1
|
Walters M, Skovgaard K, Heegaard PMH, Fang Y, Kharaz YA, Bundgaard L, Skovgaard LT, Jensen HE, Andersen PH, Peffers MJ, Jacobsen S. Identification and characterisation of temporal abundance of microRNAs in synovial fluid from an experimental equine model of osteoarthritis. Equine Vet J 2025. [PMID: 39775906 DOI: 10.1111/evj.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis. OBJECTIVES To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis. We hypothesised that the abundance of miRNA would change during disease progression. STUDY DESIGN In vivo experiments. METHODS RNA extracted from synovial fluid obtained sequentially (Day 0, 28 and 70) from nine horses with experimentally induced osteoarthritis was subjected to small RNA sequencing using the Illumina Hiseq 4000 sequencing platform. Differentially abundant miRNAs underwent further validation and mapping of temporal abundance (Day 0, 14, 17, 21, 28, 35, 42, 49, 56, 63 and 70 days after osteoarthritis induction) by microfluidic reverse transcription quantitative real-time PCR. Bioinformatic analyses were performed to predict potential biological associations and target genes of the differentially abundant microRNAs. RESULTS Small RNA sequencing revealed 61 differentially abundant microRNAs at an early osteoarthritis stage (Day 28), and subsequent reverse transcription quantitative real-time PCR analysis validated 20 of these. Significant biological functions of the differentially abundant microRNAs were apoptosis, necrosis, cell proliferation and cell invasion. Following validation, four microRNAs (miRNA-199b-3p, miRNA-139-5p, miRNA-1839 and miRNA-151-5p) were detected in more than 50% of the synovial fluid samples and had higher abundance in osteoarthritic than in control joints. MAIN LIMITATIONS Limited sample size. CONCLUSION This is the first study to determine longitudinal changes in synovial fluid microRNA abundance in an equine model of osteoarthritis. Larger studies are needed in naturally occurring osteoarthritis to interrogate putative changes identified by this study.
Collapse
Affiliation(s)
- Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yalda A Kharaz
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lene T Skovgaard
- Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pia H Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
2
|
Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S, Huang L, Han P, He C, Song C, Xiang X. Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health. Mol Cancer 2024; 23:276. [PMID: 39707444 DOI: 10.1186/s12943-024-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a type of circular DNAs originating from but independent of chromosomal DNAs. Nowadays, with the rapid development of sequencing and bioinformatics, the accuracy of eccDNAs detection has significantly improved. This advancement has consequently enhanced the feasibility of exploring the biological characteristics and functions of eccDNAs. This review elucidates the potential mechanisms of eccDNA generation, the existing methods for their detection and analysis, and their basic features. Furthermore, it focuses on the biological functions of eccDNAs in regulating gene expression under both physiological and pathological conditions. Additionally, the review summarizes the clinical implications of eccDNAs in human cancers and health.
Collapse
Affiliation(s)
- Zilong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenli Zhu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhen Xu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lei Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Han
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Millet M, Auroux M, Beaudart C, Demonceau C, Ladang A, Cavalier E, Reginster JY, Bruyère O, Chapurlat R, Rousseau JC. Association of circulating hsa-miRNAs with sarcopenia: the SarcoPhAge study. Aging Clin Exp Res 2024; 36:70. [PMID: 38485856 PMCID: PMC10940485 DOI: 10.1007/s40520-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To identify a microRNA signature associated to sarcopenia in community-dwelling older adults form the SarcoPhAge cohort. METHODS In a screening phase by next generation sequencing (NGS), we compared the hsa-miRome expression of 18 subjects with sarcopenia (79.6 ± 6.8 years, 9 men) and 19 healthy subjects without sarcopenia (77.1 ± 6 years, 9 men) at baseline. Thereafter, we have selected eight candidate hsa-miRNAs according to the NGS results and after a critical assessment of previous literature. In a validation phase and by real-time qPCR, we then analyzed the expression levels of these 8 hsa-miRNAs at baseline selecting 92 healthy subjects (74.2 ± 10 years) and 92 subjects with sarcopenia (75.3 ± 6.8 years). For both steps, the groups were matched for age and sex. RESULTS In the validation phase, serum has-miRNA-133a-3p and has-miRNA-200a-3p were significantly decreased in the group with sarcopenia vs controls [RQ: relative quantification; median (interquartile range)]: -0.16 (-1.26/+0.90) vs +0.34 (-0.73/+1.33) (p < 0.01) and -0.26 (-1.07/+0.68) vs +0.27 (-0.55/+1.10) (p < 0.01) respectively. Has-miRNA-744-5p was decreased and has-miRNA-151a-3p was increased in the group with sarcopenia vs controls, but this barely reached significance: +0.16 (-1.34/+0.79) vs +0.44 (-0.31/+1.00) (p = 0.050) and +0.35 (-0.22/+0.90) vs +0.03 (-0.68/+0.75) (p = 0.054). CONCLUSION In subjects with sarcopenia, serum hsa-miRNA-133a-3p and hsa-miRNA-200a-3p expression were downregulated, consistent with their potential targets inhibiting muscle cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Maxime Auroux
- INSERM 1033, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Céline Demonceau
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Roland Chapurlat
- INSERM 1033, Lyon, France
- PMO, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Lyon, France
| | | |
Collapse
|
4
|
Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ, Comerford EJ. Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci 2023; 10:1266088. [PMID: 38187089 PMCID: PMC10768046 DOI: 10.3389/fmolb.2023.1266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The anterior cruciate ligament (ACL) is susceptible to degeneration, resulting in joint pain, reduced mobility, and osteoarthritis development. There is currently a paucity of knowledge on how anterior cruciate ligament degeneration and disease leads to osteoarthritis. Small non-coding RNAs (sncRNAs), such as microRNAs and small nucleolar RNA (snoRNA), have diverse roles, including regulation of gene expression. Methods: We profiled the sncRNAs of diseased osteoarthritic ACLs to provide novel insights into osteoarthritis development. Small RNA sequencing from the ACLs of non- or end-stage human osteoarthritic knee joints was performed. Significantly differentially expressed sncRNAs were defined, and bioinformatics analysis was undertaken. Results and Discussion: A total of 184 sncRNAs were differentially expressed: 68 small nucleolar RNAs, 26 small nuclear RNAs (snRNAs), and 90 microRNAs. We identified both novel and recognized (miR-206, -365, and -29b and -29c) osteoarthritis-related microRNAs and other sncRNAs (including SNORD72, SNORD113, and SNORD114). Significant pathway enrichment of differentially expressed miRNAs includes differentiation of the muscle, inflammation, proliferation of chondrocytes, and fibrosis. Putative mRNAs of the microRNA target genes were associated with the canonical pathways "hepatic fibrosis signaling" and "osteoarthritis." The establishing sncRNA signatures of ACL disease during osteoarthritis could serve as novel biomarkers and potential therapeutic targets in ACL degeneration and osteoarthritis development.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
O'Sullivan O, Ladlow P, Steiner K, Hillman C, Stocks J, Bennett AN, Valdes AM, Kluzek S. Current status of catabolic, anabolic and inflammatory biomarkers associated with structural and symptomatic changes in the chronic phase of post-traumatic knee osteoarthritis- a systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100412. [PMID: 37877037 PMCID: PMC10590857 DOI: 10.1016/j.ocarto.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Post-traumatic OA (PTOA) can occur within 5 years after a significant injury and is a valuable paradigm for identifying biomarkers. This systematic review aims to summarise published literature in human studies on the associations of known serum and synovial fluid biomarkers at least a year from injury to structural, symptomatic changes and underlying PTOA processes. A systematic review was performed using PRISMA guidelines, prospectively registered on PROSPERO (CRD42022371838), for all 'wet' biomarkers a year or more post-injury in 18-45-year-old participants. Three independent reviewers screened search results, extracted data, and performed risk of bias assessments (Newcastle-Ottawa Scale). Study heterogeneity meant a narrative synthesis was undertaken, utilising SWiM guidelines. 952 studies were identified, 664 remaining after deduplication. Following first-round screening, 53 studies underwent second-round screening against pre-determined criteria. Eight studies, with 879 participants (49 % male), were included, measuring serum (n = 7), synovial fluid (SF, n = 6), or both (n = 5). The pooled participant mean age was 29.1 (±4). 51 biomarkers were studied (serum = 38, SF = 13), with no correlation between paired serum and SF samples. One serum biomarker, cartilage oligomeric matrix protein (COMP), and four SF biomarkers, interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF), and COMP, were measured in multiple studies. Associations were described between 11 biomarkers related to catabolism (n = 4), anabolism (n = 2), inflammation (n = 4) and non-coding RNA (n = 1), with OA imaging changes (X-ray and MRI), pain, quality of life and function. Widespread differences in study design and methodology prevented meta-analysis, and evidence was generally weak. A unified approach is required before widespread research and clinical biomarker use.
