1
|
Nix Z, Kota D, Ratnayake I, Wang C, Smith S, Wood S. Spectral characterization of cell surface motion for mechanistic investigations of cellular mechanobiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:3-15. [PMID: 36108781 DOI: 10.1016/j.pbiomolbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the specific mechanisms responsible for anabolic and catabolic responses to static or dynamic force are largely poorly understood. Because of this, most research groups studying mechanotransduction due to dynamic forces employ an empirical approach in deciding what frequencies to apply during experiments. While this has been shown to elucidate valuable information regarding how cells respond under controlled provocation, it is often difficult or impossible to determine a true optimal frequency for force application, as many intracellular complexes are involved in receiving, propagating, and responding to a given stimulus. Here we present a novel adaptation of an analytical technique from the fields of civil and mechanical engineering that may open the door to direct measurement of mechanobiological cellular frequencies which could be used to target specific cell signaling pathways leveraging synergy between outside-in and inside-out mechanotransduction approaches. This information could be useful in identifying how specific proteins are involved in the homeostatic balance, or disruption thereof, of cells and tissue, furthering the understanding of the pathogenesis and progression of many diseases across a wide variety of cell types, which may one day lead to the development of novel mechanobiological therapies for clinical use.
Collapse
Affiliation(s)
- Zachary Nix
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Divya Kota
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Ishara Ratnayake
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Congzhou Wang
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Scott Wood
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA.
| |
Collapse
|
2
|
Primary Cilia: A Cellular Regulator of Articular Cartilage Degeneration. Stem Cells Int 2022; 2022:2560441. [PMID: 36193252 PMCID: PMC9525753 DOI: 10.1155/2022/2560441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that can cause pain and disability in adults. The main pathological characteristic of OA is cartilage degeneration, which is caused by chondrocyte apoptosis, cartilage matrix degradation, and inflammatory factor destruction. The current treatment for patients with OA focuses on delaying its progression, such as oral anti-inflammatory analgesics or injection of sodium gluconate into the joint cavity. Primary cilia are an important structure involved in cellular signal transduction. Thus, they are very sensitive to mechanical and physicochemical stimuli. It is reported that the primary cilia may play an important role in the development of OA. Here, we review the correlation between the morphology (location, length, incidence, and orientation) of chondrocyte primary cilia and OA and summarize the relevant signaling pathways in chondrocytes that could regulate the OA process through primary cilia, including Hedgehog, Wnt, and inflammation-related signaling pathways. These data provide new ideas for OA treatment.
Collapse
|
3
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
4
|
Cartilage degeneration is associated with activation of the PI3K/AKT signaling pathway in a growing rat experimental model of developmental trochlear dysplasia. J Adv Res 2022; 35:109-116. [PMID: 35003796 PMCID: PMC8721235 DOI: 10.1016/j.jare.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023] Open
Abstract
Established a new experimental rat model of the developmental trochlear dysplasia; Using the macroscopic morphological and micro-CT to assess trochlear dysplasia; Using Histological staining to investigate the cartilage degradation of the model; Investigated the relationship of the PI3K/AKT signaling pathway with trochlear dysplasia cartilage degeneration; Using immunohistochemistry and qPCR to investigate the PI3K/AKT and the marker of the cartilage degeneration.
Introduction Trochlear dysplasia is a commonly encountered lower extremity deformity in humans. However, the molecular mechanism of cartilage degeneration in trochlear dysplasia is unclear thus far. Objectives The PI3K/AKT signaling pathway is known to be important for regulating the pathophysiology of cartilage degeneration. The aim of this study was to investigate the relationship of the PI3K/AKT signaling pathway with trochlear dysplasia cartilage degeneration. Methods In total, 120 female Sprague-Dawley rats (4 weeks of age) were randomly separated into control and experimental groups. Distal femurs were isolated from the experimental group at 4, 8, and 12 weeks after surgery; they were isolated from the control group at the same time points. Micro-computed tomography and histological examination were performed to investigate trochlear anatomy and changes in trochlear cartilage. Subsequently, expression patterns of PI3K/AKT, TGFβ1, and ADAMTS-4 in cartilage were investigated by immunohistochemistry and quantitative polymerase chain reaction. Results In the experimental group, the trochlear dysplasia model was successfully established at 8 weeks after surgery. Moreover, cartilage degeneration was observed beginning at 8 weeks after surgery, with higher protein and mRNA expression levels of PI3K/AKT, TGFβ1, and ADAMTS-4, relative to the control group. Conclusion Patellar instability might lead to trochlear dysplasia in growing rats. Moreover, trochlear dysplasia may cause patellofemoral osteoarthritis; cartilage degeneration in trochlear dysplasia might be associated with activation of the PI3K/AKT signaling pathway. These results provide insights regarding the high incidence of osteoarthritis in patients with trochlear dysplasia. However, more research is needed to clarify the underlying mechanisms.
