1
|
Xu K, Wu K, Chen L, Zhao Y, Li H, Lin N, Ye Z, Xu J, Huang D, Huang X. Selective promotion of sensory innervation-mediated immunoregulation for tissue repair. SCIENCE ADVANCES 2025; 11:eads9581. [PMID: 40117376 PMCID: PMC11927663 DOI: 10.1126/sciadv.ads9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve-homing peptide and a β-subunit of nerve growth factor (β-NGF)-binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaile Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yubin Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li K, Lin H, Yu Y, Liu Y, Yang W, Chen S, Xu L, Huang W, Wang H, Meng C, Shao Z, Wei Y, Zhao L, Peng Y. Nucleus pulposus cell-mimicking nanoparticles for cell-specific HIF1A editing to modulate SASP-mediated disc inflammation via autophagy activation. Acta Biomater 2025:S1742-7061(25)00156-4. [PMID: 40087134 DOI: 10.1016/j.actbio.2025.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Traditional methods of plasmid delivery, including viral vectors, lipofection, and electroporation, are widely used for gene editing but have limitations, such as cellular toxicity, limited transfection efficiency in primary cells, and nonspecific side effects. Here, we report the development of nucleus pulposus cell (NPC)-mimicking nanoparticles (HIF1A@NNP) with an NPC membrane as the shell and pcDNA3.1+-rHIF1A encapsulated in the core via extrusion. HIF1A@NNP exhibited a protein expression pattern similar to that of the NPC membrane and displayed a typical vesicle profile. Compared to liposomes and lentiviruses, HIF1A@NNP overexpressed HIF1A in NPCs while improving cell viability. HIF1A@NNP was more readily internalized by NPCs than by other cell types, with fewer effects on vascularization, nerve growth, and macrophage polarization than HIF1A overexpression using lipo3000. HIF1A@NNP reduced the apoptotic rate and inhibited the senescent phenotype, as evidenced by reduced DNA damage, lower levels of senescence-related proteins, and fewer SA-β-Gal-positive cells. HIF1A@NNP induced a senescence-associated secretory phenotype (SASP), which enhanced macrophage migration and M1 polarization. Additionally, HIF1A@NNP activated autophagy in NPCs. In summary, HIF1A@NNP demonstrated satisfactory biocompatibility, alleviated the SASP, and inhibited SASP-mediated macrophage recruitment and inflammatory polarization, leading to reduced disc degeneration and providing a promising strategy for combating intervertebral disc degeneration. STATEMENT OF SIGNIFICANCE: Conventional plasmid delivery methods like viral vectors, lipofection, and electroporation struggle with cellular toxicity and inefficiency in primary cells. Non-cell-specific HIF1A activation via these methods may exacerbate inflammation and pain, as HIF1A drives angiogenesis and dendritic ingrowth into the disc. Thus, a cell-specific delivery strategy could circumvent such adverse effects. Our study introduces HIF1A@NNP, a nanoparticle mimicking nucleus pulposus cells (NPCs), with an NPC membrane shell encapsulating pcDNA3.1+-rHIF1A. It preferentially targets NPCs, achieving superior HIF1A overexpression and cell viability compared to liposomes and lentiviruses. This represents a highly promising and potentially transformative approach against intervertebral disc degeneration.
Collapse
Affiliation(s)
- Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yihan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiran Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Xu
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunqing Meng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Li Y, Hu M, Chen J, Ling Z, Zou X, Cao W, Wei F. Deep Learning Assisted Classification of T1ρ-MR Based Intervertebral Disc Degeneration Phases. J Magn Reson Imaging 2025; 61:1492-1500. [PMID: 39010746 PMCID: PMC11803689 DOI: 10.1002/jmri.29499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND According to the T1ρ value of nucleus pulposus, our previous study has found that intervertebral disc degeneration (IDD) can be divided into three phases based on T1ρ-MR, which is helpful for the selection of biomaterial treatment timing. However, the routine MR sequences for patients with IDD are T1- and T2-MR, T1ρ-MR is not commonly used due to long scanning time and extra expenses, which limits the application of T1ρ-MR based IDD phases. PURPOSE To build a deep learning model to achieve the classification of T1ρ-MR based IDD phases from routine T1-MR images. STUDY TYPE Retrospective. POPULATION Sixty (M/F: 35/25) patients with low back pain or lower limb radiculopathy are randomly divided into training (N = 50) and test (N = 10) sets. FIELD STRENGTH/SEQUENCES 1.5 T MR scanner; T1-, T2-, and T1ρ-MR sequence (spin echo). ASSESSMENT The T1ρ values of the nucleus pulposus in intervertebral discs (IVDs) were measured. IVDs were divided into three phases based on the mean T1ρ value: pre-degeneration phase (mean T1ρ value >110 msec), rapid degeneration phase (mean T1ρ value: 80-110 msec), and late degeneration phase (mean T1ρ value <80 msec). After measurement, the T1ρ values, phases, and levels of IVDs were input into the model as labels. STATISTICAL TESTS Intraclass correlation coefficient, area under the receiver operating characteristic curve (AUC), F1-score, accuracy, precision, and recall (P < 0.05 was considered significant). RESULTS In the test dataset, the model achieved a mean average precision of 0.996 for detecting IVD levels. The diagnostic accuracy of the T1ρ-MR based IDD phases was 0.840 and the AUC was 0.871, the average AUC of 5-folds cross validation was 0.843. DATA CONCLUSION The proposed deep learning model achieved the classification of T1ρ-MR based IDD phases from routine T1-MR images, which may provide a method to facilitate the application of T1ρ-MR in IDD. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanrun Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenChina
| | - Meiyu Hu
- Department of Radiology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Research Institute of GastroenterologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junhong Chen
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wuteng Cao
- Department of Radiology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Research Institute of GastroenterologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Fuxin Wei
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
4
|
Zhang F, Cui D, Wang Z, Li Y, Wang K, Lu H, Yu H, Jiao W, Cui X. NOX4 Regulates NLRP3 by Inhibiting the Ubiquitination of LRRC8A to Promote Ferroptosis in Nucleus Pulposus Cells. Inflammation 2025:10.1007/s10753-025-02253-0. [PMID: 39909992 DOI: 10.1007/s10753-025-02253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Intervertebral disc degeneration (IDD) is a significant contributor to low back pain, imposing a considerable socioeconomic burden. Ferroptosis, a novel form of cell death driven by iron and characterized by the accumulation of reactive oxygen species (ROS), has been associated with the progression of IDD. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) has been widely recognized as a pivotal factor promoting ferroptosis across various diseases; however, its precise role in the pathogenesis of IDD remains incompletely understood. Our experimental findings demonstrated a marked upregulation of NOX4 in degenerated cells, accompanied by elevated ROS levels and a diminished mitochondrial membrane potential, indicating the participation of ferroptosis. Furthermore, the expression of the critical regulatory factor GPX4 was reduced, while ACSL4 levels were significantly increased, further corroborating the involvement of ferroptosis. Functional loss and gain experiments revealed that NOX4 overexpression augmented ferroptosis and ROS production while promoting the secretion of inflammatory cytokines. Subsequent studies indicated that the knockdown of NOX4 could reverse tert-butyl hydroperoxide (TBHP)-induced ferroptosis. Mass spectrometry analysis identified leucine-rich repeat-containing 8A (LRRC8A) as an interacting protein of NOX4, and further validation confirmed that they co-regulate Nod-like receptor pyrin domain-3 (NLRP3) activation through their interaction. Utilizing a rat model of intervertebral disc degeneration, we further corroborated the role of NOX4 in IDD. This study provides theoretical support for the potential application of NOX4-targeting drugs in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Di Cui
- Medical School of Fuyang, Normal University, No. 100, Qinghe West Road, Yingzhou District, Fuyang, 236000, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, No.2600, Donghai Dadao, Bengbu, 233000, Anhui, China
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287,Changhuai Road, Bengbu, 233000, Anhui, China
| | - Yifei Li
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haitao Lu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Wei Jiao
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| |
Collapse
|
5
|
Song Z, Yan M, Zhang S, Hu B, Qing X, Shao Z, Chen S, Lv X, Liu H. Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system. Ageing Res Rev 2025; 104:102633. [PMID: 39701186 DOI: 10.1016/j.arr.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
Collapse
Affiliation(s)
- Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Tu Y, Ren J, Fang W, Zhou C, Zhao B, Hua T, Chen Y, Chen Z, Feng Y, Jin H, Wang X. Daphnetin-mediated mitophagy alleviates intervertebral disc degeneration via the Nrf2/PINK1 pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39838851 DOI: 10.3724/abbs.2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Reactive oxygen species (ROS) stress induces NLRP3 inflammasome activation, and this, along with extracellular matrix metabolism (ECM) degradation in nucleus pulposus cells (NPCs), plays a crucial role in the progression of IDD. Daphnetin (DAP) is a biologically active phytochemical extracted from plants of the Genus Daphne, which possesses various bioactivities, including antioxidant properties. In the present study, we demonstrate that DAP significantly attenuates tert-butyl hydroperoxide (TBHP)-induced ECM degradation, oxidative stress and NLRP3 inflammasome activation in NPCs. Furthermore, DAP could facilitate mitophagy to increase the removal of damaged mitochondria, consequently reducing mitochondrial ROS accumulation and alleviating NLRP3 inflammasome activation. Mechanistically, we unveil that DAP activates mitophagy by stimulating the Nrf2/PINK1 signaling pathway in TBHP-induced NPCs. In vivo experiments further corroborate the protective effect of DAP against IDD progression in a rat model induced by disc puncture. Accordingly, our findings reveal that DAP could be a promising therapeutic candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Yiting Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaping Ren
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyuan Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Chencheng Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Binli Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyong Hua
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yiqi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhenya Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yongzeng Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Sun Y, Peng Y, Su Z, So KKH, Lu Q, Lyu M, Zuo J, Huang Y, Guan Z, Cheung KMC, Zheng Z, Zhang X, Leung VYL. Fibrocyte enrichment and myofibroblastic adaptation causes nucleus pulposus fibrosis and associates with disc degeneration severity. Bone Res 2025; 13:10. [PMID: 39828732 PMCID: PMC11743603 DOI: 10.1038/s41413-024-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 01/22/2025] Open
Abstract
Fibrotic remodeling of nucleus pulposus (NP) leads to structural and mechanical anomalies of intervertebral discs that prone to degeneration, leading to low back pain incidence and disability. Emergence of fibroblastic cells in disc degeneration has been reported, yet their nature and origin remain elusive. In this study, we performed an integrative analysis of multiple single-cell RNA sequencing datasets to interrogate the cellular heterogeneity and fibroblast-like entities in degenerative human NP specimens. We found that disc degeneration severity is associated with an enrichment of fibrocyte phenotype, characterized by CD45 and collagen I dual positivity, and expression of myofibroblast marker α-smooth muscle actin. Refined clustering and classification distinguished the fibrocyte-like populations as subtypes in the NP cells - and immunocytes-clusters, expressing disc degeneration markers HTRA1 and ANGPTL4 and genes related to response to TGF-β. In injury-induced mouse disc degeneration model, fibrocytes were found recruited into the NP undergoing fibrosis and adopted a myofibroblast phenotype. Depleting the fibrocytes in CD11b-DTR mice in which myeloid-derived lineages were ablated by diphtheria toxin could markedly attenuate fibrous modeling and myofibroblast formation in the NP of the degenerative discs, and prevent disc height loss and histomorphological abnormalities. Marker analysis supports that disc degeneration progression is dependent on a function of CD45+COL1A1+ and αSMA+ cells. Our findings reveal that myeloid-derived fibrocytes play a pivotal role in NP fibrosis and may therefore be a target for modifying disc degeneration and promoting its repair.
Collapse
Affiliation(s)
- Yi Sun
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zezhuo Su
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Kyle K H So
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiuji Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Maojiang Lyu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongcan Huang
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiping Guan
- Department of Spine Surgery, Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaomin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Peng BG, Li YC, Yang L. Role of neurogenic inflammation in intervertebral disc degeneration. World J Orthop 2025; 16:102120. [PMID: 39850033 PMCID: PMC11752484 DOI: 10.5312/wjo.v16.i1.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation. IVD cells and infiltrating immune cells express functional receptors for neuropeptides through which they receive signals from the nervous system. In return, IVD cells and immune cells produce neuropeptides and nerve growth factor, which stimulate nerve fibers. This communication generates a positive bidirectional feedback loop that can enhance the inflammatory response of the IVD. Recently emerging transient receptor potential channels have been recognized as contributors to neurogenic inflammation in the degenerative IVDs. These findings suggest that neurogenic inflammation involves complex pathophysiological interactions between sensory nerves and multiple cell types in the degenerative IVDs. Clarifying the mechanism of neurogenic inflammation in IVD degeneration may provide in-depth understanding of the pathology of discogenic low back pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Yong-Chao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People’s Armed Police Forces, Tianjin 300000, China
| |
Collapse
|
9
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025:S1529-9430(25)00008-7. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
10
|
Zhang H, Zhang C, Li L, Hu ML, Zhao JN, Zheng Z, Ding WF. Developments and clinical experiences in collagenase chemonucleolysis for lumbar disc herniation: a narrative review. Front Med (Lausanne) 2025; 11:1522568. [PMID: 39845813 PMCID: PMC11750870 DOI: 10.3389/fmed.2024.1522568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Lumbar disc herniation (LDH) affects millions globally, with annual healthcare costs exceeding $100 billion in the United States alone, driving increasing interest in minimally invasive radiological interventions as treatment alternatives. This narrative review examines developments in collagenase chemonucleolysis for LDH, integrating a literature analysis with clinical experience. Key advancements include the transition from single-agent to combination therapies, exploration of diverse injection routes, and the progression from C-arm fluoroscopy to multi-slice CT guidance. The synergistic use of collagenase, oxygen-ozone, and anti-inflammatory analgesics has enhanced efficacy. Safety measures such as aspiration tests, contrast agent tests, and lidocaine tests implemented to mitigate procedural risks. However, challenges persist, including non-standardized dosages and potential complications arising from intradiscal injections. Future research should focus on establishing accreditation systems, refining patient selection criteria, optimizing drug dosages, and exploring advanced image-guided technologies. While chemonucleolysis offers advantages such as minimal invasiveness and cost-effectiveness, its complexity necessitates a multidisciplinary approach. Key findings demonstrate that combination therapy achieves superior outcomes compared to monotherapy, with long-term efficacy rates reaching 90% and 6-month success rates of 95%. Additionally, CT guidance has significantly improved procedural precision and safety compared to traditional fluoroscopy. This review provides insights for clinicians and researchers, highlighting the potential of chemonucleolysis in LDH management to ensure its safe and effective integration into mainstream treatment protocols.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Chi Zhang
- Chongqing Yangjiaping Middle School, Chongqing, China
| | - Lin Li
- Department of Pharmacy, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Ming-liang Hu
- Department of Neurosurgery, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Jian-ning Zhao
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhang Zheng
- Department of Orthopedic, Chongqing Kaizhou Guangming Orthopedic Hospital, Chongqing, China
| | - Wen-feng Ding
- Department of Orthopedic, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
11
|