Collapse
Affiliation(s)
- Oliver O'Sullivan
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC), Stanford Hall, Loughborough, UK
- Academic Unit of Injury, Recovery and Inflammation Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Peter Ladlow
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC), Stanford Hall, Loughborough, UK
- Department of Health, University of Bath, Bath, UK
| | - Kat Steiner
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Charles Hillman
- Academic Unit of Injury, Recovery and Inflammation Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Joanne Stocks
- Academic Unit of Injury, Recovery and Inflammation Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander N. Bennett
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC), Stanford Hall, Loughborough, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ana M. Valdes
- Nottingham NIHR Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Stefan Kluzek
- Academic Unit of Injury, Recovery and Inflammation Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.
Collapse
Affiliation(s)
- Guus G.H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Marjolein M.J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tim J.M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
7
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
8
|
SNORA42 promotes oesophageal squamous cell carcinoma development through triggering the DHX9/p65 axis. Genomics 2021; 113:3015-3029. [PMID: 34182081 DOI: 10.1016/j.ygeno.2021.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are an important group of non-coding RNAs that have been reported to play a key role in the occurrence and development of various cancers. Here we demonstrate that Small nucleolar RNA 42 (SNORA42) enhanced the proliferation and migration of Oesophageal squamous carcinoma cells (ESCC) via the DHX9/p65 axis. Our results found that SNORA42 was significantly upregulated in ESCC cell lines, tissues and serum of ESCC patients. The high expression level of SNORA42 was positively correlated with malignant characteristics and over survival probability of patients with ESCC. Through in vitro and in vivo approaches, we demonstrated that knockdown of SNORA42 significantly impeded ESCC growth and metastasis whereas overexpression of SNORA42 got opposite effects. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into the cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From the KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promoting the transcriptional co-activator DHX9 interacted with p-p65, inducing NF-κB downstream gene expression. In summary, our study highlights the potential of SNORA42 is up-regulated in ESCC and promotes ESCC development partly via interacting with DHX9 and triggering the DHX9/p65 axis.
Collapse
|
9
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Balaskas P, Green JA, Haqqi TM, Dyer P, Kharaz YA, Fang Y, Liu X, Welting TJ, Peffers MJ. Small Non-Coding RNAome of Ageing Chondrocytes. Int J Mol Sci 2020; 21:E5675. [PMID: 32784773 PMCID: PMC7461137 DOI: 10.3390/ijms21165675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little research has been conducted on the effect of ageing on the expression of small non-coding RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq). Differential expression analysis was performed in R using package DESeq2. For transfer RNA (tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version 2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs. qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs), tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential involvement in age-related cartilage diseases.
Collapse
Affiliation(s)
- Panagiotis Balaskas
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Jonathan A. Green
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (J.A.G.); (T.M.H.)
| | - Tariq M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (J.A.G.); (T.M.H.)
| | - Philip Dyer
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Yalda A. Kharaz
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK; (Y.F.); (X.L.)
| | - Xuan Liu
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK; (Y.F.); (X.L.)
| | - Tim J.M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands;
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (P.D.); (Y.A.K.)
| |
Collapse
|
11
|
Peffers MJ, Chabronova A, Balaskas P, Fang Y, Dyer P, Cremers A, Emans PJ, Feczko PZ, Caron MM, Welting TJM. SnoRNA signatures in cartilage ageing and osteoarthritis. Sci Rep 2020; 10:10641. [PMID: 32606371 PMCID: PMC7326970 DOI: 10.1038/s41598-020-67446-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis presents as a change in the chondrocyte phenotype and an imbalance between anabolic and catabolic processes. Age affects its onset and progression. Small nucleolar RNAs (SnoRNAs) direct chemical modification of RNA substrates to fine-tune spliceosomal and rRNA function, accommodating changing requirements for splicing and protein synthesis during health and disease. Articular cartilage from young, old and OA knees was used in a microarray study to identify alterations in snoRNA expression. Changes in snoRNAs in osteoarthritis-like conditions were studied in chondrocytes using interleukin-1 and osteoarthritic synovial fluid. SNORD26 and SNORD96A knockdown and overexpression were undertaken using antisense oligonucleotides and overexpression plasmids. We identified panels of snoRNAs differentially expressed due to ageing (including SNORD96A, SNORD44) and osteoarthritis (including SNORD26 and SNORD116). In vitro experiments using osteoarthritis-like conditions affected snoRNA expression. Knockdown or overexpression of SNORD26 or SNORD96A resulted in changes in chondrogenic, hypertrophic, rRNA and osteoarthritis related gene expression. We demonstrate that snoRNA expression changes in cartilage ageing, and osteoarthritis and in osteoarthritis-like conditions, and when the expression of these snoRNAs is altered this affects chondrogenic and hypertrophic gene expression. Thus, we propose an additional dimension in the molecular mechanisms underlying cartilage ageing and osteoarthritis through the dysregulation of snoRNAs.
