise healthy humans. Therefore, dietary MUFAs might preserve bone marrow health and proper migration of bone marrow neutrophils early in the course of high-fat diets even after the intake of high-fat meals.
Collapse
Key Words
- BMSF, bone marrow supernatant fluid
- Bone marrow inflammation
- Butter
- Ct, threshold cycle
- DHA, docosahexaenoic acid
- Dietary fatty acids
- EPA, eicosapentaenoic acid
- FACS, fluorescence-activated cell sorting
- FSC, forward scatter
- HBSS, Hank’s balance salt solution
- HFDs, high-fat diets
- HSCs, hematopoietic stem cells
- High-fat diets
- LFD, low-fat diet
- MFI, mean fluorescence intensity
- MMP9, matrix metalloproteinase 9
- MUFAs, monounsaturated fatty acids
- Neutrophil mobilisation
- OCM, oral control meal
- OFLs, oral fat loads
- OFMs, oral fat meals
- OSL, oral saline load
- Olive oil
- PI, propidium iodide
- PUFAs, polyunsaturated fatty acids
- SFAs, saturated fatty acids
- SSC, side scatter
- TRLs, triglyceride-rich lipoproteins
- qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Department of Cellular and Molecular Endocrinology, Instituto de Investigacion Biomedica de Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Lourdes M. Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Sara Jaramillo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| | - Francisco J.G. Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| |
Collapse
|