Zhang T, Huang Q, Lu L, Zhou K, Hu K, Gan K. ROS-responsive Hydrogel Loaded with Allicin Suppresses Cell Apoptosis for the Treatment of Intervertebral Disc Degeneration in a Rat Model. World Neurosurg 2025; 193:675-686. [PMID: 39490768 DOI: 10.1016/j.wneu.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of lower back pain, and cell apoptosis plays a key role in its progression. This study explores the therapeutic potential of a reactive oxygen species (ROS)-responsive hydrogel loaded with allicin for treating IVDD. METHODS Allicin was encapsulated in an ROS-responsive hydrogel, and its controlled release was studied in vitro. Nucleus pulposus cells were treated with hydrogen peroxide to induce apoptosis, and the effects of the hydrogel were examined using quantitative polymerase chain reaction and Western blotting. An in vivo rat model of IVDD was also established to assess the efficacy of the treatment. RESULTS The ROS-responsive hydrogel effectively inhibited apoptosis in nucleus pulposus cells by reducing ROS levels and modulating the expression of apoptotic and antiapoptotic genes. In the rat model, the hydrogel loaded with allicin significantly reduced IVDD, preserving disc morphology and matrix integrity. CONCLUSIONS ROS-responsive hydrogel loaded with allicin shows potential as a therapeutic approach for IVDD by inhibiting cell apoptosis and reducing disc degeneration in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Qing Huang
- Department of Gynecology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Liangjie Lu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Ke Zhou
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Keqi Hu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Yu Y, Cheung YT, Cheung CW. Discovery of Glucose Metabolism-Associated Genes in Neuropathic Pain: Insights from Bioinformatics. Int J Mol Sci 2024; 25:13503. [PMID: 39769264 PMCID: PMC11679926 DOI: 10.3390/ijms252413503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated. Among these, three key genes (Ins, Igfbp3, Plod2) were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated the enrichment of hub genes in pathways such as the positive regulation of the ErbB signaling pathway, monocyte activation, and response to reactive oxygen species; thereby suggesting a potential correlation between these biological pathways and pain sensation. Further analysis identified three key genes (Ins, Igfbp3, and Plod2), which showed significant correlations with immune cell infiltration, suggesting their roles in modulating pain through immune response. To validate our findings, quantitative real-time polymerase chain reaction (qPCR) analysis confirmed the expression levels of these genes in a partial sciatic nerve ligation (PSNL) model, and immunofluorescence studies demonstrated increased immune cell infiltration at the injury site. Behavioral assessments further corroborated pain hypersensitivity in neuropathic pain (NP) models. Our study sheds light on the molecular mechanisms underlying NP and aids the identification of potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ying Yu
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Yan-Ting Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Chi-Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
- Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Ogasawara S, Schol J, Sakai D, Warita T, Susumu T, Nakamura Y, Sako K, Tamagawa S, Matsushita E, Soma H, Sato M, Watanabe M. Alginate vs. Hyaluronic Acid as Carriers for Nucleus Pulposus Cells: A Study on Regenerative Outcomes in Disc Degeneration. Cells 2024; 13:1984. [PMID: 39682732 PMCID: PMC11639827 DOI: 10.3390/cells13231984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain, affecting millions globally. Regenerative medicine, particularly cell-based therapies, presents a promising therapeutic strategy. This study evaluates the comparative efficacy of two biomaterials-hyaluronic acid (HA) and alginate-as carriers for nucleus pulposus (NP) cell transplantation in a beagle model of induced disc degeneration. NP cells were isolated, cultured, and injected with either HA or alginate into degenerated discs, with saline and non-cell-loaded carriers used as controls. Disc height index, T2-weighted MRI, and histological analyses were conducted over a 12-week follow-up period to assess reparative outcomes. Imaging revealed that both carrier and cell-loaded treatments improved outcomes compared to degenerative controls, with cell-loaded carriers consistently outperforming carrier-only treated discs. Histological assessments supported these findings, showing trends toward extracellular matrix restoration in both treatment groups. While both biomaterials demonstrated reparative potential, HA showed greater consistency in supporting NP cells in promoting disc regeneration. These results underscore HA's potential as a superior carrier for NP cell-based therapies in addressing disc degeneration.
Collapse
Affiliation(s)
- Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Takayuki Warita
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Takano Susumu
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan;
| | | | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Hazuki Soma
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
14
|
Huang Y, Sun J, Li S, Shi Y, Yu L, Wu A, Wang X. Isoliquiritigenin mitigates intervertebral disc degeneration induced by oxidative stress and mitochondrial impairment through a PPARγ-dependent pathway. Free Radic Biol Med 2024; 225:98-111. [PMID: 39366471 DOI: 10.1016/j.freeradbiomed.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Oxidative stress, mitochondrial dysfunction, and apoptosis play significant roles in the degradation of extracellular matrix (ECM) in nucleus pulposus cells (NPCs), ultimately contributing to intervertebral disc degeneration (IVDD). This study investigates the potential of isoliquiritigenin (ISL), a natural extract known for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties, to alleviate IVDD. METHODS The viability of NPCs treated with ISL and tert-butyl hydroperoxide (TBHP) was assessed using the CCK-8 assay. Various techniques, including Western blot, qRT-PCR, immunofluorescence (IF), and immunohistochemistry, were employed to measure the expression of ECM components, oxidative stress markers, and apoptosis-related proteins. Mitochondrial function was evaluated through Western blot and IF analyses. Network pharmacology predicted ISL targets, and the expression levels of PPARγ were assessed using the aforementioned methods. The role of PPARγ in the therapeutic effects of ISL on IVDD was examined through siRNA knockdown. The therapeutic impact of ISL on puncture-induced IVDD in rats was evaluated using X-ray, MRI, and histological staining techniques. RESULTS In vitro, ISL reduced oxidative stress in NPCs, restored mitochondrial function, inhibited apoptosis, and improved the ECM phenotype. In vivo, ISL slowed the progression of IVDD in a rat model. Further analysis revealed that ISL enhances PPARγ activity and promotes its expression by direct binding, contributing to the delay of IVDD progression. CONCLUSION This study demonstrates that ISL effectively treats puncture-induced IVDD in rats by inhibiting oxidative stress, restoring mitochondrial function, and reducing NPC apoptosis through a PPARγ-dependent mechanism. By balancing ECM synthesis and degradation, ISL presents a novel therapeutic approach for IVDD and identifies a promising target for treatment.
Collapse
Affiliation(s)
- Yeheng Huang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jing Sun
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lianggao Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Aimin Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
16
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo D, Gao S, Lv J, Liu T, Zhou Y, Wang L, Liu B, Liu Z. Exploration of the mode of death and potential death mechanisms of nucleus pulposus cells. Eur J Clin Invest 2024; 54:e14226. [PMID: 38632688 DOI: 10.1111/eci.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bing Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
17
|
Wu J, Han W, Zhang Y, Li S, Qin T, Huang Z, Zhang C, Shi M, Wu Y, Zheng W, Gao B, Xu K, Ye W. Glutamine Mitigates Oxidative Stress-Induced Matrix Degradation, Ferroptosis, and Pyroptosis in Nucleus Pulposus Cells via Deubiquitinating and Stabilizing Nrf2. Antioxid Redox Signal 2024; 41:278-295. [PMID: 38504579 DOI: 10.1089/ars.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Aims: Intervertebral disc degeneration (IDD) is closely related to low back pain, which is a prevalent age-related problem worldwide; however, the mechanism underlying IDD is unknown. Glutamine, a free amino acid prevalent in plasma, is recognized for its anti-inflammatory and antioxidant properties in various diseases, and the current study aims to clarify the effect and mechanism of glutamine in IDD. Results: A synergistic interplay was observed between pyroptosis and ferroptosis within degenerated human disc specimens. Glutamine significantly mitigated IDD in both ex vivo and in vivo experimental models. Moreover, glutamine protected nucleus pulposus (NP) cells after tert-butyl hydroperoxide (TBHP)-induced pyroptosis, ferroptosis, and extracellular matrix (ECM) degradation in vitro. Glutamine protected NP cells from TBHP-induced ferroptosis by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation by inhibiting its ubiquitin-proteasome degradation and inhibiting lipid oxidation. Innovation and Conclusions: A direct correlation is evident in the progression of IDD between the processes of pyroptosis and ferroptosis. Glutamine suppressed oxidative stress-induced cellular processes, including pyroptosis, ferroptosis, and ECM degradation through deubiquitinating Nrf2 and inhibiting lipid oxidation in NP cells. Glutamine is a promising novel therapeutic target for the management of IDD.
