1
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Miura Y, Voican C, Sakai Y, Nishikawa M, Leclerc E. A computational model of the crosstalk between hepatocyte fatty acid metabolism and oxidative stress highlights the key enzymes, metabolites, and detoxification pathways in the context of MASLD. Toxicol Appl Pharmacol 2025; 495:117185. [PMID: 39631537 DOI: 10.1016/j.taap.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as NAFLD) is a common liver disease worldwide and carries the risk of progressing to severe liver conditions, such as fibrosis and liver cancer. In the context of MASLD, evaluating fat accumulation in the liver and the subsequent production of oxidative stress is essential to understand the disease propagation. However, clinical studies using human patients to investigate the fat accumulation and the onset of oxidative stress in MASLD face ethical and technical challenges, highlighting the importance of alternative methods. To understand the relationship between fatty acid metabolism, lipid accumulation, oxidative stress generation, and antioxidant mechanisms in hepatocytes, we proposed a new mathematical model. The importance of this model lies in its ability to track the time-dependent changes in oxidative stress and glutathione concentration in response to the input of fatty acids. Furthermore, the model allows for the evaluation of the effects of altering the activity of the key enzymes involved in those mechanisms. Our model is anticipated to provide new insights into MASLD therapy strategies by identifying key pathways and predicting the effects of drug-induced changes in enzyme activity.
Collapse
Affiliation(s)
- Yuki Miura
- Department of Chemical System Engineering, Graduate school of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Cosmin Voican
- Department of Hepatogastroenterology and Nutrition, Antoine-Béclère University Hospital, AP-HP Paris-Saclay University, 92140 Clamart, France; INSERM U996, 91400 Orsay, France; Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate school of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.; CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate school of Engineering, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Eric Leclerc
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
3
|
Zhou J, Shi Y, Zhao L, Wang R, Luo L, Yin Z. γ-Glutamylcysteine restores glucolipotoxicity-induced islet β-cell apoptosis and dysfunction via inhibiting endoplasmic reticulum stress. Toxicol Appl Pharmacol 2025; 495:117206. [PMID: 39701215 DOI: 10.1016/j.taap.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE The impaired function of islet β-cell is associated with the pathogenesis of type 2 diabetes mellitus (T2DM). γ-glutamylcysteine (γ-GC), an immediate precursor of glutathione (GSH), has antioxidant and neuroprotective functions. Its level has been reported to be down-regulated in hyperglycemia. However, whether γ-GC has a protective effect on islet β-cell dysfunction remains elusive. Recently, we explore the molecular mechanism by which γ-GC protects islet β-cell from glucolipotoxicity-induced dysfunction. METHODS In vivo mice models and in vitro cell models were established to examine the therapeutic effects and molecular mechanisms of γ-GC. RESULTS db mice develop impaired glucose-stimulated insulin secretion (GSIS) due to reduced islet number and damaged islet microstructure. Serious oxidative damage, apoptosis and lipid accumulation are also observed in β-cell stimulated by glucolipotoxicity. Mechanistic studies suggest that glucolipotoxicity inhibits PDX-1 nuclear translocation by inducing endoplasmic reticulum (ER) stress, which leads to impaired insulin (INS) secretion in β-cell. Nevertheless, γ-GC as an inhibitor of ER stress can alleviate the damage of islet microstructure in db mice. Importantly, γ-GC promotes INS gene expression and GSIS through driving nuclear translocation of PDX-1, thereby enhancing intracellular INS content. Moreover, treatment with γ-GC can also mitigate oxidative damage, apoptosis and lipid accumulation of β-cell, resulting in ameliorating islet β-cell dysfunction induced by glucolipotoxicity. CONCLUSION Our results support the use of γ-GC as an inhibitor of ER stress for prevention and treatment of T2DM in the future.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lishuang Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Song L, Li Y, Xu M. Exogenous Nucleotides Ameliorate Insulin Resistance Induced by Palmitic Acid in HepG2 Cells through the IRS-1/AKT/FOXO1 Pathways. Nutrients 2024; 16:1801. [PMID: 38931156 PMCID: PMC11206901 DOI: 10.3390/nu16121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3β and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.