Collapse
|
5
|
Abusharkh HA, Mallah AH, Amr MM, Mendenhall J, Gozen BA, Tingstad EM, Abu-Lail NI, Van Wie BJ. Enhanced matrix production by cocultivated human stem cells and chondrocytes under concurrent mechanical strain. In Vitro Cell Dev Biol Anim 2021; 57:631-640. [PMID: 34129185 DOI: 10.1007/s11626-021-00592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
Conventional treatments of osteoarthritis have failed to re-build functional articular cartilage. Tissue engineering clinical treatments for osteoarthritis, including autologous chondrocyte implantation, provides an alternative approach by injecting a cell suspension to fill lesions within the cartilage in osteoarthritic knees. The success of chondrocyte implantation relies on the availability of chondrogenic cell lines, and their resilience to high mechanical loading. We hypothesize we can reduce the numbers of human articular chondrocytes necessary for a treatment by supplementing cultures with human adipose-derived stem cells, in which stem cells will have protective and stimulatory effects on mixed cultures when exposed to high mechanical loads, and in which coculture will enhance production of requisite extracellular matrix proteins over those produced by stretched chondrocytes alone. In this work, adipose-derived stem cells and articular chondrocytes were cultured separately or cocultivated at ratios of 3:1, 1:1, and 1:3 in static plates or under excessive cyclic tensile strain of 10% and results were compared to culturing of both cell types alone with and without cyclic strain. Results indicate 75% of chondrocytes in engineered articular cartilage can be replaced with stem cells with enhanced collagen over all culture conditions and glycosaminoglycan content over stretched cultures of chondrocytes. This can be done without observing adverse effects on cell viability. Collagen and glycosaminoglycan secretion, when compared to chondrocyte alone under 10% strain, was enhanced 6.1- and 2-fold, respectively, by chondrocytes cocultivated with stem cells at a ratio of 1:3.
Collapse
Affiliation(s)
- Haneen A Abusharkh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA, 99164-6515, USA
| | - Alia H Mallah
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Mahmoud M Amr
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Juana Mendenhall
- Department of Chemistry, Morehouse College, Atlanta, GA, 30314, USA
| | - Bulent A Gozen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| | - Edwin M Tingstad
- Inland Orthopedic Surgery and Sports Medicine Clinic, Pullman, WA, 99163, USA
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Bernard J Van Wie
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
6
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Dai Y, Lu J, Li F, Yang G, Ji G, Wang F. Changes in cartilage and subchondral bone in a growing rabbit experimental model of developmental trochlear dysplasia of the knee. Connect Tissue Res 2021; 62:299-312. [PMID: 31829044 DOI: 10.1080/03008207.2019.1697245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Trochlear dysplasia is one of the most frequent lower extremities deformities. Aim of this research was to investigate the changes in cartilage and subchondral bone of trochlea after patellar dislocation in growing rabbits. Materials and Methods: Ninety-six knees from 48 one-month-old rabbits were divided into two groups (experimental, control). Lateral patellar dislocation was established in the experimental group and distal femurs were collected at 4, 8, 12 and 24-week time points, respectively. General examination and histological observations were conducted to research the anatomical structure of the trochlear cartilage and subchondral bone. Structural parameters of trochlear subchondral bone were measured by MicroCT. Subsequently, the expression of TRPV4, collagen II and MMP-13 in cartilage were detected by western blot and RT-PCR analysis, respectively.Results: Subchondral bone loss was found in experimental group from 4 weeks after patellar dislocation, accompanied by increased TRAP-positive osteoclasts in subchondral bone. The trochlear dysplasia model was well established from 8 weeks after patellar dislocation. In addition, degeneration of cartilage was found from 8 weeks, accompanied by decreased expression of mechanically sensitive TRPV4 and collagen II, and increased expression of MMP-13.Conclusions: This study proved that trochlear dysplasia can be caused by patellar dislocation in growing rabbits, accompanied by significant subchondral bone loss. What is more, this study also shows that degenerative cartilage changes occur in the patellar dislocation model and become aggravated with time, accompanied by decreased TRPV4 and collagen II, but increased MMP-13.