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital Shenshan Central Hospital of Sun Yat-sen University, Shanwei, China
| | - Tianyu Qin
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Shi
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuliang Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanli Zheng
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bo Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kang Xu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
19
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
20
|
Tao Y, Yu X, Li X, Xu Y, Wang H, Zhang L, Lin R, Wang Y, Fan P. M6A methylation-regulated autophagy may be a new therapeutic target for intervertebral disc degeneration. Cell Biol Int 2024; 48:389-403. [PMID: 38317355 DOI: 10.1002/cbin.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yuao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoyu Yu
- Department of Gynaecology and Obstetrics, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolong Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuzhu Xu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hui Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lele Zhang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Wang N, Rong W, Xie Y, Chen S, Xi Z, Deng R. Visualizing the bibliometrics of the inflammatory mechanisms in intervertebral disc degeneration. Exp Gerontol 2024; 188:112380. [PMID: 38382680 DOI: 10.1016/j.exger.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) constitutes a crucial pathological foundation for spinal degenerative diseases (SDD) and stands as a primary contributor to both low back pain (LBP) and disability. The progression of IVDD is linked to structural and functional alterations in tissues, where an imbalance in the inflammatory microenvironment can induce extracellular matrix (ECM) degradation, senescence, and apoptosis. This imbalance is a key pathomechanism in the disease's development, gaining considerable attention in recent years. This study aims to conduct a bibliometric analysis of publications pertaining to the inflammatory mechanisms of IVDD to quantitatively assess current research hotspots and directions. METHODS In this study, we queried the Web of Science Core Collection (WOSCC) database covering the period from January 1, 2001, to November 7, 2023. Content in this area was analyzed and visualized using software such as Citespace, Vosviewer, and the bibliometrix package. RESULTS Findings indicate a consistent annual increase in the number of publications, highlighting the widespread attention garnered by research on the inflammatory mechanisms of IVDD. In terms of journal research, Spine emerged with the highest number of publications, along with significantly elevated total citations and average citations compared to other journals. Regarding country analysis, China led in the number of publications, while the USA claimed the highest number of citations and total link strength. Institutional analysis revealed Sun Yat-sen University as having the highest number of publications and total link strength, with Thomas Jefferson University securing the highest total citations. Author analysis identified Ohtori, S. with the highest number of publications, Risbud, M.V. with the highest number of citations, and Inoue, G. with the highest total link strength, all of whom have made significant contributions to the field's development. Citation and co-citation analyses indicated that highly cited documents primarily focused on classical studies exploring inflammatory mechanisms in IVDD pathogenesis. Keyword analysis showcased the ongoing research hotspot as the further investigation of mechanisms and treatment studies. Recent years have seen a shift towards exploring pyroptosis, necrotic apoptosis, autophagy, ferroptosis, oxidative stress, and bacterial infection, among other mechanisms. In terms of treatment, alongside traditional monomer, drug, and compound therapies for IVDD, research is increasingly concentrating on stem cell therapy, exosomes, hydrogels, and scaffolds. CONCLUSION This bibliometric analysis of research on inflammatory mechanisms in IVDD provides insights into the current status, hotspots, and potential future trends. These findings can serve as a valuable reference and guide for researchers in the field.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| |
Collapse
|
22
|
Li J, Li H, Chen Y, Bei D, Huang B, Gan K, Sang P, Liu J, Shan Z, Chen J, Zhao F, Chen B. Induction of cervical disc degeneration and discogenic pain by low concentration Propionibacterium acnes infection: an in vivo animal study. Arthritis Res Ther 2024; 26:41. [PMID: 38297365 PMCID: PMC10829385 DOI: 10.1186/s13075-024-03269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Although cervical intervertebral disc (IVD) degeneration is closely associated with neck pain, its cause remains unclear. In this study, an animal model of cervical disc degeneration and discogenic neck pain induced by a low concentration of Propionibacterium acnes (P. acnes-L) is investigated to explore the possible mechanisms of cervical discogenic pain. METHODS Cervical IVD degeneration and discitis was induced in 8-week-old male rats in C3-C6 IVDs through the anterior intervertebral puncture with intradiscal injections of low and high concentrations of P. acnes (P. acnes-L, n = 20 and P. acnes-H, n = 15) or Staphylococcus aureus (S. aureus, n = 15), compared to control (injection with PBS, n = 20). The structural changes in the cervical IVD using micro-CT, histological evaluation, and gene expression assays after MRI scans at 2 and 6 weeks post-modeling. The P. acnes-L induced IVD degeneration model was assessed for cervical spine MRI, histological degeneration, pain-like behaviors (guarding behavior and forepaw von Frey), nerve fiber growth in the IVD endplate region, and DRG TNF-α and CGRP. RESULTS IVD injection with P. acnes-L induced IVD degeneration with decreased IVD height and MRI T2 values. IVD injection with P. acnes-H and S. aureus both lead to discitis-like changes on T2-weighted MRI, trabecular bone remodeling on micro-CT, and osseous fusion after damage in the cartilage endplate adjacent to the injected IVD. Eventually, rats in the P. acnes-L group exhibited significant nociceptive hypersensitivity, nerve fiber ingrowth was observed in the IVD endplate region, inflammatory activity in the DRG was significantly increased compared to the control group, and the expression of the pain neurotransmitter CGRP was significantly upregulated. CONCLUSION P. acnes-L was validated to induce cervical IVD degeneration and discogenic pain phenotype, while P. acnes-H induced was identified to resemble septic discitis comparable to those caused by S. aureus infection.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dikai Bei
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Peiming Sang
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China.
| |
Collapse
|
23
|
Yang W, Li K, Pan Q, Huang W, Xiao Y, Lin H, Liu S, Chen X, Lv X, Feng S, Shao Z, Qing X, Peng Y. An Engineered Bionic Nanoparticle Sponge as a Cytokine Trap and Reactive Oxygen Species Scavenger to Relieve Disc Degeneration and Discogenic Pain. ACS NANO 2024; 18:3053-3072. [PMID: 38237054 PMCID: PMC10832058 DOI: 10.1021/acsnano.3c08097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The progressive worsening of disc degeneration and related nonspecific back pain are prominent clinical issues that cause a tremendous economic burden. Activation of reactive oxygen species (ROS) related inflammation is a primary pathophysiologic change in degenerative disc lesions. This pathological state is associated with M1 macrophages, apoptosis of nucleus pulposus cells (NPC), and the ingrowth of pain-related sensory nerves. To address the pathological issues of disc degeneration and discogenic pain, we developed MnO2@TMNP, a nanomaterial that encapsulated MnO2 nanoparticles with a TrkA-overexpressed macrophage cell membrane (TMNP). Consequently, this engineered nanomaterial showed high efficiency in binding various inflammatory factors and nerve growth factors, which inhibited inflammation-induced NPC apoptosis, matrix degradation, and nerve ingrowth. Furthermore, the macrophage cell membrane provided specific targeting to macrophages for the delivery of MnO2 nanoparticles. MnO2 nanoparticles in macrophages effectively scavenged intracellular ROS and prevented M1 polarization. Supportively, we found that MnO2@TMNP prevented disc inflammation and promoted matrix regeneration, leading to downregulated disc degenerative grades in the rat injured disc model. Both mechanical and thermal hyperalgesia were alleviated by MnO2@TMNP, which was attributed to the reduced calcitonin gene-related peptide (CGRP) and substance P expression in the dorsal root ganglion and the downregulated Glial Fibrillary Acidic Protein (GFAP) and Fos Proto-Oncogene (c-FOS) signaling in the spinal cord. We confirmed that the MnO2@TMNP nanomaterial alleviated the inflammatory immune microenvironment of intervertebral discs and the progression of disc degeneration, resulting in relieved discogenic pain.