Collapse
Affiliation(s)
- Mandy J Peffers
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Panagiotis Balaskas
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Philip Dyer
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Z Feczko
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marjolein M Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands.,Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
12
|
Zhang H, Li J, Shao W, Shen N. LncRNA CTBP1-AS2 is upregulated in osteoarthritis and increases the methylation of miR-130a gene to inhibit chondrocyte proliferation. Clin Rheumatol 2020; 39:3473-3478. [PMID: 32388751 DOI: 10.1007/s10067-020-05113-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES LncRNA CTBP1-AS2 has been reported to be involved in type 2 diabetes and cardiomyocyte hypertrophy, while its roles in other human diseases are unknown. Our preliminary deep sequencing analysis showed altered expression of CTBP1-AS2 in osteoarthritis (OA). In addition, CTBP1-AS2 was inversely correlated with miR-130a. This study was therefore carried out to investigate the interactions between CTBP1-AS2 and miR-130a in OA. METHODS Synovial fluid was collected from 62 OA patients and 62 healthy controls. RT-qPCR was performed to determine the expression levels of CTBP1-AS2 and miR-130a in synovial fluid. Cell transfections were performed to investigate the interactions between CTBP1-AS2 and miR-130a. Methylation-specific PCR (MSP) was performed to assess the effects of CTBP1-AS2 on the methylation of miR-130a. Cell counting Kit-8 (CCK-8) assay was performed to evaluate the roles of CTBP1-AS2 and miR-130a in regulating proliferation of chondrocytes. RESULTS The results showed that CTBP1-AS2 was upregulated in OA and inversely correlated with miR-130a. In chondrocytes of OA patients, overexpression of CTBP1-AS2 led to increased methylation of miR-130a gene and downregulated expression of miR-130a, while overexpression of miR-130a did not affect the expression of CTBP1-AS2. In contrast, no interaction between CTBP1-AS2 and miR-130a was observed in chondrocytes from healthy adults. Analysis of chondrocyte proliferation showed that overexpression of miR-130a led to increased proliferation rate of chondrocytes extracted from OA patients. Overexpression of CTBP1-AS2 led to decreased proliferation rate of chondrocytes and reversed the effects of overexpressing miR-130a. CONCLUSION Therefore, CTBP1-AS2 is upregulated in OA and may increase the methylation of miR-130a gene to inhibit chondrocyte proliferation. Key Points • CTBP1-AS2 is overexpressed in OA and may downregulate miR-130a through methylation to suppress the proliferation of chondrocytes. • The interaction between CTBP1-AS2 and miR-130a is indirect and mediated by certain pathological mediators.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261031, Shandong Province, China
| | - Jinglian Li
- Weifang Medical University, NO.4948 Shengli East Street, Weifang City,, 261042, Shandong Province, China
| | - Weiguang Shao
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261031, Shandong Province, China.
| | - Naipeng Shen
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261031, Shandong Province, China.
| |
Collapse
|
13
|
Zhao Y, Yan Y, Ma R, Lv X, Zhang L, Wang J, Zhu W, Zhao L, Jiang L, Zhao L, Wen L, Yang B, Chen Y, He M, Liu M, Wei M. Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med 2020; 24:2215-2228. [PMID: 31943775 PMCID: PMC7011154 DOI: 10.1111/jcmm.14886] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six‐snoRNA signature and divided patients into high‐risk or low‐risk groups. We found patients in high‐risk group had significantly shorter overall survival and recurrence‐free survival than those in low‐risk group in test series, validation series and entire series by Kaplan‐Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six‐snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six‐snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Rong Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Jinlong Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Wenjing Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Lijie Wen
- Urology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Yang
- Urology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Rousseau JC, Millet M, Croset M, Sornay-Rendu E, Borel O, Chapurlat R. Association of circulating microRNAs with prevalent and incident knee osteoarthritis in women: the OFELY study. Arthritis Res Ther 2020; 22:2. [PMID: 31898522 PMCID: PMC6941326 DOI: 10.1186/s13075-019-2086-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives In the context of the scarcity of biomarkers for knee osteoarthritis (OA), we examined the associations of prevalent and incident OA with the expression levels of serum miRNAs in subjects with and without OA. Methods With a next-generation sequencing approach, we compared the miRome expression of 10 women with knee OA and 10 age-matched healthy subjects. By real-time qPCR, we analyzed the expression levels of 19 miRNAs at baseline selecting 43 women with prevalent knee OA (Kellgren Lawrence score of 2/3), 23 women with incident knee OA over a 4-year follow-up and 67 healthy subjects without prevalent or incident OA matched for age and body mass index. Results Serum miR-146a-5p was significantly increased in the group of prevalent knee OA compared with controls (relative quantification (RQ); median [Interquartile range] 1.12 [0.73; 1.46] vs 0.85 [0.62; 1.03], p = 0.015). The likelihood of prevalent knee OA was significantly increased (odds ratio [95% confidence interval (CI)] 1.83 [1.21–2.77], p = 0.004) for each quartile increase in serum miR-146a-5p. The women with miR-146a-5p levels above the median (0.851) had a higher risk of prevalent knee OA compared to those below the median [95% CI] 4.62 [1.85–11.5], p = 0.001. Moreover, we found a significant association between the baseline level of serum miR-186-5p and the risk of incident knee OA (Q4 vs Q1–3; odds ratio [95% CI] 6.13 [1.14–32.9], p = 0.034). Conclusion We showed for the first time that miR-146a-5p and miR-186-5p are significantly associated with prevalent and incident knee OA, respectively.
Collapse
Affiliation(s)
| | - Marjorie Millet
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France
| | - Martine Croset
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France
| | - Elisabeth Sornay-Rendu
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Olivier Borel
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Roland Chapurlat
- INSERM 1033, Pavillon F, Hôpital E. Herriot, 69437, Lyon Cedex 03, France.,Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
15
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:E4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
16
|
Huang B, Yu H, Li Y, Zhang W, Liu X. Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFR1 axis. J Cell Biochem 2019; 120:19610-19620. [PMID: 31297857 DOI: 10.1002/jcb.29267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a common joint disease with high morbidity, but there is still no definitive treatment for it. Long noncoding RNAs (lncRNAs) have been confirmed to play key roles in OA progression. This work was done to investigate the roles and action mechanism of lncRNA TNFSF10 in OA. The messenger RNA levels of TNFSF10 in articular cartilage samples from patients or chondrocytes were detected by Quantitative real-time PCR assay (qRT-PCR). The effects of TNFSF10 on chondrocytes were evaluated on the basis of cell growth, apoptosis, and inflammation. Then, the interaction between TNFSF10 and miR-376-3p was explored by dual-luciferase reporter test, RNA-binding protein immunoprecipitation, and RNA pull-down assay. Finally, various cell experiments, Western blot analysis, and qRT-PCR were performed to study the interaction among TNFSF10, miR-376-3p, and fibroblast growth factor receptor 1 (FGFR1). It was found that TNFSF10 was upregulated in OA cartilages and stimulated cell proliferation, antiapoptosis, and inflammation for chondrocytes. In addition, TNFSF10 acted as a competing endogenous RNA to downregulate miR-376-3p, and the influence of TNFSF10 on chondrocytes was partly reversed by miR-376-3p. Moreover, FGFR1, as a target of miR-376-3p, had reversal functions on the outcomes mediated by miR-376-3p. The further analysis displayed that there was a negative relationship between TNFSF10 and miR-376-3p as well as miR-376-3p and FGFR1, while FGFR1 was positively related with TNFSF10. Altogether, TNFSF10 overexpression probably stimulated proliferation and inflammation, and inhibited apoptosis by regulating the miR-376-3p/FGFR1 axis, implying that its increase contributed to OA progression. Our study provided a new potential biomarker or therapeutic target-TNFSF10, which was helpful to develop an efficient approach to cure OA.