Collapse
Affiliation(s)
- Yike Dai
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Jiangfeng Lu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Faquan Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Guangmin Yang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Gang Ji
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Fei Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
8
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
9
|
Wu H, Wang Z, Liu S, Meng H, Liu S, Fu S. Sub-toxic levels of cobalt ions impair chondrocyte mechanostranduction via HDAC6-dependent primary cilia shortening. Biochem Biophys Res Commun 2021; 544:38-43. [PMID: 33516880 DOI: 10.1016/j.bbrc.2021.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Cobalt ions are the main wear particles associated with orthopaedic implants, causing adverse complications due to cytotoxicity and inflammatory mediators. Recent studies have shown that sub-toxic levels of cobalt ions regulate matrix synthesis and inflammation, but the influence of cobalt ions on mechanotransduction remains unclear. Previously, we reported that sub-toxic levels of cobalt ions modulated primary cilia, which are crucial for mechanotransduction. This study therefore aimed to investigate the effect of cobalt ions on chondrocyte mechanosensation in response to cyclic tensile strain and the association with primary cilia. Sub-toxic levels of cobalt ions impaired chondrocyte mechanosensation and affected the gene expression of aggrecan, collagen II and MMP-13. Moreover, cobalt ions induced HDAC6-dependent primary cilia disassembly, which was associated with either cytoplasmic or ciliary α-tubulin deacetylation. Pharmaceutical HDAC6 inhibition with tubacin restored primary cilia length and mechanotransduction, whereas chemical depletion of primary cilia by chloral hydrate prevented mechanosignalling. Thus, sub-toxic levels of cobalt ions impaired chondrocyte mechanotransduction via HDAC6 activation, which was associated with tubulin deacetylation and primary cilia shortening.
Collapse
Affiliation(s)
- Han Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China.
| | - Zhao Wang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University, China.
| | - Song Liu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University, China.
| | - Huan Meng
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - Shengyuan Liu
- College of Life Science, Northeast Agricultural University, China.
| | - Su Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
10
|
Yagi H, Ulici V, Tuan RS. Polyphenols suppress inducible oxidative stress in human osteoarthritic and bovine chondrocytes. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100064. [PMID: 36474689 PMCID: PMC9718082 DOI: 10.1016/j.ocarto.2020.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in chondrocyte senescence and cartilage aging, pathogenesis of osteoarthritis (OA), and rheumatoid arthritis. Naturally occurring polyphenolic compounds (PPCs), such as curcumin (turmeric), resveratrol (grape), and epigallocatechin-3-gallate (EGCG) (green tea), have been known for their anti-inflammatory and chondroprotective effects. However, the potential protective effects of these PPCs against oxidative stress in chondrocytes are unclear. To investigate this, bovine articular chondrocytes and human osteoarthritic chondrocytes were pre-treated with PPCs at varying concentrations, and then exposed to hydrogen peroxide (H2O2) as an ROS inducer or S-nitroso-N-acetylpenicillamine (SNAP) as a NO donor. Alternatively, chondrocytes were co-treated with polyphenols and H2O2. Intracellular ROS/NO were measured using a fluorescent dye technique (H2DCF-DA for ROS; DAF-FM for NO). Our findings showed that PPC pre-/co-treatment inhibited both H2O2-induced ROS and SNAP-induced NO at different concentrations in both bovine chondrocytes and human osteoarthritic chondrocytes. Curcumin also increased glutathione peroxidase activity in the presence of H2O2 in bovine chondrocytes. Taken together, these findings indicate that PPCs are capable of suppressing oxidative stress- induced responses in chondrocytes, which may have potential therapeutic value for OA clinical application.