Collapse
Affiliation(s)
- Wenbo Yang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Kanglu Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Qing Pan
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Wei Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yan Xiao
- Department
of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Hui Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Sheng Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xuanzuo Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiao Lv
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Shiqing Feng
- The
Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, People’s Republic
of China
- Department
of Orthopaedics, Tianjin Medical University General Hospital, Tianjin
Medical University, International Science and Technology Cooperation
Base of Spinal Cord Injury, Tianjin Key
Laboratory of Spine and Spinal Cord, Tianjin 300052, People’s Republic of China
- Department
of Orthopaedics, Qilu Hospital of Shandong University, Shandong University
Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo
College of Medicine, Shandong University, Jinan, Shandong 250012, People’s
Republic of China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Xiangcheng Qing
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| | - Yizhong Peng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
| |
Collapse
|
24
|
Chen Y, Du H, Wang X, Li B, Chen X, Yang X, Zhao C, Zhao J. ANGPTL4 May Regulate the Crosstalk Between Intervertebral Disc Degeneration and Type 2 Diabetes Mellitus: A Combined Analysis of Bioinformatics and Rat Models. J Inflamm Res 2023; 16:6361-6384. [PMID: 38161353 PMCID: PMC10757813 DOI: 10.2147/jir.s426439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The crosstalk between intervertebral disc degeneration (IVDD) and type 2 diabetes mellitus (T2DM) has been investigated. However, the common mechanism underlying this phenomenon has not been clearly elucidated. This study aimed to explore the shared gene signatures of IVDD and T2DM. Methods The expression profiles of IVDD (GSE27494) and T2DM (GSE20966) were acquired from the Gene Expression Omnibus database. Five hub genes including ANGPTL4, CCL2, CCN3, THBS2, and INHBA were preliminarily screened. GO (Gene Ontology) enrichment analysis, functional correlation analysis, immune filtration, Transcription factors (TFs)-mRNA-miRNA coregulatory network, and potential drugs prediction were performed following the identification of hub genes. RNA sequencing, in vivo and in vitro experiments on rats were further performed to validate the expression and function of the target gene. Results Five hub genes (ANGPTL4, CCL2, CCN3, THBS2, and INHBA) were identified. GO analysis demonstrated the regulation of the immune system, extracellular matrix (ECM), and SMAD protein signal transduction. There was a strong correlation between hub genes and different functions, including lipid metabolism, mitochondrial function, and ECM degradation. The immune filtration pattern grouped by disease and the expression of hub genes showed significant changes in the immune cell composition. TFs-mRNA-miRNA co-expression networks were constructed. In addition, pepstatin showed great drug-targeting relevance based on potential drugs prediction of hub genes. ANGPTL4, a gene that mediates the inhibition of lipoprotein lipase activity, was eventually determined after hub gene screening, validation by different datasets, RNA sequencing, and experiments. Discussion This study screened five hub genes and ANGPTL4 was eventually determined as a potential target for the regulation of the crosstalk in patients with IVDD and T2DM.
Collapse
Affiliation(s)
- Yan Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Han Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
25
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
26
|
Zhang C, Qiu Y, Yuan F. The long non-coding RNA maternally expressed 3-micorRNA-15a-5p axis is modulated by melatonin and prevents nucleus pulposus cell inflammation and apoptosis. Basic Clin Pharmacol Toxicol 2023; 133:603-619. [PMID: 37658573 DOI: 10.1111/bcpt.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Nucleus pulposus (NP) cell apoptosis is regarded as a critical risk factor for intervertebral disc degeneration (IVDD). Melatonin exerts a protective role on NP cells. The study concentrates on the role and mechanism of lncRNA MEG3 in melatonin-mediated effects on NP cells. An in vitro IVDD model was constructed using IL-1β on human NP cells. qRT-PCR investigated MEG3, miR-15a-5p and PGC-1α mRNA levels in tissues and NP cells. IL-1β-treated NP cells subsequent to transfection, followed by melatonin treatment. NP cell proliferation, viability, apoptosis and inflammatory reactions were assayed. Western blot checked the profiles of PGC-1α, SIRT1 and NF-κB p65. Student's t-test or one-way analysis of variance (ANOVA) followed by Tukey's test was used for statistical tests. As indicated by the data, melatonin weakened NP cell inflammation and apoptosis and enhanced MEG3 expression. MEG3 expression was attenuated in IVDD tissues. MEG3 knockdown impaired the function of melatonin, which was, however, strengthened by miR-15a-5p knockdown. MEG3 targeted miR-15a-5p, which targeted PGC-1α and repressed the PGC-1α/SIRT1 pathway. Collectively, this study has disclosed that the MEG3-miR-15a-5p-PGC-1α/SIRT1 pathway modulated by melatonin can hamper NP cell apoptosis and inflammation elicited by IL-1β.
Collapse
Affiliation(s)
- Chengyuan Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjia Qiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Peng Y, Chen X, Rao Z, Wu W, Zuo H, Chen K, Li K, Lin H, Liu S, Xiao Y, Wang B, Quan D, Qing X, Bai Y, Shao Z. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization. Acta Biomater 2023; 170:288-302. [PMID: 37598791 DOI: 10.1016/j.actbio.2023.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilong Rao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Zuo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kaibin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daping Quan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Chen Y, Cao X, Pan B, Du H, Li B, Yang X, Chen X, Wang X, Zhou T, Qin A, Zhao C, Zhao J. Verapamil attenuates intervertebral disc degeneration by suppressing ROS overproduction and pyroptosis via targeting the Nrf2/TXNIP/NLRP3 axis in four-week puncture-induced rat models both in vivo and in vitro. Int Immunopharmacol 2023; 123:110789. [PMID: 37579541 DOI: 10.1016/j.intimp.2023.110789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Low back pain is usually caused by intervertebral disc degeneration (IVDD), during which the involvement of oxidation system imbalance and inflammasome activation cannot be neglected. In this study, we aimed to validate the expression level of TXNIP in IVDD and investigate the function and potential mechanism of action of verapamil. TXNIP is upregulated in the degenerate nucleus pulposus in both humans and rats, as well as in tert-butyl hydroperoxide (TBHP)-stimulated nucleus pulposus cells. Administration of verapamil, a classic clinical drug, mitigated the TBHP-induced overproduction of reactive oxygen species and activation of the NLRP3 inflammasome, thus protecting cells from pyroptosis, apoptosis, and extracellular matrix degradation. The Nrf2/TXNIP/NLRP3 axis plays a major role in verapamail-mediated protection. In vivo, a puncture-induced IVDD rat model was constructed, and we found that verapamil delayed the development of IVDD at both the imaging and histological levels. In summary, our results indicate the potential therapeutic effects and mechanisms of action of verapamil in the treatment of IVDD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Bin Pan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Han Du
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Baixing Li
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xiao Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Xin Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Tangjun Zhou
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Changqing Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| |
Collapse
|
29
|
Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S, Shao Z. Inhibiting Heat Shock Protein 90 Attenuates Nucleus Pulposus Fibrosis and Pathologic Angiogenesis Induced by Macrophages via Down-Regulating Cell Migration-Inducing Protein. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:960-976. [PMID: 37088454 DOI: 10.1016/j.ajpath.2023.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is usually accompanied by nucleus pulposus (NP) fibrosis and pathologic angiogenesis, which are possibly associated with macrophage infiltration. Previous research indicates a destructive role of macrophages and the protective effect of inhibiting heat shock protein 90 (HSP90) in IVDD. Herein, the effects of inhibiting HSP90 on NP fibrosis and pathologic angiogenesis induced by macrophages were investigated further. Single-cell RNA-sequencing analysis was used to classify fibrotic NP cell (NPC) clusters and healthy NPC clusters in human NP tissues. The fibrotic NPC clusters were possibly associated with angiogenesis-related biological processes. Immunostaining showed the spatial association between blood vessel ingrowth and macrophage infiltration, as well as elevated levels of cell migration-inducing protein (CEMIP) and vascular endothelial growth factor A in severely degenerated human IVD tissues. Particularly, HSP90 inhibitor tanespimycin (17-AAG) ameliorated macrophage-induced fibrotic phenotype of NPCs via inhibiting CEMIP. M2, but not M1, macrophages promoted the pro-angiogenic ability of endothelial cells, which was attenuated by 17-AAG or HSP90 siRNA. Reversing the fibrotic phenotype of NPCs by Cemip siRNA also mitigated the pro-angiogenic effects of M2-conditioned medium-treated NPCs. Moreover, the murine IVDD model supported the 17-AAG-induced amelioration of NP fibrosis and endothelial cell invasion in IVD tissues. In conclusion, inhibiting HSP90 attenuated two interrelated pathologic processes, NP fibrosis and pathologic angiogenesis, induced by macrophages via down-regulating CEMIP.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Pan J, Liu Z, Shen B, Xu J, Dai G, Xu W, Wang J, Li L, Cheng L. tsRNA-04002 alleviates intervertebral disk degeneration by targeting PRKCA to inhibit apoptosis of nucleus pulposus cells. J Orthop Surg Res 2023; 18:413. [PMID: 37287061 PMCID: PMC10249188 DOI: 10.1186/s13018-023-03878-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Intervertebral disk degeneration (IDD) is a degenerative disease that underlies various musculoskeletal and spinal disorders and is positively correlated with age. tRNA-derived small RNAs (tsRNA), as a new small noncoding RNAs, its function in IDD is unclear. Herein, our goal was to find the key tsRNA that affects IDD independently of age and explore the underlying mechanisms. METHODS Small RNA sequencing was performed in nucleus pulposus (NP) tissues of traumatic lumbar fracture individuals, young IDD (IDDY) patients, and old IDD (IDDO) patients. The biological functions of tsRNA-04002 in NP cells (NPCs) were investigated by qRT-PCR, western blot, and flow cytometry analysis. The molecular mechanism of tsRNA-04002 was demonstrated by luciferase assays and rescue experiments. Furthermore, the therapeutic effects of tsRNA-04002 on IDD rat model were used and evaluated in vivo. RESULTS Compared with fresh traumatic lumbar fracture patients, a total of 695 disordered tsRNAs is obtained (398 down-regulated tsRNAs and 297 up-regulated tsRNAs). These disordered tsRNAs were mainly involved in Wnt signaling pathway and MAPK signaling pathway. tsRNA-04002 was an age-independent key target in IDD, which was both lower expressed in IDDY and IDDO groups than control group. Overexpression of tsRNA-04002 restrained inflammatory cytokines IL-1β and TNF-α expression, increased the COL2A1, and inhibited the NPCs apoptosis. Furthermore, we determined that PRKCA was the target gene of tsRNA-04002 and was negatively regulated by tsRNA-04002. The rescue experiment results suggested that the high expression of PRKCA reversed the inhibitory effect of tsRNA-04002 mimics on NPCs inflammation and apoptosis, and promotive effect of COL2A1. Moreover, tsRNA-04002 treatment dramatically ameliorated the IDD process in the puncture-induced rat model, together with the blockade of PRKCA in vivo. CONCLUSION Collectively, our results substantiated that tsRNA-04002 could alleviate IDD by targeting PRKCA to inhibit apoptosis of NPCs. tsRNA-04002 may be a novel therapeutic target of IDD progression.