Collapse
Affiliation(s)
- Bingzhe Huang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Haichi Yu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yingzhi Li
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wei Zhang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xiaoning Liu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
17
|
Park S, Lee M, Chun CH, Jin EJ. The lncRNA, Nespas, Is Associated with Osteoarthritis Progression and Serves as a Potential New Prognostic Biomarker. Cartilage 2019; 10:148-156. [PMID: 28805067 PMCID: PMC6425538 DOI: 10.1177/1947603517725566] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION In this article, we explored the hypothesis that the long noncoding RNA, Nespas, promotes osteoarthritis (OA) by supporting abnormal lipid metabolism in human chondrocytes. MATERIALS AND METHODS Human articular chondrocytes from osteoarthritis patients were used and expression level of Nespas were determined by real-time polymerase chain reaction. Introduction of Nespas and Nespas-associated genes/miRNAs were performed by using a lentiviral system. The effect of Nespas on mitochondrial function was determined by staining mitochondria and analyzing mitopotential and mitochondrial genes. Moreover, to identify the responsible molecules in Nespas-induced pathogenesis, profiling of peroxisomal genes and miRNAs were applied and interactome analysis was performed. RESULTS Highly elevated levels of Nespas and Acyl-CoA synthetase 6 (ACSL6) were observed in OA patients. Both Nespas overexpression and ACSL6 upregulation into human chondrocytes induced typical OA characteristics, such as downregulation of type II collagen; upregulation of type I collagen, metalloproteinase 13, and caspase-1 and -3; and dysfunction of mitochondria and peroxisome. Co-expression of Nespas and ACSL6 siRNA reduced caspase-1 and -3 levels. Moreover, Nespas overexpression significantly suppressed levels of miR-291a-3p, -196a-5p, -23a-3p, -24-3p, and let-7a-5p, and these miRs are known to potentially target ACSL6 according to ingenuity pathway analysis. We also confirmed that these miRs were significantly suppressed in human OA chondrocytes. Overexpression of miR-291a-3p, -196a-5p, -23a-3p, -24-3p, or let-7a-5p in the presence of Nespas suppressed levels of ACSL6, caspase-1 and -3. DISCUSSION Overall, we suggest that elevated Nespas level in OA are associated with OA pathogenesis by suppressing miRs targeting ACSL6 and subsequent ACSL6 upregulation.
Collapse
Affiliation(s)
- Sujung Park
- Department of Biological Sciences,
College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, Korea,These authors contributed equally to
this work
| | - Myeungsoo Lee
- Department of Internal Medicine,
Division of Rheumatology, Wonkwang University School of Medicine, Iksan, Chunbuk,
Korea,These authors contributed equally to
this work
| | - Churl-Hong Chun
- Department of Orthopedic Surgery,
Wonkwang University School of Medicine, Iksan, Chunbuk, Korea
| | - Eun-Jung Jin
- Department of Biological Sciences,
College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, Korea,Eun-Jung Jin, Department of Biological
Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk
570-749, Korea.
| |
Collapse
|
18
|
Joilin G, Leigh PN, Newbury SF, Hafezparast M. An Overview of MicroRNAs as Biomarkers of ALS. Front Neurol 2019; 10:186. [PMID: 30899244 PMCID: PMC6416171 DOI: 10.3389/fneur.2019.00186] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS; MND, motor neuron disease) is a debilitating neurodegenerative disease affecting 4.5 per 100,000 people per year around the world. There is currently no cure for this disease, and its causes are relatively unknown. Diagnosis is based on a battery of clinical tests up to a year after symptom onset, with no robust markers of diagnosis or disease progression currently identified. A major thrust of current research is to identify potential non-invasive markers (“biomarkers”) in body fluids such as blood and/or cerebrospinal fluid (CSF) to use for diagnostic or prognostic purposes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are found at detectable and stable levels in blood and other bodily fluids. Specific ncRNAs can vary in levels between ALS patients and non-ALS controls without the disease. In this review, we will provide an overview of early findings, demonstrate the potential of this new class as biomarkers, and discuss future challenges and opportunities taking this forward to help patients with ALS.
Collapse
Affiliation(s)
- Greig Joilin
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - P Nigel Leigh
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Clair AJ, Kingery MT, Anil U, Kenny L, Kirsch T, Strauss EJ. Alterations in Synovial Fluid Biomarker Levels in Knees With Meniscal Injury as Compared With Asymptomatic Contralateral Knees. Am J Sports Med 2019; 47:847-856. [PMID: 30786221 DOI: 10.1177/0363546519825498] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Changes in the joint microenvironment after an injury to the articular surface of the knee have been implicated in the pathogenesis of osteoarthritis. While prior studies focused on changes in this microenvironment after anterior cruciate ligament ruptures, few have explored the biomarker changes that occur in the setting of meniscal injuries. PURPOSE To determine whether meniscal injury results in significant alterations to synovial fluid biomarker concentrations as compared with noninjured contralateral knees. Additionally, to explore the relationship between synovial fluid biomarkers and the degree of cartilage injury seen in these patients. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients undergoing surgery for unilateral meniscal injury were prospectively enrolled from October 2011 to December 2016, forming a cohort that had synovial fluid samples collected from both the injured knee and the contralateral uninjured knee at the time of meniscal surgery. Synovial fluid samples were collected just before incision, and the concentrations of 10 biomarkers of interest were determined with a multiplex magnetic bead immunoassay. The concentrations of synovial fluid biomarkers from the operative and contralateral knees were compared. Additionally, the synovial fluid biomarker concentrations of operative knees from patients with associated high-grade cartilage lesions were compared with those with low-grade lesions. RESULTS The current analysis included synovial fluid samples from 82 knees (41 operative and 41 contralateral) from 41 patients undergoing arthroscopic surgery to treat a symptomatic meniscal injury. The mean ± SD age of patients was 49.86 ± 11.75 years. There were significantly greater concentrations of 4 of the 5 proinflammatory biomarkers (IL-6, MCP-1, MIP-1β, and MMP-3) in symptomatic knees as compared with asymptomatic knees when controlling for the duration of symptoms, body mass index, age, and the random effects of by-patient variability. In the injured knees, associated high-grade cartilage lesions were predictive of elevated MCP-1, MIP-1β, and VEGF levels. Low synovial fluid concentration of TIMP-1 or a greater ratio of MMP-3 to TIMP-1 was associated with the presence of synovitis. Increasing age was found to be an independent predictor of increased IL-6, MCP-1, and VEGF concentrations in the setting of symptomatic meniscal injury. CONCLUSION The authors identified 4 proinflammatory synovial fluid biomarkers whose concentrations were significantly different after meniscal injury as compared with uninjured contralateral knees. Furthermore, they describe the effects of associated cartilage damage, synovitis, and patient age on biomarker concentrations.
