1
|
Yanko NV, Kaskova L, Vashchenko I, Novikova SC. PERIODONTAL DISEASE AND SALIVARY OXIDATION STRESS IN CHILDREN WITH LYMPHOGRANULOMATOSIS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1569-1575. [PMID: 37622499 DOI: 10.36740/wlek202307109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The aim: To investigate the impact of lymphogranulomatosis (LGM) and periodontal disease on salivary lipid peroxidation and enzymatic antioxidants` levels in children. PATIENTS AND METHODS Materials and methods: 45 children aged 6-16 years with LGM were examined before hematologic therapy (group LGM 1), after therapy (group LGM 2), and at the remission (group LGM 3). The control group included 70 healthy children. Periodontal state of children, saliva thiobarbituric acid reacting substances (TBARS), superoxide dismutase (SOD) and catalase were examined. RESULTS Results: 6-11 years old children from LGM 1 group showed a higher frequency of periodontal disease (50,0%), as well as 12-15 year olds (80,8%) compared to healthy children (17,4% and 42,8% accordingly, p<0,05). TBARS levels were higher in LGM 1-3 groups of children with periodontal disease (9,79, 12,3 and 12,6 umol/l, р<0,01) compared to counterparts without it (8,01, 10,1 and 11,6 umol/l, р<0,01) and healthy children with periodontal disease (7,9 umol/l, р<0,01). SOD activity was higher in LGM 1-3 groups of children with periodontal disease (-0,075, -0,086, -0,074 units) compared to children without it (-0,048, -0,059, -0,04 units, р<0,01) and healthy children with periodontal disease (-0,04 units, р<0,01). Catalase activity was lower in LGM 1-3 groups of children with periodontal disease (6,72, 5,2 and 6,7 units) compared to counterparts without it (7,3, 3,7 and 4,7 units, р<0,01) and healthy children with periodontal disease (7,1 units, р<0,01). CONCLUSION Conclusions: Children with periodontal disease related to LGM had higher TBARS levels, SOD activity and lower catalase activity in saliva. Both LGM and periodontal disease altered lipid peroxidation and antioxidant protection in saliva of children.
Collapse
|
2
|
Monnoyer R, Eftedal I, Hjelde A, Deb S, Haugum K, Lautridou J. Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving. Front Physiol 2021; 12:702634. [PMID: 34721054 PMCID: PMC8548618 DOI: 10.3389/fphys.2021.702634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers’ health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers’ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers’ diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
4
|
Monnoyer R, Haugum K, Lautridou J, Flatberg A, Hjelde A, Eftedal I. Shifts in the Oral Microbiota During a Four-Week Commercial Saturation Dive to 200 Meters. Front Physiol 2021; 12:669355. [PMID: 33986696 PMCID: PMC8110926 DOI: 10.3389/fphys.2021.669355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
During commercial saturation diving, divers live and work under hyperbaric and hyperoxic conditions. The myriads of bacteria that live in and on the human body must adjust to the resultant hyperbaric stress. In this study, we examined the shifts in bacterial content in the oral cavity of saturation divers, using a metagenomic approach to determine the diversity in the composition of bacterial phyla and genera in saliva from 23 male divers before, during, and immediately after 4 weeks of commercial heliox saturation diving to a working depth of circa 200 m. We found that the bacterial diversity fell during saturation, and there was a change in bacterial composition; with a decrease at the phylum level of obligate anaerobe Fusobacteria, and an increase of the relative abundance of Actinobacteria and Proteobacteria. At the genus level, Fusobacterium, Leptotrichia, Oribacterium, and Veillonella decreased, whereas Neisseria and Rothia increased. However, at the end of the decompression, both the diversity and composition of the microbiota returned to pre-dive values. The results indicate that the hyperoxic conditions during saturation may suppress the activity of anaerobes, leaving a niche for other bacteria to fill. The transient nature of the change could imply that hyperbaric heliox saturation has no lasting effect on the oral microbiota, but it is unknown whether or how a shift in oral bacterial diversity and abundance during saturation might impact the divers’ health or well-being.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
5
|
Geskovski N, Sazdovska SD, Gjosheva S, Petkovska R, Popovska M, Anastasova L, Mladenovska K, Goracinova K. Rational development of nanomedicines for molecular targeting in periodontal disease. Arch Oral Biol 2018; 93:31-46. [DOI: 10.1016/j.archoralbio.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
|
6
|
Dissolved oxygen-mediated enrichment of quorum-sensing phenomenon in the bacterial community to combat oxidative stress. Arch Microbiol 2018; 200:1371-1379. [DOI: 10.1007/s00203-018-1551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 01/19/2023]