Collapse
Key Words
- Chondrocytes
- DAF-FM, 4-amino-5-methylamino-2′,7′-difluorofluorescein
- DMEM, Dulbecco's Modified Eagle's Medium
- DMOADs, disease modifying osteoarthritis drugs
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediaminetetraacetic acid
- EGCG, epigallocatechin-3-gallate
- FBS, fetal bovine serum
- GPx, glutathione peroxidase
- H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- H2O2, hydrogen peroxide
- NAC, N-acetyl-l-cysteine
- NO, nitric oxide
- Oxidative stress
- PBS, phosphate-buffered saline
- Polyphenols
- ROS, reactive oxygen species
- Reactive oxygen species
- SNAP, S-nitroso-N-acetylpenicillamine
- l-NAME, Nω-nitro-l-arginine methyl ester hydrochloride
Collapse
Affiliation(s)
- Haruyo Yagi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Rocky S. Tuan
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
11
|
Chen J, Chin A, Almarza AJ, Taboas JM. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. Biomed Mater 2020; 15:045006. [PMID: 31470441 PMCID: PMC11934051 DOI: 10.1088/1748-605x/ab401f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ideal combination of hydrogel components for regeneration of cartilage and cartilaginous interfaces is a significant challenge because control over differentiation into multiple lineages is necessary. Stabilization of the phenotype of stem cell derived chondrocytes is needed to avoid undesired progression to terminal hypertrophy and tissue mineralization. A novel ternary blend hydrogel composed of methacrylated poly(ethylene glycol) (PEG), gelatin, and heparin (PGH) was designed to guide chondrogenesis by bone marrow derived mesenchymal stem cells (BMSCs) and maintenance of their cartilaginous phenotype. The hydrogel material effects on chondrogenic and osteogenic differentiation by BMSCs were evaluated in comparison to methacrylated gelatin hydrogel (GEL), a conventional bioink used for both chondrogenic and osteogenic applications. PGH and GEL hydrogels were loaded with goat BMSCs and cultured in chondrogenic and osteogenic mediums in vitro over six weeks. The PGH showed no sign of mineral deposition in an osteogenic environment in vitro. To further evaluate material effects, the hydrogels were loaded with adult human BMSCs (hBMSCs) and transforming growth factor β-3 and grown in subcutaneous pockets in mice over eight weeks. Consistent with the in vitro results, the PGH had greater potential to induce chondrogenesis by BMSCs in vivo compared to the GEL as evidenced by elevated gene expression of chondrogenic markers, supporting its potential for stable cartilage engineering. The PGH also showed a greater percentage of GAG positive cells compared to the GEL. Unlike the GEL, the PGH hydrogel exhibited anti-osteogenic effects in vivo as evidenced by negative Von Kossa staining and suppressed gene expression of hypertrophic and osteogenic markers. By nature of their polymer composition alone, the PGH and GEL regulated BMSC differentiation down different osteochondral lineages. Thus, the PGH and GEL are promising hydrogels to regenerate stratified cartilaginous interfacial tissues in situ, such as the mandibular condyle surface, using undifferentiated BMSCs and a stratified scaffold design.
Collapse
Affiliation(s)
- Jingming Chen
- Department of Bioengineering; University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Center for Craniofacial Regeneration; University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | | | |
Collapse
|
12
|
Yang H, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Xie M, Chen D, Wang M. Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20153797. [PMID: 31382618 PMCID: PMC6695690 DOI: 10.3390/ijms20153797] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
The temporomandibular joint (TMJ), which is biomechanically related to dental occlusion, is often insulted by osteoarthritis (OA). This study was conducted to clarify the relationship between Indian hedgehog (Ihh) and parathyroid hormone receptor 1 (PTH1R) signaling in modulating the enhanced chondrocyte terminal differentiation in dental stimulated TMJ osteoarthritic cartilage. A gain- and loss-of-function strategy was used in an in vitro model in which fluid flow shear stress (FFSS) was applied, and in an in vivo model in which the unilateral anterior cross-bite (UAC) stimulation was adopted. Ihh and PTH1R signaling was modulated through treating the isolated chondrocytes with inhibitor/activator and via deleting Smoothened (Smo) and/or Pth1r genes in mice with the promoter gene of type 2 collagen (Col2-CreER) in the tamoxifen-inducible pattern. We found that both FFSS and UAC stimulation promoted the deep zone chondrocytes to undergo terminal differentiation, while cells in the superficial zone were robust. We demonstrated that the terminal differentiation process in deep zone chondrocytes promoted by FFSS and UAC was mediated by the enhanced Ihh signaling and declined PTH1R expression. The FFSS-promoted terminal differentiation was suppressed by administration of the Ihh inhibitor or PTH1R activator. The UAC-promoted chondrocytes terminal differentiation and OA-like lesions were rescued in Smo knockout, but were enhanced in Pth1r knockout mice. Importantly, the relieving effect of Smo knockout mice was attenuated when Pth1r knockout was also applied. Our data suggest a chondrocyte protective effect of suppressing Ihh signaling in TMJ OA cartilage which is dependent on PTH1R signaling.