Collapse
Affiliation(s)
- Andrew J Clair
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Matthew T Kingery
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Utkarsh Anil
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Lena Kenny
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Thorsten Kirsch
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Langone Health, New York, New York, USA
| |
Collapse
|
20
|
den Hollander W, Pulyakhina I, Boer C, Bomer N, van der Breggen R, Arindrarto W, Couthino de Almeida R, Lakenberg N, Sentner T, Laros JFJ, ‘t Hoen PAC, Slagboom EPE, Nelissen RGHH, van Meurs J, Ramos YFM, Meulenbelt I. Annotating Transcriptional Effects of Genetic Variants in Disease-Relevant Tissue: Transcriptome-Wide Allelic Imbalance in Osteoarthritic Cartilage. Arthritis Rheumatol 2019; 71:561-570. [PMID: 30298554 PMCID: PMC6593438 DOI: 10.1002/art.40748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/02/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Multiple single-nucleotide polymorphisms (SNPs) conferring susceptibility to osteoarthritis (OA) mark imbalanced expression of positional genes in articular cartilage, reflected by unequally expressed alleles among heterozygotes (allelic imbalance [AI]). We undertook this study to explore the articular cartilage transcriptome from OA patients for AI events to identify putative disease-driving genetic variation. METHODS AI was assessed in 42 preserved and 5 lesioned OA cartilage samples (from the Research Arthritis and Articular Cartilage study) for which RNA sequencing data were available. The count fraction of the alternative alleles among the alternative and reference alleles together (φ) was determined for heterozygous individuals. A meta-analysis was performed to generate a meta-φ and P value for each SNP with a false discovery rate (FDR) correction for multiple comparisons. To further validate AI events, we explored them as a function of multiple additional OA features. RESULTS We observed a total of 2,070 SNPs that consistently marked AI of 1,031 unique genes in articular cartilage. Of these genes, 49 were found to be significantly differentially expressed (fold change <0.5 or >2, FDR <0.05) between preserved and paired lesioned cartilage, and 18 had previously been reported to confer susceptibility to OA and/or related phenotypes. Moreover, we identified notable highly significant AI SNPs in the CRLF1, WWP2, and RPS3 genes that were related to multiple OA features. CONCLUSION We present a framework and resulting data set for researchers in the OA research field to probe for disease-relevant genetic variation that affects gene expression in pivotal disease-affected tissue. This likely includes putative novel compelling OA risk genes such as CRLF1, WWP2, and RPS3.
Collapse
Affiliation(s)
| | - Irina Pulyakhina
- Radboud University Medical Center Nijmegen, The Netherlands, and Wellcome Trust Centre for Human GeneticsOxfordUK
| | - Cindy Boer
- Erasmus Medical CenterRotterdamThe Netherlands
| | - Nils Bomer
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | | | | | - Thom Sentner
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Coutinho de Almeida R, Ramos YFM, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, van Hoolwerff M, Suchiman HED, Rodríguez Ruiz A, Slagboom PE, Mei H, Kiełbasa SM, Nelissen RGHH, Reinders M, Meulenbelt I. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis 2019; 78:270-277. [PMID: 30504444 PMCID: PMC6352405 DOI: 10.1136/annrheumdis-2018-213882] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.
Collapse
Affiliation(s)
- Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter den Hollander
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Eka D Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Reinders
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: Novel spotlight. J Cell Physiol 2019; 234:12309-12324. [DOI: 10.1002/jcp.28020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anwar Fathollahi
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Guide snoRNAs: Drivers or Passengers in Human Disease? BIOLOGY 2018; 8:biology8010001. [PMID: 30577491 PMCID: PMC6466398 DOI: 10.3390/biology8010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
In every domain of life, RNA-protein interactions play a significant role in co- and post-transcriptional modifications and mRNA translation. RNA performs diverse roles inside the cell, and therefore any aberrancy in their function can cause various diseases. During maturation from its primary transcript, RNA undergoes several functionally important post-transcriptional modifications including pseudouridylation and ribose 2′-O-methylation. These modifications play a critical role in the stability of the RNA. In the last few decades, small nucleolar RNAs (snoRNAs) were revealed to be one of the main components to guide these modifications. Due to their active links to the nucleoside modification, deregulation in the snoRNA expressions can cause multiple disorders in humans. Additionally, host genes carrying snoRNA-encoding sequences in their introns also show differential expression in disease. Although few reports support a causal link between snoRNA expression and disease manifestation, this emerging field will have an impact on the way we think about biomarkers or identify novel targets for therapy. This review focuses on the intriguing aspect of snoRNAs that function as a guide in post-transcriptional RNA modification, and regulation of their host genes in human disease.
Collapse
|
24
|
Abstract
INTRODUCTION Osteoarthritis (OA), a chronic, debilitating and degenerative disease of the joints, is the most common form of arthritis. The seriousness of this prevalent and chronic disease is often overlooked. Disease modifying OA drug development is hindered by the lack of soluble biomarkers to detect OA early. The objective of OA biomarker research is to identify early OA prior to the appearance of radiographic signs and the development of pain. Areas covered: This review has focused on extracellular genomic material that could serve as biomarkers of OA. Recent studies have examined the expression of extracellular genomic material such as miRNA, lncRNA, snoRNA, mRNA and cell-free DNA, which are aberrantly expressed in the body fluids of OA patients. Changes in genomic content of peripheral blood mononuclear cells in OA could also function as biomarkers of OA. Expert commentary: There is an unmet need for soluble biomarkers for detecting and then monitoring OA disease progression. Extracellular genomic material research may also reveal more about the underlying pathophysiology of OA. Minimally-invasive liquid biopsies such as synovial fluid and blood sampling of genomic material may be more sensitive over radiography in the detection, diagnosis and monitoring of OA in the future.