Collapse
Affiliation(s)
- Lixia Song
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (L.S.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100019, China
| |
Collapse
|
5
|
Xu J, Yang XW. LC-MS-Based Metabolomics Reveals the Mechanism of Protection of Berberine against Indomethacin-Induced Gastric Injury in Rats. Molecules 2024; 29:1055. [PMID: 38474567 DOI: 10.3390/molecules29051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a natural isoquinoline alkaloid with low toxicity, which exists in a wide variety of medicinal plants. Berberine has been demonstrated to exhibit potent prevention of indomethacin-induced gastric injury (GI) but the related mechanism remains unclear. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied for the first time to investigate the alteration of serum metabolites in the protection of berberine against indomethacin-induced gastric injury in rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-GI effect of berberine. The pharmacodynamic data indicated that berberine could ameliorate gastric pathological damage, inhibit the level of proinflammatory factors in serum, and increase the level of antioxidant factors in serum. The LC-MS-based metabolomics analysis conducted in this study demonstrated the presence of 57 differential metabolites in the serum of rats with induced GI caused by indomethacin, which was associated with 29 metabolic pathways. Moreover, the study revealed that berberine showed a significant impact on the differential metabolites, with 45 differential metabolites being reported between the model group and the group treated with berberine. The differential metabolites were associated with 24 metabolic pathways, and berberine administration regulated 14 of the 57 differential metabolites, affecting 14 of the 29 metabolic pathways. The primary metabolic pathways affected were glutathione metabolism and arachidonic acid metabolism. Based on the results, it can be concluded that berberine has a gastroprotective effect on the GI. This study is particularly significant since it is the first to elucidate the mechanism of berberine's action on GI. The results suggest that berberine's action may be related to energy metabolism, oxidative stress, and inflammation regulation. These findings may pave the way for the development of new therapeutic interventions for the prevention and management of NSAID-induced GI disorders.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Do D, Guruk M, Kus-Liśkiewicz M, Damblon C, Arguelles-Arias A, Erten H, Fickers P. Biosynthesis of the antioxidant γ-glutamyl-cysteine with engineered Yarrowia lipolytica. Biotechnol J 2024; 19:e2300564. [PMID: 38403441 DOI: 10.1002/biot.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.
Collapse
Affiliation(s)
- Diem Do
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
- Dong Thap Medical College, Cao Lanh City, Dong Thap Province, Vietnam
| | - Mümine Guruk
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | | | - Christian Damblon
- Laboratoire de Chimie Biologique Structurale, Département de Chimie, Université de Liège, Liège, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Huseyin Erten
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
7
|
El Azab EF, Alakilli SYM, Saleh AM, Alhassan HH, Alanazi HH, Ghanem HB, Yousif SO, Alrub HA, Anber N, Elfaki EM, Hamza A, Abdulmalek S. Actinidia deliciosa Extract as a Promising Supplemental Agent for Hepatic and Renal Complication-Associated Type 2 Diabetes (In Vivo and In Silico-Based Studies). Int J Mol Sci 2023; 24:13759. [PMID: 37762060 PMCID: PMC10530616 DOI: 10.3390/ijms241813759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic condition associated with obesity, oxidative stress-mediated inflammation, apoptosis, and impaired insulin signaling. The utilization of phytochemical therapy generated from plants has emerged as a promising approach for the treatment of diabetes and its complications. Kiwifruit is recognized for its substantial content of antioxidative phenolics. Therefore, this work aimed to examine the effect of Actinidia deliciosa (kiwi fruit) on hepatorenal damage in a high-fat diet (HFD) and streptozotocin (STZ)-induced T2D in rats using in vivo and in silico analyses. An increase in hepatic and renal lipid peroxidation was observed in diabetic rats accompanied by a decrease in antioxidant status. Furthermore, it is important to highlight that there were observable inflammatory and apoptotic responses in the hepatic and renal organs of rats with diabetes, along with a dysregulation of the phosphorylation levels of mammalian target of rapamycin (mTOR), protein kinase B (Akt), and phosphoinositide 3-kinase (PI3K) signaling proteins. However, the administration of kiwi extract to diabetic rats alleviated hepatorenal dysfunction, inflammatory processes, oxidative injury, and apoptotic events with activation of the insulin signaling pathway. Furthermore, molecular docking and dynamic simulation studies revealed quercetin, chlorogenic acid, and melezitose as components of kiwi extract that docked well with potential as effective natural products for activating the silent information regulator 1(SIRT-1) pathway. Furthermore, phenolic acids in kiwi extract, especially syringic acid, P-coumaric acid, caffeic acid, and ferulic acid, have the ability to inhibit the phosphatase and tensin homolog (PTEN) active site. In conclusion, it can be argued that kiwi extract may present a potentially beneficial adjunctive therapy approach for the treatment of diabetic hepatorenal complications.
Collapse
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Saleha Y. M. Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 23761, Saudi Arabia;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
| | - Hamad H. Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Sara Osman Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
- Department of Clinical Chemistry, Faculty of medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum 13311, Sudan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| |
Collapse
|