Collapse
Affiliation(s)
- Hongxu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mianjiao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Tong W, Zeng Y, Chow DHK, Yeung W, Xu J, Deng Y, Chen S, Zhao H, Zhang X, Ho KK, Qin L, Mak KKL. Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann Rheum Dis 2019; 78:551-561. [PMID: 30745310 DOI: 10.1136/annrheumdis-2018-214200] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Wnt16 is implicated in bone fracture and bone mass accrual both in animals and humans. However, its functional roles and molecular mechanism in chondrocyte differentiation and osteoarthritis (OA) pathophysiology remain largely undefined. In this study, we analysed its mechanistic association and functional relationship in OA progression in chondrocyte lineage. METHODS The role of Wnt16 during skeletal development was examined by Col2a1-Wnt16 transgenic mice and Wnt16fl/fl;Col2a1-Cre (Wnt16-cKO) mice. OA progression was assessed by micro-CT analysis and Osteoarthritis Research Society International score after anterior cruciate ligament transection (ACLT) surgery with Wnt16 manipulation by adenovirus intra-articular injection. The molecular mechanism was investigated in vitro using 3D chondrocyte pellet culture and biochemical analyses. Histological analysis was performed in mouse joints and human cartilage specimens. RESULTS Wnt16 overexpression in chondrocytes in mice significantly inhibited chondrocyte hypertrophy during skeletal development. Wnt16 deficiency exaggerated OA progression, whereas intra-articular injection of Ad-Wnt16 markedly attenuated ACLT-induced OA. Cellular and molecular analyses showed that, instead of β-catenin and calcium pathways, Wnt16 activated the planar cell polarity (PCP) and JNK pathway by interacting mainly with AP2b1, and to a lesser extend Ror2 and CD146, and subsequently induced PTHrP expression through phosphor-Raptor mTORC1 pathway. CONCLUSIONS Our findings indicate that Wnt16 activates PCP/JNK and crosstalks with mTORC1-PTHrP pathway to inhibit chondrocyte hypertrophy. Our preclinical study suggests that Wnt16 may be a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yelin Zeng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujie Deng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shihui Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kevin Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kingston King-Lun Mak
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The Joint Center for Musculoskeletal Research, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
14
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Hermida-Gómez T, Fuentes-Boquete IM, de Toro FJ, Blanco FJ, Díaz-Prado SM. Human Cartilage Engineering in an In Vitro Repair Model Using Collagen Scaffolds and Mesenchymal Stromal Cells. Int J Med Sci 2017; 14:1257-1262. [PMID: 29104482 PMCID: PMC5666559 DOI: 10.7150/ijms.19835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate cartilage repair of in vitro lesion models using human bone marrow mesenchymal stromal cells (hBMSCs) with different collagen (Col) scaffolds. Lesions were made in human cartilage biopsies. Injured samples were pre-treated with interleukin 1β (IL1β) for 24 h; also, samples were not pre-treated. hBMSCs were seeded on different types of collagen scaffolds. The resulting constructs were placed into the lesions, and the biopsies were cultured for 2 months in chondrogenic medium. Using the modified ICRSII scale, neotissues from the different scaffolds showed ICRS II overall assessment scores ranging from 50% (fibrocartilage) to 100% (hyaline cartilage), except for the Col I +Col II +HS constructs (fibrocartilage/hyaline cartilage, 73%). Data showed that hBMSCs cultured only on Col I +Col II +HS scaffolds displayed a chondrocyte-like morphology and cartilage-like matrix close to native cartilage. Furthermore, IL1β pre-treated biopsies decreased capacity for repair by hBMSCs and decreased levels of chondrogenic phenotype of human cartilage lesions.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain
| | - Tamara Hermida-Gómez
- Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isaac Manuel Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Francisco Javier de Toro