Collapse
Affiliation(s)
- Emma Budd
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Giovanna Nalesso
- b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK
| | - Ali Mobasheri
- a The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine , University of Surrey , Guildford , UK.,b Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences , University of Surrey , Guildford , UK.,c Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis , Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
25
|
Yoshida K, Toden S, Weng W, Shigeyasu K, Miyoshi J, Turner J, Nagasaka T, Ma Y, Takayama T, Fujiwara T, Goel A. SNORA21 - An Oncogenic Small Nucleolar RNA, with a Prognostic Biomarker Potential in Human Colorectal Cancer. EBioMedicine 2017; 22:68-77. [PMID: 28734806 PMCID: PMC5552212 DOI: 10.1016/j.ebiom.2017.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Emerging evidence indicates that small nucleolar RNAs (snoRNAs) play a central role in oncogenesis. Herein, we systematically evaluated expression profiles of snoRNAs in colorectal cancer (CRC) and investigated their clinical and functional role in this malignancy. METHODS We compared expression levels of snoRNAs between cancer and normal tissues using publicly available datasets and identified the most differentially expressed and commonly upregulated snoRNAs in CRC. These results were examined in 489 colorectal tissues to assess their clinical significance, followed by a series of in vitro and in vivo experiments to evaluate the functional role of candidate snoRNAs. RESULTS Using multiple RNA profiling datasets, we identified consistent overexpression of SNORA21 in CRC. In the clinical validation cohorts, the expression level of SNORA21 was upregulated in colorectal adenomas and cancers. Furthermore, elevated SNORA21 emerged as an independent factor for predicting poor survival. Both in vitro and in vivo experiments revealed that CRISPR/Cas9-mediated inhibition of SNORA21 expression resulted in decreased cell proliferation and invasion through modulation of multiple cancer related pathways. CONCLUSIONS We systematically identified SNORA21 as a key oncogenic snoRNA in CRC, which plays an important role in cancer progression, and might serve as an important prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Wenhao Weng
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jinsei Miyoshi
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastroenterology and Oncology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Jacob Turner
- Center of Biostatistics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yanlei Ma
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030601. [PMID: 28287489 PMCID: PMC5372617 DOI: 10.3390/ijms18030601] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.).
Collapse
|
27
|
Steinbusch MMF, Fang Y, Milner PI, Clegg PD, Young DA, Welting TJM, Peffers MJ. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep 2017; 7:43558. [PMID: 28252005 PMCID: PMC5333149 DOI: 10.1038/srep43558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/25/2017] [Indexed: 01/29/2023] Open
Abstract
The development of effective treatments for the age-related disease osteoarthritis and the ability to predict disease progression has been hampered by the lack of biomarkers able to demonstrate the course of the disease. Profiling the expression patterns of small nucleolar RNAs (snoRNAs) in joint ageing and OA may provide diagnostic biomarkers and therapeutic targets. This study determined expression patterns of snoRNAs in joint ageing and OA and examined them as potential biomarkers. Using SnoRNASeq and real-time quantitative PCR (qRT-PCR) we demonstrate snoRNA expression levels in murine ageing and OA joints and serum for the first time. SnoRNASeq identified differential expression (DE) of 6 snoRNAs in young versus old joints and 5 snoRNAs in old sham versus old experimental osteoarthritic joints. In serum we found differential presence of 27 snoRNAs in young versus old serum and 18 snoRNAs in old sham versus old experimental osteoarthritic serum. Confirmatory qRT-PCR analysis demonstrated good correlation with SnoRNASeq findings. Profiling the expression patterns of snoRNAs is the initial step in determining their functional significance in ageing and osteoarthritis, and provides potential diagnostic biomarkers and therapeutic targets. Our results establish snoRNAs as novel markers of musculoskeletal ageing and osteoarthritis.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - David A Young
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim J M Welting
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| |
Collapse
|
28
|
Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis. Osteoarthritis Cartilage 2017; 25:426-434. [PMID: 27621213 DOI: 10.1016/j.joca.2016.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to determine if serum microRNA (miRNA) signatures were biomarkers of early cartilage degeneration in preclinical mouse models of post-traumatic osteoarthritis (OA) and inflammatory arthritis. METHODS Cartilage degeneration was induced in 10-12 week old male C57BL6 mice by destabilization of the medial meniscus (DMM) or intra-articular injection of methylated-bovine-serum-albumin (AIA), with sham-operated or saline-injected control animals (n = 6/treatment/time). Total serum RNA and knee joints were isolated at 1, 4 and 16 weeks post-induction. Cartilage degeneration was scored histologically. Serum miRNA expression profiling was performed using Agilent microarrays and validated by qPCR. RESULTS DMM-operated and AIA mice had characteristic cartilage degeneration (proteoglycan loss, chondrocyte hypertrophy, structural damage), that increased significantly with time compared with controls, and with distinct temporal differences between arthritis models. However, expression profiling revealed no statistically significant dysregulation of serum miRNAs between AIA vs saline-injected or DMM vs sham-operated control mice at the critical early disease stages. The inability to detect DMM or AIA serum miRNA signatures compared with controls was not due to the insensitivity of the expression profiling approach since significant changes were observed in miRNA expression between the arthritis models and between time points. CONCLUSION While distinct patterns of progressive cartilage degradation were induced in the arthritis models, we were unable to identify any serum miRNAs that were significantly dysregulated in early stages of disease compared with controls. This suggests circulating serum miRNAs may not be useful as cartilage biomarkers in distinguishing the early or progressive stages of arthritis cartilage degeneration.
Collapse
|
29
|
Zhang L, Yang M, Mayer T, Johnstone B, Les C, Frisch N, Parsons T, Mi QS, Gibson G. Use of MicroRNA biomarkers to distinguish enchondroma from low-grade chondrosarcoma. Connect Tissue Res 2017; 58:155-161. [PMID: 27267924 DOI: 10.1080/03008207.2016.1197212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Establishing a definitive diagnosis between benign enchondroma versus low-grade chondrosarcoma presents a potential challenge to both clinicians and pathologists. microRNAs (small non-coding RNAs) have proven to be effective biomarkers for the identification of tumors and tumor progression. We present analysis, both array and quantitative PCR, that shows consistently and substantially increased expression of two microRNAs, miRs-181a and -138, in low-grade chondrosarcomas compared with enchondromas. The data suggest these microRNAs would provide an analytical distinction between the chondrosarcoma and benign neoplasms that can be performed in formalin-fixed paraffin-embedded specimens. Together with recent publications, these data indicate that miRs-181a and -138 also play a role in tumor development and homeostasis and may provide new targets for the development of much needed therapeutic intervention.