|
7
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Dou Y, Rutanhira H, Chen X, Mishra A, Wang C, Fletcher HM. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis. Mol Oral Microbiol 2017; 33:89-104. [PMID: 29059500 DOI: 10.1111/omi.12204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H Rutanhira
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - X Chen
- Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - A Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
9
|
Ibrahim M, Subramanian A, Anishetty S. Comparative pan genome analysis of oral Prevotella species implicated in periodontitis. Funct Integr Genomics 2017; 17:513-536. [PMID: 28236274 DOI: 10.1007/s10142-017-0550-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Prevotella is part of the oral bacterial community implicated in periodontitis. Pan genome analyses of eight oral Prevotella species, P. dentalis, P. enoeca, P. fusca, P. melaninogenica, P. denticola, P. intermedia 17, P. intermedia 17-2 and P. sp. oral taxon 299 are presented in this study. Analysis of the Prevotella pan genome revealed features such as secretion systems, resistance to oxidative stress and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems that enable the bacteria to adapt to the oral environment. We identified the presence of type VI secretion system (T6SS) in P. fusca and P. intermedia strains. For some VgrG and Hcp proteins which were not part of the core T6SS loci, we used gene neighborhood analysis and identified putative effector proteins and putative polyimmunity loci in P. fusca and polymorphic toxin systems in P. intermedia strains. Earlier studies have identified the presence of Por secretion system (PorSS) in P. gingivalis, P. melaninogenica and P. intermedia. We noted the presence of their homologs in six other oral Prevotella studied here. We suggest that in Prevotella, PorSS is used to secrete cysteine proteases such as interpain and C-terminal domain containing proteins with a "Por_secre_tail" domain. We identified subtype I-B CRISPR-Cas system in P. enoeca. Putative CRISPR-Cas system subtypes for 37 oral Prevotella and 30 non-oral Prevotella species were also predicted. Further, we performed a BLASTp search of the Prevotella proteins which are also conserved in the red-complex pathogens, against the human proteome to identify potential broad-spectrum drug targets. In summary, the use of a pan genome approach enabled identification of secretion systems and defense mechanisms in Prevotella that confer adaptation to the oral cavity.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Centre for Biotechnology, Anna University, Chennai, 600025, India
| | | | | |
Collapse
|
10
|
Holden MS, Black J, Lewis A, Boutrin MC, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonas gingivalis W83. JOURNAL OF NANOMATERIALS 2016; 2016:9605906. [PMID: 30245705 PMCID: PMC6146971 DOI: 10.1155/2016/9605906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Advances in nanotechnology provide opportunities for the prevention and treatment of periodontal disease. While physicochemical properties of Ag containing nanoparticles (NPs) are known to influence the magnitude of their toxicity, it is thought that nanosilver can be made less toxic to eukaryotes by passivation of the NPs with a benign metal. Moreover, the addition of other noble metals to silver nanoparticles, in the alloy formulation, is known to alter the silver dissolution behavior. Thus, we synthesized glutathione capped Ag/Au alloy bimetallic nanoparticles (NPs) via the galvanic replacement reaction between maltose coated Ag NPs and chloroauric acid (HAuCl4) in 5% aqueous triblock F127 copolymer solution. We then compared the antibacterial activity of the Ag/Au NPs to pure Ag NPs on Porphyromonas gingivalis W83, a key pathogen in the development of periodontal disease. Only partially oxidized glutathione capped Ag and Ag/Au (Au:Ag≈0.2) NPs inhibited the planktonic growth of P. gingivalis W83. This effect was enhanced in the presence of hydrogen peroxide, which simulates the oxidative stress environment in the periodontal pocket during chronic inflammation.
Collapse
Affiliation(s)
- Megan S. Holden
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| | - Jason Black
- Northern Caribbean University, Manchester, Jamaica
| | | | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Elvin Walemba
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Theodore S. Sabir
- College of Arts and Sciences, Faulkner University,
Montgomery, AL 36109, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Christopher C. Perry
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Ohshima H. Oral Biosciences: The annual review 2014. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|