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Francisco Javier Blanco
- Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Silvia María Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
15
|
Madry H, Cucchiarini M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther 2015; 16:331-46. [PMID: 26593049 DOI: 10.1517/14712598.2016.1124084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is the most prevalent chronic joint disease. Its key feature is a progressive articular cartilage loss. Gene therapy for OA aims at delivering gene-based therapeutic agents to the osteoarthritic cartilage, resulting in a controlled, site-specific, long-term presence to rebuild the damaged cartilage. AREAS COVERED An overview is provided of the principles of gene therapy for OA based on a PubMed literature search. Gene transfer to normal and osteoarthritic cartilage in vitro and in animal models in vivo is reviewed. Results from recent clinical gene therapy trials for OA are discussed and placed into perspective. EXPERT OPINION Recombinant adeno-associated viral (rAAV) vectors enable to directly transfer candidate sequences in human articular chondrocytes in situ, providing a potent tool to modulate the structure of osteoarthritic cartilage. However, few preclinical animal studies in OA models have been performed thus far. Noteworthy, several gene therapy clinical trials have been carried out in patients with end-stage knee OA based on the intraarticular injection of human juvenile allogeneic chondrocytes overexpressing a cDNA encoding transforming growth factor-beta-1 via retroviral vectors. In a recent placebo-controlled randomized trial, clinical scores were improved compared with placebo. These translational results provide sufficient reason to proceed with further clinical testing of gene transfer protocols for the treatment of OA.
Collapse
Affiliation(s)
- Henning Madry
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
16
|
Xie X, Ulici V, Alexander PG, Jiang Y, Zhang C, Tuan RS. Platelet-Rich Plasma Inhibits Mechanically Induced Injury in Chondrocytes. Arthroscopy 2015; 31:1142-50. [PMID: 25769480 DOI: 10.1016/j.arthro.2015.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 12/11/2014] [Accepted: 01/09/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of platelet-rich plasma (PRP) on mechanically injured chondrocytes. METHODS PRP from bovine whole blood was activated to prepare platelet-rich plasma releasate (PRPr). Bovine articular chondrocytes were subjected to 16%, 0.5-Hz biaxial cyclic tensile strain (CTS) for 48 hours and cultured for another 24 hours without cell stretching as an in vitro model of mechanically injured chondrocytes. Culture medium in the 3 PRP- and CTS-treated groups was supplemented with 10% PRPr at the start of CTS, after 24 hours of CTS, and after 48 hours of CTS, respectively. Gene expression levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-3, MMP-13, inducible nitric oxide synthase, and cyclooxygenase 2 were quantitatively evaluated. Changes in the content of nitric oxide (NO), prostaglandin E2 (PGE2), MMP-3, and tissue inhibitor of metalloproteinase 1 in the culture medium were also measured. RESULTS PRPr increased type II collagen and aggrecan messenger RNA expression; diminished CTS-dependent up-regulation of MMP-3, inducible nitric oxide synthase, and cyclooxygenase 2 gene expression; and reduced CTS-induced overproduction of NO and PGE2 when PRPr was applied early at the start of CTS. The addition of PRPr after 24 hours of CTS only inhibited MMP-3 gene up-regulation and the increase of NO and PGE2 induced by CTS. These changes were not observed when PRPr was supplemented after 48 hours of CTS. PRPr mitigated the increased MMP-3 production and decreased tissue inhibitor of metalloproteinase 1 secretion resulting from CTS in a time-dependent manner. CONCLUSIONS PRP treatment ameliorated multiple CTS-mediated catabolic and inflammatory responses in chondrocytes. More beneficial effects were observed with early PRP application. CLINICAL RELEVANCE Intra-articular PRP injections at the beginning of strenuous exercises may be used to protect chondrocytes from mechanical injury, thus preventing joints from increased wear.