Collapse
Affiliation(s)
- Liang Zhang
- a Bone and Joint Center , Henry Ford Hospital , Detroit , MI , USA
| | - Maozhou Yang
- a Bone and Joint Center , Henry Ford Hospital , Detroit , MI , USA
| | - Theodore Mayer
- b Department of Pathology , Henry Ford Hospital , Detroit , MI , USA
| | - Brian Johnstone
- c Department of Orthopaedics and Rehabilitation , Oregon Health and Science University , Portland , OR , USA
| | - Clifford Les
- a Bone and Joint Center , Henry Ford Hospital , Detroit , MI , USA
| | - Nicholas Frisch
- d Department of Orthopaedic Surgery , Henry Ford Hospital , Detroit , MI , USA
| | - Theodore Parsons
- d Department of Orthopaedic Surgery , Henry Ford Hospital , Detroit , MI , USA
| | - Qing-Sheng Mi
- e Department of Dermatology , Henry Ford Hospital , Detroit , MI , USA
| | - Gary Gibson
- a Bone and Joint Center , Henry Ford Hospital , Detroit , MI , USA
| |
Collapse
|
30
|
Gabay O, Clouse KA. Epigenetics of cartilage diseases. Joint Bone Spine 2016; 83:491-4. [DOI: 10.1016/j.jbspin.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023]
|
31
|
Genemaras AA, Ennis H, Kaplan L, Huang CY. Inflammatory cytokines induce specific time- and concentration-dependent MicroRNA release by chondrocytes, synoviocytes, and meniscus cells. J Orthop Res 2016; 34:779-90. [PMID: 26505891 DOI: 10.1002/jor.23086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023]
Abstract
In knee osteoarthritis (OA), concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α increase in joint tissues and synovial fluid which incite a catabolic cascade and further the progression of OA. Several microRNAs (miRNA) have been associated with apoptosis (miR-16), inflammation (miR-22, miR-146a), and matrix degradation (miR-140, miR-27b) in developed OA or its symptoms. In this study, the time- and concentration-dependent nature of cellular and extracellular miRNAs in synoviocytes, meniscus cells, and chondrocytes as influenced by inflammatory cytokines was investigated. For time-dependent studies, three cell types were stimulated with 10 ng/ml IL-1β or 50 ng/ml TNF-α for 8, 16, and 24 h. For concentration-dependent studies, chondrocytes were stimulated with a higher level of IL-1β (20 ng/ml) or TNF-α (100 ng/ml) for 8 h. Cellular and extracellular expressions of miR-22, miR-16, miR-146a, miR-27b, and miR-140 were analyzed by RT-PCR. Time-dependent cellular miRNA expressions were similar across the three cell types with miR-146a significantly up-regulated and miR-27b significantly down-regulated at all time points. However, chondrocytes exhibited a unique extracellular miRNA profile with an increased release rate of miR-27b at 24 h. Our findings support further research into the characterization of miRNAs in synovial fluid for the development of early detection strategies of OA or cartilage injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:779-790, 2016.
Collapse
Affiliation(s)
- Amaris A Genemaras
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Hayley Ennis
- Department of Orthopedics, Division of Sports Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Lee Kaplan
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
32
|
Yan K, Arfat Y, Li D, Zhao F, Chen Z, Yin C, Sun Y, Hu L, Yang T, Qian A. Structure Prediction: New Insights into Decrypting Long Noncoding RNAs. Int J Mol Sci 2016; 17:ijms17010132. [PMID: 26805815 PMCID: PMC4730372 DOI: 10.3390/ijms17010132] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However, understanding the wide range of functions of lncRNAs related to various processes of cellular networks remains a great experimental challenge. Structural versatility is critical for RNAs to perform various functions and provides new insights into probing the functions of lncRNAs. In recent years, the computational method of RNA structure prediction has been developed to analyze the structure of lncRNAs. This novel methodology has provided basic but indispensable information for the rapid, large-scale and in-depth research of lncRNAs. This review focuses on mainstream RNA structure prediction methods at the secondary and tertiary levels to offer an additional approach to investigating the functions of lncRNAs.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Yasir Arfat
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Dijie Li
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Fan Zhao
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Zhihao Chen
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Chong Yin
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Yulong Sun
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Lifang Hu
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| | - Tuanmin Yang
- Department of Bone Disease Oncology, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, South Door slightly Friendship Road 555, Xi'an 710054, China.
| | - Airong Qian
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China.
| |
Collapse
|
33
|
Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet 2015; 11:e1005680. [PMID: 26633036 PMCID: PMC4669167 DOI: 10.1371/journal.pgen.1005680] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. A fundamental problem studied by skeletal biologists is the development of regenerative therapies to replace cartilage tissues impacted by injury or disease, which for individuals affected by osteoarthritis represents nearly half of all of all adults over the age of sixty five. To date, no therapies exist to promote sustained cartilage regeneration, as we have not been able to recapitulate the programming events necessary to instruct cells to form articular cartilage without these cells continuing to differentiate into bone. Our analysis of the early programming events occurring during cartilage formation led to the identification of LncRNA-HIT a long noncoding RNA that is essential for the differentiation of the embryonic limb mesenchyme into cartilage. A genome wide analysis of LncRNA-HIT’s distribution in the mesenchyme revealed strong association between LncRNA-HIT and numerous genes whose products facilitate cartilage formation. In the absence of LncRNA-HIT, the expression of these chondrogenic genes is severely reduced, impacting the differentiation of these cells into cartilage. Mechanistically, LncRNA-HIT regulates these pro-chondrogenic genes by recruiting p100 and CBP to these loci, facilitating H3K27ac and transcriptional activation. LncRNA-HIT also appears to be present in most vertebrate species, suggesting that the epigenetic program regulated by this lncRNA may represent a fundamental mechanism used by many species to promote cartilage formation.
Collapse
Affiliation(s)
- Hanqian L. Carlson
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - Jeffrey J. Quinn
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yul W. Yang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea K. Thornburg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Howard Y. Chang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - H. Scott Stadler
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
34
|
Regulatory role of small nucleolar RNAs in human diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206849. [PMID: 26060813 PMCID: PMC4427830 DOI: 10.1155/2015/206849] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/08/2015] [Indexed: 12/29/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are appreciable players in gene expression regulation in human cells. The canonical function of box C/D and box H/ACA snoRNAs is posttranscriptional modification of ribosomal RNAs (rRNAs), namely, 2'-O-methylation and pseudouridylation, respectively. A series of independent studies demonstrated that snoRNAs, as well as other noncoding RNAs, serve as the source of various short regulatory RNAs. Some snoRNAs and their fragments can also participate in the regulation of alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression in human cells can affect numerous vital cellular processes. SnoRNA level in human cells, blood serum, and plasma presents a promising target for diagnostics and treatment of human pathologies. Here we discuss the relation between snoRNAs and oncological, neurodegenerative, and viral diseases and also describe changes in snoRNA level in response to artificial stress and some drugs.
Collapse
|
35
|
Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 2015; 22:51-63. [PMID: 25863583 DOI: 10.1016/j.coph.2015.03.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a destructive joint disease in which the initiation may be attributed to direct injury and mechanical disruption of joint tissues, but the progressive changes are dependent on active cell-mediated processes that can be observed or inferred during the generally long time-course of the disease. Based on clinical observations and experimental studies, it is now recognized a that it is possible for individual patients to exhibit common sets of symptoms and structural abnormalities due to distinct pathophysiological pathways that act independently or in combination. Recent research that has focused on the underlying mechanisms involving biochemical cross talk among the cartilage, synovium, bone, and other joint tissues within a background of poorly characterized genetic factors will be addressed in this review.