Collapse
Affiliation(s)
- Jie Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhonghan Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bin Shen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jin Xu
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gonghua Dai
- Department of Medical Imaging, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wen Xu
- Department of Medical Imaging, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianjie Wang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Putuo Distrcit, Shanghai, 200092, China
| | - Lijun Li
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Putuo Distrcit, Shanghai, 200092, China.
| |
Collapse
|
31
|
Wang Z, Hu X, Wang W, Li Y, Cui P, Wang P, Kong C, Chen X, Lu S. Understanding necroptosis and its therapeutic target for intervertebral disc degeneration. Int Immunopharmacol 2023; 121:110400. [PMID: 37290323 DOI: 10.1016/j.intimp.2023.110400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a complex pathological condition associated with the development of low back pain. Despite numerous studies, the specific molecular mechanisms underlying IVDD remain unclear. At the cellular level, IVDD involves a series of changes, including cell proliferation, cell death, and inflammation. Of these, cell death plays a critical role in the progression of the condition. In recent years, necroptosis has been identified as a new form of programmed cell death (PCD). Necroptosis can be activated by ligands of death receptors, which then interact with RIPK1, RIPK3 and MLKL and lead to necrosome formation.. According to various previous studies, the necroptosis related pathway is activated in IVDD, and plays a significant role in the pathogenesis of IVDD. Furthermore, necroptosis may serve as a target for the IVDD treatment. Recently, several studies have reported the role of necroptosis in IVDD, but few studies have summarized the association between IVDD and necroptosis. The review gives a brief summary of the research progress of necroptosis, and discusses strategies and mechanisms that target necroptosis in IVDD. Lastly, matters needing attention in the necroptosis targeted therapy of IVDD are put forward at last. To the best of our knowledge, the review paper is the first one that integrates current research about the impact of necroptosis on IVDD, and contributes to the future therapy of IVDD from new perspectives.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
32
|
Xu J, Shao T, Lou J, Zhang J, Xia C. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration. Front Pharmacol 2023; 14:1172920. [PMID: 37214476 PMCID: PMC10196014 DOI: 10.3389/fphar.2023.1172920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) refers to the aging and degenerative diseases of intervertebral disc components such as nucleus pulposus, annulus fibrosus, and cartilage endplate, and is the main cause of chronic low back pain. Over the past few years, many researchers around the world concerned that the degeneration of nucleus pulposus (NP) cells plays the main role in IVDD. The degeneration of NP cells is caused by a series of pathological processes, including oxidative stress, inflammatory response, apoptosis, abnormal proliferation, and autophagy. Interestingly, many studies have found a close relationship between the senescence of NP cells and the progression of NP degeneration. The classical aging pathways also have been confirmed to be involved in the pathological process of IVDD. Moreover, several anti-aging drugs have been used to treat IVDD by inhibiting NP cells senescence, such as proanthocyanidins, resveratrol and bone morphogenetic protein 2. Therefore, this article will systematically list and discuss aging, cell senescence, the pathogenesis and targeted therapies of IVDD, in order to provide new ideas for the treatment of IVDD in the future.
Collapse
Affiliation(s)
- Jiongnan Xu
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Shao
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jianfen Lou
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| | - Chen Xia
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
34
|
Song C, Zhou Y, Cheng K, Liu F, Cai W, Zhou D, Chen R, Shi H, Fu Z, Chen J, Liu Z. Cellular senescence - Molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother 2023; 162:114711. [PMID: 37084562 DOI: 10.1016/j.biopha.2023.114711] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a frequent and intractable chronic condition in orthopedics that causes enormous discomfort in patients' lives and thoughts, as well as a significant economic burden on society and the nation. As a result, understanding the pathophysiology of IVDD is critical. The pathophysiology of IVDD has been linked to numerous variables, including oxidative stress, apoptosis, matrix metalloproteinases, and inflammatory factors. Cellular senescence has recently attracted a lot of attention in the study of age-related diseases. It has been discovered that IVDD is intimately linked to human senescence, in which nucleus pulposus cell senescence may play a significant role. Previously, our group did a comprehensive and systematic clarification of the pathogenesis of IVDD from an immune perspective and discovered that the fundamental pathogenesis of IVDD is inflammatory upregulation and nucleus pulposus cell death caused by an imbalance in the immune microenvironment. In this review, we will treat nucleus pulposus cell senescence as a novelty point to clarify the pathophysiology of IVDD and further explore the probable relationship between senescence and immunity along with the dysregulation of the immunological microenvironment to propose new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Zhou
- Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
35
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
36
|
Heo CH, Roh EJ, Kim J, Choi H, Jang HY, Lee G, Lim CS, Han I. Development of a COX-2-Selective Fluorescent Probe for the Observation of Early Intervertebral Disc Degeneration. J Funct Biomater 2023; 14:jfb14040192. [PMID: 37103282 PMCID: PMC10146728 DOI: 10.3390/jfb14040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a biomolecule known to be overexpressed in inflammation. Therefore, it has been considered a diagnostically useful marker in numerous studies. In this study, we attempted to assess the correlation between COX-2 expression and the severity of intervertebral disc (IVD) degeneration using a COX-2-targeting fluorescent molecular compound that had not been extensively studied. This compound, indomethacin-adopted benzothiazole-pyranocarbazole (IBPC1), was synthesized by introducing indomethacin—a compound with known selectivity for COX-2—into a phosphor with a benzothiazole-pyranocarbazole structure. IBPC1 exhibited relatively high fluorescence intensity in cells pretreated with lipopolysaccharide, which induces inflammation. Furthermore, we observed significantly higher fluorescence in tissues with artificially damaged discs (modeling IVD degeneration) compared to normal disc tissues. These findings indicate that IBPC1 can meaningfully contribute to the study of the mechanism of IVD degeneration in living cells and tissues and to the development of therapeutic agents.
Collapse
Affiliation(s)
- Cheol Ho Heo
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Pure Chem Co., Ltd., Knu Start-up CUBE, Chunchenon 24341, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Jaehee Kim
- Pure Chem Co., Ltd., Knu Start-up CUBE, Chunchenon 24341, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Ho Yeon Jang
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Giseong Lee
- Pure Chem Co., Ltd., Knu Start-up CUBE, Chunchenon 24341, Republic of Korea
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
- Correspondence: (G.L.); (C.S.L.); (I.H.)