Collapse
Affiliation(s)
- Xuetao Xie
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A.; Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Veronica Ulici
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, U.S.A..
| |
Collapse
|
17
|
Bleuel J, Zaucke F, Brüggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. J Biomech Eng 2015; 137:061009. [PMID: 25782164 DOI: 10.1115/1.4030053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/16/2022]
Abstract
Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.
Collapse
|
18
|
Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 2015; 10:e0119816. [PMID: 25822615 PMCID: PMC4379081 DOI: 10.1371/journal.pone.0119816] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3–10% strain, 0.17–0.5 Hz, and 2–12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response.
Collapse
Affiliation(s)
- Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- * E-mail:
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
19
|
Bach FC, Rutten K, Hendriks K, Riemers FM, Cornelissen P, de Bruin A, Arkesteijn GJ, Wubbolts R, Horton WA, Penning LC, Tryfonidou MA. The paracrine feedback loop between vitamin D₃ (1,25(OH)₂D₃) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol 2014; 229:1999-2014. [PMID: 24777663 PMCID: PMC4298802 DOI: 10.1002/jcp.24658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10−8 M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration.
Collapse
Affiliation(s)
- Frances C Bach
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li N, Xu Y, Zhang H, Gao L, Li J, Wang Y, Gao Z, Pan X, Liu X, Li X, Yu Z. Excessive Retinoic Acid Impaired Proliferation and Differentiation of Human Fetal Palatal Chondrocytes (hFPCs). ACTA ACUST UNITED AC 2014; 101:276-82. [PMID: 24798219 DOI: 10.1002/bdrb.21110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ning Li
- Public Health School; Zhengzhou University; Zhengzhou; China
- Henan Agriculture University; Zhengzhou; China
| | - Yusheng Xu
- The First Affiliated Hospital; Zhengzhou University; Zhengzhou; China
| | - Huanhuan Zhang
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Liyun Gao
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Jue Li
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Yongchao Wang
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Zhan Gao
- The First Affiliated Hospital; Zhengzhou University; Zhengzhou; China
| | - Xinjuan Pan
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Xiaozhuan Liu
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Xing Li
- Public Health School; Zhengzhou University; Zhengzhou; China
| | - Zengli Yu
- Public Health School; Zhengzhou University; Zhengzhou; China
| |
Collapse
|
21
|
Itoh S, Hattori T, Tomita N, Aoyama E, Yutani Y, Yamashiro T, Takigawa M. CCN family member 2/connective tissue growth factor (CCN2/CTGF) has anti-aging effects that protect articular cartilage from age-related degenerative changes. PLoS One 2013; 8:e71156. [PMID: 23951098 PMCID: PMC3741357 DOI: 10.1371/journal.pone.0071156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage.
Collapse
Affiliation(s)
- Shinsuke Itoh
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail: (TH); (MT)
| | - Nao Tomita
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Aoyama
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | | | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail: (TH); (MT)
| |
Collapse
|
22
|
WU XIAOCHENG, HUANG BO, WANG JIAN, LI CHANGQING, ZHOU YUE. Collagen-targeting parathyroid hormone-related peptide promotes collagen binding and in vitro chondrogenesis in bone marrow-derived MSCs. Int J Mol Med 2012; 31:430-6. [DOI: 10.3892/ijmm.2012.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/06/2012] [Indexed: 11/05/2022] Open
|
23
|
Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2012; 3:22. [PMID: 22742415 PMCID: PMC3583131 DOI: 10.1186/scrt113] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Introduction Transplantation of genetically modified human bone marrow-derived mesenchymal stem cells (hMSCs) with an accurate potential for chondrogenic differentiation may be a powerful means to enhance the healing of articular cartilage lesions in patients. Here, we evaluated the benefits of delivering SOX9 (a key regulator of chondrocyte differentiation and cartilage formation) via safe, maintained, replication-defective recombinant adeno-associated virus (rAAV) vector on the capability of hMSCs to commit to an adequate chondrocyte phenotype compared with other mesenchymal lineages. Methods The rAAV-FLAG-hSOX9 vector was provided to both undifferentiated and lineage-induced MSCs freshly isolated from patients to determine the effects of the candidate construct on the viability, biosynthetic activities, and ability of the cells to enter chondrogenic, osteogenic, and adipogenic differentiation programs compared with control