Collapse
|
36
|
Kraus VB. Preclinical osteoarthritis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Xing Y, Liu Z, Yang G, Gao D, Niu X. MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction. Int J Mol Med 2014; 35:143-52. [PMID: 25339460 DOI: 10.3892/ijmm.2014.1976] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/07/2014] [Indexed: 11/06/2022] Open
Abstract
Selenium deficiency is a causative factor in heart failure and microRNAs (known as miRNAs or miRs) play an important role in numerous cardiovascular diseases. However, the changes of miRNA expression during selenium deficiency and whether selenium deficiency is involved in cardiac dysfunction remain unclear. In the present study, miRNA expression profiling was carried out in normal rats, selenium-deficient rats and selenium-supplemented rats by miRNA microarray. Cardiac function was evaluated by analyzing the plasma brain natriuretic peptide level, echocardiographic parameters and hemodynamic parameters. Cardiac glutathione peroxidase activity was assessed by spectrophotometry. The histological changes were examined by hematoxylin and eosin staining. Electrocardiograph was used to test the arrhythmia. The differentially expressed miRNAs were verified by reverse transcription-polymerase chain reaction. Additionally, the underlying mechanism associated with the Wnt/β-catenin signaling pathway was further explored. The cardiac dysfunction of the rat with selenium deficiency was mainly associated with five upregulated miRNAs, which were miR-374, miR-16, miR-199a-5p, miR-195 and miR-30e*, and three downregulated miRNAs, which were miR-3571, miR-675 and miR-450a*. Among these, the expression of miR-374 was the highest, which may be of vital importance in rats with selenium deficiency. In conclusion, the possible mechanism of selenium deficiency-induced cardiac dysfunction was associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujie Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongwei Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
38
|
Kijowski R, Roemer F, Englund M, Tiderius CJ, Swärd P, Frobell RB. Imaging following acute knee trauma. Osteoarthritis Cartilage 2014; 22:1429-43. [PMID: 25278054 DOI: 10.1016/j.joca.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
Joint injury has been recognized as a potent risk factor for the onset of osteoarthritis. The vast majority of studies using imaging technology for longitudinal assessment of patients following joint injury have focused on the injured knee joint, specifically in patients with anterior cruciate ligament injury and meniscus tears where a high risk for rapid onset of post-traumatic osteoarthritis is well known. Although there are many imaging modalities under constant development, magnetic resonance (MR) imaging is the most important instrument for longitudinal monitoring after joint injury. MR imaging is sensitive for detecting early cartilage degeneration and can evaluate other joint structures including the menisci, bone marrow, tendons, and ligaments which can be sources of pain following acute injury. In this review, focusing on imaging following acute knee trauma, several studies were identified with promising short-term results of osseous and soft tissue changes after joint injury. However, studies connecting these promising short-term results to the development of osteoarthritis were limited which is likely due to the long follow-up periods needed to document the radiographic and clinical onset of the disease. Thus, it is recommended that additional high quality longitudinal studies with extended follow-up periods be performed to further investigate the long-term consequences of the early osseous and soft tissue changes identified on MR imaging after acute knee trauma.
Collapse
Affiliation(s)
- R Kijowski
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
| | - F Roemer
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany; Department of Radiology, Boston University, Boston, MA, USA
| | - M Englund
- Department of Orthopedics, Clinical Sciences Lund, Lund, Sweden; Clinical Epidemiology Research and Training Unit, Boston University, Boston, MA, USA
| | - C J Tiderius
- Department of Orthopedics, Clinical Sciences Lund, Lund, Sweden
| | - P Swärd
- Department of Orthopedics, Clinical Sciences Lund, Lund, Sweden
| | - R B Frobell
- Department of Orthopedics, Clinical Sciences Lund, Lund, Sweden
| |
Collapse
|
39
|
Abel Y, Clerget G, Bourguignon-Igel V, Salone V, Rederstorff M. Les petits ARN nucléolaires nous surprennent encore ! Med Sci (Paris) 2014; 30:297-302. [DOI: 10.1051/medsci/20143003018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
40
|
Kim D, Song J, Han J, Kim Y, Chun CH, Jin EJ. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell Signal 2013; 25:2878-87. [PMID: 24018042 DOI: 10.1016/j.cellsig.2013.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/31/2013] [Indexed: 12/18/2022]
Abstract
Non-coding RNAs have been less studied in cartilage development and destruction regulated by sophisticated molecular events despite their considerable theranostic potential. In this study, we identified significant down-regulation of mR-101 and up-regulation of lncRNA, HOTTIP in the processes of endochondral ossification and osteoarthritic progression. In wing mesenchymal cells, up-expression of miR-101 by TGF-β3 treatment is targeting DNMT-3B and thereby altered the methylation of integrin-α1 addressed as a positive regulator of endochondral ossification in this study. In like manner, down-regulation of miR-101 also coordinately up-regulated DNMT-3B, down-regulated integrin-α1, and resulted in cartilage destruction. In an OA animal model, introduction of lentiviruses that encoded miR-101 or integrin-α1 successfully reduced cartilage destruction. In like manner, long non-coding RNA (lncRNA), HOTTIP, a known regulator for HoxA genes, was highly up-regulated and concurrent down-regulation of HoxA13 displayed the suppression of integrin-α1 in OA chondrocytes. In conclusion, two non-coding RNAs, miR-101 and HOTTIP regulate cartilage development and destruction by modulating integrin-α1 either epigenetically by DNMT-3B or transcriptionally by HoxA13 and data further suggest that these non-coding RNAs could be a potent predictive biomarker for OA as well as a therapeutic target for preventing cartilage-related diseases.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Gonzalez A. Osteoarthritis year 2013 in review: genetics and genomics. Osteoarthritis Cartilage 2013; 21:1443-51. [PMID: 23845519 DOI: 10.1016/j.joca.2013.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 02/02/2023]
Abstract
Progress in genetic research has delivered important highlights in the last year. One of the widest impact is the publication of the Encyclopedia of DNA Elements (ENCODE) project showing the impressive complexity of the human genome and providing information useful for all areas of genetics. More specific of osteoarthritis (OA) has been the incorporation of DOT1-like, histone H3 methyltransferase (DOT1L) to the list of 11 OA loci with genome-wide significant association, the demonstration of significant overlap between OA genetics and height or body mass index (BMI) genetics, and the tentative prioritization of HMG-box transcription factor 1 (HBP1) in the 7q22 locus based on functional analysis. In addition, the first large scale analysis of DNA methylation has found modest differences between OA and normal cartilage, but has identified a subgroup of OA patients with a very differentiated phenotype. The role of DNA methylation in regulation of NOS2, SOX9, MMP13 and IL1B has been further clarified. MicroRNA expression studies in turn have shown some replication of differences between OA and control cartilage from previous profiling studies and have identified potential regulators of TGFβ signaling and of IL1β effects. In addition, non-coding RNAs showed promising results as serum biomarkers of cartilage damage. Gene expression microarray studies have found important differences between studies of hip or knee OA that reinforce the idea of joint specificity in OA. Expression differences between articular cartilage and other types of cartilage highlighted the WNT pathway whose regulation is proposed as critical for maintaining the articular cartilage phenotype. Many of these results need confirmation but they signal the exciting progress that is taking place in all areas of OA genetics, indicate questions requiring more study and augur further interesting discoveries.
Collapse
Affiliation(s)
- A Gonzalez
- Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Peffers M, Liu X, Clegg P. Transcriptomic signatures in cartilage ageing. Arthritis Res Ther 2013; 15:R98. [PMID: 23971731 PMCID: PMC3978620 DOI: 10.1186/ar4278] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome.
Collapse
|
43
|
|