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
- Correspondence: (G.L.); (C.S.L.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
- Correspondence: (G.L.); (C.S.L.); (I.H.)
| |
Collapse
|
37
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
38
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
39
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Li Z, Cai F, Tang J, Xu Y, Guo K, Xu Z, Feng Y, Xi K, Gu Y, Chen L. Oxygen metabolism-balanced engineered hydrogel microspheres promote the regeneration of the nucleus pulposus by inhibiting acid-sensitive complexes. Bioact Mater 2022; 24:346-360. [PMID: 36632505 PMCID: PMC9822967 DOI: 10.1016/j.bioactmat.2022.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is commonly caused by imbalanced oxygen metabolism-triggered inflammation. Overcoming the shortcomings of antioxidants in IVDD treatment, including instability and the lack of targeting, remains challenging. Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots (BPQDs) onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres (GM@CS-BP), which attenuate extracellular acidosis in nucleus pulposus (NP), block the inflammatory cascade, reduce matrix metalloproteinase expression (MMP), and remodel the extracellular matrix (ECM) in intervertebral discs (IVDs). The GM@CS-BP microspheres reduce H2O2 intensity by 229%. Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167% and maintain stable release for 21 days, demonstrating the antioxidant properties and sustained modulation of the BPQDs. After the GM@CS-BP treatment, western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors. Histological staining in an 8-week IVDD model confirmed the regeneration of NP. GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation. This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.
Collapse
Affiliation(s)
- Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Kaijin Guo
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, Jiangsu, 221000, PR China
| | - Zonghan Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| |
Collapse
|
41
|
Zheng B, Li S, Xiang Y, Zong W, Ma Q, Wang S, Wu H, Song H, Ren H, Chen J, Liu J, Zhao F. Netrin-1 mediates nerve innervation and angiogenesis leading to discogenic pain. J Orthop Translat 2022; 39:21-33. [PMID: 36605621 PMCID: PMC9804017 DOI: 10.1016/j.jot.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Discogenic low back pain (LBP) is associated with nociceptive nerve fibers that grow into degenerated intervertebral discs (IVD) but the etiopathogenesis of disease is not fully understood. The purpose of this study was to clarify the role of Netrin-1 in causing discogenic LBP. Methods The level of nociceptive nerve innervation was examined in disc degenerative patients and rat needle-punctured models by immunohistochemistry. Nucleus pulposus (NP) cells were isolated from IVD tissues of rats and induced degeneration by interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα). The candidate genes related to neuron outgrowth and migration were selected by Next-generation sequencing (NGS). CRISPR/Cas9 was used to knockdown Netrin-1 in NP cells. The impact of Netrin-1 on nerve innervation were evaluated with P2X2、NF200 staining and microfluidics assay. Meanwhile the CD31 staining and transwell assay were used to evaluate the impact of Netrin-1 in angiogenesis. The proteins and RNA extracted from NP cells related to catabolism and anabolism were examined by western blot assay and RT-qPCR experiment. ChIP and luciferase experiments were used to assess the intracellular transcriptional regulation of Netrin-1. Further, a needle-punctured rat model followed by histomorphometry and immunofluorescence histochemistry was used to explore the potential effect of Netrin-1 on LBP in vivo. Results The level of nerve innervation was increased in severe disc degenerative patients while the expression of Netrin-1 was upregulated. The supernatants of NP cells stimulated with IL-1β or TNFα containing more Netrin-1 could promote axon growth and vascular endothelial cells migration. Knocking down Netrin-1 or overexpressing transcription factor TCF3 as a negative regulator of Netrin-1 attenuated this effect. The needle-punctured rat model brought significant spinal hypersensitivity, nerve innervation and angiogenesis, nevertheless knocking down Netrin-1 effectively prevented disc degeneration-induced adverse impacts. Conclusion Discogenic LBP was induced by Netrin-1, which mediated nerve innervation and angiogenesis in disc degeneration. Knocking down Netrin-1 by CRISPR/Cas9 or negatively regulating Netrin1 by transcription factor TCF3 could alleviate spinal hypersensitivity. The translational potential of this article This study on Netrin-1 could provide a new target and theoretical basis for the prevention and treatment for discogenic back pain.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Shengwen Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, 215003, Suzhou, Jiangsu, China,Second Department of Orthopaedics Haining People's Hospital, Jiaxing, Zhejiang, 314400, China
| | - Yufeng Xiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Wentian Zong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Haihao Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China,Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, No. 41 Northwest Street, Ningbo, Zhejiang, 315010, China
| | - Haixin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Hong Ren
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China,Corresponding author. Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China.
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310027, China,Corresponding author. Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
42
|
Patterson FM, Miralami R, Olivier AK, McNulty K, Wood JW, Prabhu RK, Priddy LB. Increase in serum nerve growth factor but not intervertebral disc degeneration following whole-body vibration in rats. Clin Biomech (Bristol, Avon) 2022; 100:105823. [PMID: 36427488 PMCID: PMC9742305 DOI: 10.1016/j.clinbiomech.2022.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Low back pain is a leading cause of disability and is frequently associated with whole-body vibration exposure in industrial workers and military personnel. While the pathophysiological mechanisms by which whole-body vibration causes low back pain have been studied in vivo, there is little data to inform low back pain diagnosis. Using a rat model of repetitive whole-body vibration followed by recovery, our objective was to determine the effects of vibration frequency on hind paw withdrawal threshold, circulating nerve growth factor concentration, and intervertebral disc degeneration. METHODS Male Sprague-Dawley rats were vibrated for 30 min at an 8 Hz or 11 Hz frequency every other day for two weeks and then recovered (no vibration) for one week. Von Frey was used to determine hind paw mechanical sensitivity every two days. Serum nerve growth factor concentration was determined every four days. At the three-week endpoint, intervertebral discs were graded histologically for degeneration. FINDINGS The nerve growth factor concentration increased threefold in the 8 Hz group and twofold in the 11 Hz group. The nerve growth factor concentration did not return to baseline by the end of the one-week recovery period for the 8 Hz group. Nerve growth factor serum concentration did not coincide with intervertebral disc degeneration, as no differences in degeneration were observed among groups. Mechanical sensitivity generally decreased over time for all groups, suggesting a habituation (desensitization) effect. INTERPRETATION This study demonstrates the potential of nerve growth factor as a diagnostic biomarker for low back pain due to whole-body vibration.
Collapse
Affiliation(s)
- Folly M Patterson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Raheleh Miralami
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - Kaylin McNulty
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - John W Wood
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - R K Prabhu
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Lauren B Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| |
Collapse
|
43
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
44
|
Oxidative Stress and Intervertebral Disc Degeneration: Pathophysiology, Signaling Pathway, and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1984742. [PMID: 36262281 PMCID: PMC9576411 DOI: 10.1155/2022/1984742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Intervertebral disc degeneration (IDD), characterized as decreased proteoglycan content, ossification of endplate, and decreased intervertebral height, is one of the major reasons of low back pain, which seriously affects the quality of life and also brings heavy economic burden. However, the mechanisms leading to IDD and its therapeutic targets have not been fully elucidated. Oxidative stress refers to the imbalance between oxidation and antioxidant systems, between too many products of reactive oxygen species (ROS) and the insufficient scavenging function. Excessive ROS can damage cell lipids, nucleic acids and proteins, which has been proved to be related to the development of a variety of diseases. In recent years, an increasing number of studies have reported that oxidative stress is involved in the pathological process of IDD. Excessive ROS can accelerate the IDD process via inducing the pathological activities, such as inflammation, apoptosis, and senescence. In this review, we focused on pathophysiology and molecular mechanisms of oxidative stress-induced IDD. Moreover, the present review also summarized the possible ideas for the future therapy strategies of oxidative stress-related IDD.