treatments (rAAV-lacZ or absence of vector administration). Results Marked, prolonged expression of the transcription factor was noted in undifferentiated and chondrogenically differentiated cells transduced with rAAV-FLAG-hSOX9, leading to increased synthesis of major extracellular matrix components compared with control treatments, but without effect on proliferative activities. Chondrogenic differentiation (SOX9, type II collagen, proteoglycan expression) was successfully achieved in all types of cells but strongly enhanced when the SOX9 vector was provided. Remarkably, rAAV-FLAG-hSOX9 delivery reduced the levels of markers of hypertrophy, terminal and osteogenic/adipogenic differentiation in hMSCs (type I and type X collagen, alkaline phosphatise (ALP), matrix metalloproteinase 13 (MMP13), and osteopontin (OP) with diminished expression of the osteoblast-related transcription factor runt-related transcription factor 2 (RUNX2); lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma 2 (PPARG2)), as well as their ability to undergo proper osteo-/adipogenic differentiation. These effects were accompanied with decreased levels of β-catenin (a mediator of the Wnt signaling pathway for osteoblast lineage differentiation) and enhanced parathyroid hormone-related protein (PTHrP) expression (an inhibitor of hypertrophic maturation, calcification, and bone formation) via SOX9 treatment. Conclusions This study shows the potential benefits of rAAV-mediated SOX9 gene transfer to propagate hMSCs with an advantageous chondrocyte differentiation potential for future, indirect therapeutic approaches that aim at restoring articular cartilage defects in the human population.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical CenterHomburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Chen J, Zhang S, Ouyang HW. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Res Ther 2012; 14:221. [PMID: 22971952 PMCID: PMC3580589 DOI: 10.1186/ar4025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cartilage repair tissue is usually accompanied by chondrocyte hypertrophy and osseous overgrowths, and a role for parathyroid hormone-related protein (PTHrP) in inhibiting chondrocytes from hypertrophic differentiation during the process of endochondral ossification has been demonstrated. However, application of PTHrP in cartilage repair has not been extensively considered. This review systemically summarizes for the first time the inhibitory function of PTHrP on chondrocyte hypertrophy in articular cartilage and during the process of endochondral ossification, as well as the process of mesenchymal stem cell chondrogenic differentiation. Based on the literature review, the strategy of using PTHrP for articular cartilage repair is suggested, which is instructive for clinical treatment of cartilage injuries as well as osteoarthritis.
Collapse
|
25
|
Bo N, Peng W, Xinghong P, Ma R. Early cartilage degeneration in a rat experimental model of developmental dysplasia of the hip. Connect Tissue Res 2012; 53:513-20. [PMID: 22670655 DOI: 10.3109/03008207.2012.700346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is a common long-term complication of developmental dysplasia of the hip (DDH) that is associated with a higher incidence of OA. In addition, the age of onset of OA in DDH patients is significantly younger than in the general population. In order to investigate the early degeneration in DDH cartilage, we used a rat DDH model that was established by the straight-leg swaddling position. The hips were isolated from the DDH model rats and an untreated control group at postnatal weeks 2, 4, 6, and 8. Histology and proteoglycan levels were observed in articular cartilage using Safranin O staining. Biomarkers of cartilage degeneration, including type X collagen and matrix metalloproteinase (MMP)-13, were assessed using immunohistochemistry and quantitative real-time polymerase chain reaction. In addition, expressions of ADAMTS-4 and ADAMTS-5 were studied using quantitative real-time polymerase chain reaction at different ages. DDH rats showed decreased proteoglycans and derangement of chondrocytes when compared with the control group. Collagen X and MMP-13 expressions were higher in the superficial zone of DDH rats than in that of controls (p < 0.05), and the increase was age-dependent. mRNA expression of Collagen X and MMP-13 showed similar results (p < 0.05). A significant increase in mRNA expression of ADAMTS-5 was found in the DDH model cartilage at 8 weeks (p < 0.05). However, no change was observed in ADAMTS-4 expression. This study shows that degenerative cartilage changes occur at an early stage in the rat DDH model and become aggravated with age.
Collapse
Affiliation(s)
- Ning Bo
- Department of Pediatric Orthopaedic, Children's Hospital of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|