Collapse
|
45
|
Jiang X, Wu J, Guo C, Song W. Key LncRNAs Associated With Oxidative Stress Were Identified by GEO Database Data and Whole Blood Analysis of Intervertebral Disc Degeneration Patients. Front Genet 2022; 13:929843. [PMID: 35937989 PMCID: PMC9353269 DOI: 10.3389/fgene.2022.929843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intervertebral disc degeneration (IDD) is a major cause of low back pain, but the onset and progression of IDD are unknown. Long non-coding RNA (lncRNA) has been validated to play a critical role in IDD, while an increasing number of studies have linked oxidative stress (OS) to the initiation and progression of IDD. We aim to investigate key lncRNAs in IDD through a comprehensive network of competing endogenous RNA (ceRNA) and to identify possible underlying mechanisms. Methods: We downloaded IDD-related gene expression data from the Gene Expression Omnibus (GEO) database and obtained differentially expressed-lncRNAs (DE-lncRNA), -microRNAs (DE-miRNA), and -messenger RNAs (DE-mRNA) by bioinformatics analysis. The OS-related lncRNA-miRNA-mRNA ceRNA interaction axis was constructed and key lncRNAs were identified based on ceRNA theory. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses on mRNAs regulated by lncRNAs in the ceRNA network. Single sample gene set enrichment analysis (ssGSEA) was used to reveal the immune landscape. Expression of key lncRNAs in IDD was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: In this study, 111 DE-mRNAs, 20 DE-lncRNAs, and 502 DE-miRNAs were identified between IDD patients and controls, and 16 OS-related DE-lncRNAs were also identified. The resulting lncRNA-miRNA-mRNA network consisted of eight OS-related DE-lncRNA nodes, 24 DE-miRNA nodes, 70 DE-mRNA nodes, and 183 edges. Functional enrichment analysis suggested that the ceRNA network may be involved in regulating biological processes related to cytokine secretion, lipid, and angiogenesis. We also identified four key lncRNAs, namely lncRNA GNAS-AS1, lncRNA MIR100HG, lncRNA LINC01359, and lncRNA LUCAT1, which were also found to be significantly associated with immune cells. Conclusion: These results provide novel insights into the potential applications of OS-related lncRNAs in patients with IDD.
Collapse
|
46
|
Xu H, Dai ZH, He GL, Cai HC, Chen XY, Chen YL, Xu C, Sheng SR. Gamma-oryzanol alleviates intervertebral disc degeneration development by intercepting the IL-1β/NLRP3 inflammasome positive cycle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154176. [PMID: 35660354 DOI: 10.1016/j.phymed.2022.154176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by a local inflammatory response associated with the IL-1β/NLRP3 inflammasome positive feedback loop. Rice bran-derived gamma-oryzanol (Ory) as a sterol ferulate has attracted much attention due to its powerful anti-inflammatory, hypoglycemic and hypolipidemic health effects. As a clinical pharmaceutical for autonomic disorders, Ory's role in musculoskeletal degenerative disease remains unknown. PURPOSE This study aims to validate the role of Ory in IVDD and explore the potential mechanism. STUDY DESIGN Establishing the in vitro and in vivo IVDD models to detect the protective effect and molecular mechanism of Ory. METHOD The anti-ECM degradation, antioxidant and anti-NLRP3 inflammasome activation effects of Ory on IL-1β-stimulated nucleus pulposus (NP) cells were assessed by immunoblotting and immunofluorescence, etc. MRI, S-O staining and immunohistochemistry were performed to estimate the effects of Ory administration on acupuncture-mediated IVDD in rats at imaging and histological levels. RESULTS Ory treatment inhibited IL-1β-mediated ECM degradation, oxidative stress and NLRP3 inflammasome activation in NP cells. By interfering with NF-κB signaling and ROS overproduction, Ory interrupted IL-1β/NLRP3-inflammasome positive cycle. In vivo experiments showed that Ory delayed acupuncture-mediated IVDD development. CONCLUSION Our results support the potential application of Ory as a therapeutic compound for IVDD.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China
| | - Han-Chen Cai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China
| | - Xuan-Yang Chen
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China
| | - Yan-Lin Chen
- Department of Orthopaedics Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China.
| | - Cong Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China.
| | - Sun-Ren Sheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejian 325000, China.
| |
Collapse
|
47
|
Bhujel B, Shin HE, Choi DJ, Han I. Mesenchymal Stem Cell-Derived Exosomes and Intervertebral Disc Regeneration: Review. Int J Mol Sci 2022; 23:7306. [PMID: 35806304 PMCID: PMC9267028 DOI: 10.3390/ijms23137306] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of lower back pain (LBP), which burdens individuals and society as a whole. IVDD occurs as a result of aging, mechanical trauma, lifestyle factors, and certain genetic abnormalities, leads to loss of nucleus pulposus, alteration in the composition of the extracellular matrix, excessive oxidative stress, and inflammation in the intervertebral disc. Pharmacological and surgical interventions are considered a boon for the treatment of IVDD, but the effectiveness of those strategies is limited. Mesenchymal stem cells (MSCs) have recently emerged as a possible promising regenerative therapy for IVDD due to their paracrine effect, restoration of the degenerated cells, and capacity for differentiation into disc cells. Recent investigations have shown that the pleiotropic effect of MSCs is not related to differentiation capacity but is mediated by the secretion of soluble paracrine factors. Early studies have demonstrated that MSC-derived exosomes have therapeutic potential for treating IVDD by promoting cell proliferation, tissue regeneration, modulation of the inflammatory response, and reduced apoptosis. This paper highlights the current state of MSC-derived exosomes in the field of treatment of IVDD with further possible future developments, applications, and challenges.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Hae-Eun Shin
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Dong-Jun Choi
- Department of Medicine, CHA Univerity School of Medicine, Seongnam-si 13496, Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|
48
|
Tang SN, Walter BA, Heimann MK, Gantt CC, Khan SN, Kokiko-Cochran ON, Askwith CC, Purmessur D. In vivo Mouse Intervertebral Disc Degeneration Models and Their Utility as Translational Models of Clinical Discogenic Back Pain: A Comparative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:894651. [PMID: 35812017 PMCID: PMC9261914 DOI: 10.3389/fpain.2022.894651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Benjamin A. Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mary K. Heimann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Connor C. Gantt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Safdar N. Khan
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Candice C. Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Devina Purmessur ;
| |
Collapse
|
49
|
Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front Pharmacol 2022; 13:905966. [PMID: 35795557 PMCID: PMC9252100 DOI: 10.3389/fphar.2022.905966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low back pain (LBP) caused by intervertebral disc degeneration (IVDD) is accredited to the release of inflammatory cytokines followed by biomechanical and structural deterioration. In our study, we used a plant-derived medicine, curcumenol, to treat IVDD. A cell viability test was carried out to evaluate the possibility of using curcumenol. RNA-seq was used to determine relative pathways involved with curcumenol addition. Using TNFα as a trigger of inflammation, the activation of the NF-κB signaling pathway and expression of the MMP family were determined by qPCR and western blotting. Nucleus pulposus (NP) cells and the rats’ primary NP cells were cultured. The catabolism status was evaluated by an ex vivo model. A lumbar instability mouse model was carried out to show the effects of curcumenol in vivo. In general, RNA-seq revealed that multiple signaling pathways changed with curcumenol addition, especially the TNFα/NF-κB pathway. So, the NP cells and primary NP cells were induced to suffer inflammation with the activated TNFα/NF-κB signaling pathway and increased expression of the MMP family, such as MMP3, MMP9, and MMP13, which would be mitigated by curcumenol. Owing to the protective effects of curcumenol, the height loss and osteophyte formation of the disc could be prevented in the lumbar instability mouse model in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- *Correspondence: Tangjun Zhou, ; Jie Zhao,
| |
Collapse
|
50
|
Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair. Int J Mol Sci 2022; 23:ijms23126612. [PMID: 35743056 PMCID: PMC9223673 DOI: 10.3390/ijms23126612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence in humans and animal models indicates an association between intervertebral disc degeneration (IDD) and increased fibrotic elements in the nucleus pulposus (NP). These include enhanced matrix turnover along with the abnormal deposition of collagens and other fibrous matrices, the emergence of fibrosis effector cells, such as macrophages and active fibroblasts, and the upregulation of the fibroinflammatory factors TGF-β1 and IL-1/-13. Studies have suggested a role for NP cells in fibroblastic differentiation through the TGF-βR1-Smad2/3 pathway, inflammatory activation and mechanosensing machineries. Moreover, NP fibrosis is linked to abnormal MMP activity, consistent with the role of matrix proteases in regulating tissue fibrosis. MMP-2 and MMP-12 are the two main profibrogenic markers of myofibroblastic NP cells. This review revisits studies in the literature relevant to NP fibrosis in an attempt to stratify its biochemical features and the molecular identity of fibroblastic cells in the context of IDD. Given the role of fibrosis in tissue healing and diseases, the perspective may provide new insights into the pathomechanism of IDD and its management.
Collapse
|