1
|
Rasheed B, Bjelland Ø, Dalen AF, Schaathun HG. Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations. J Biomech 2025; 183:112627. [PMID: 40117873 DOI: 10.1016/j.jbiomech.2025.112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).
Collapse
Affiliation(s)
- Bismi Rasheed
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway.
| | - Øystein Bjelland
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Andreas F Dalen
- Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway; Department of Orthopaedic Surgery, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Hans Georg Schaathun
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway
| |
Collapse
|
2
|
El Kommos A, Magesh P, Lattanze S, Perros A, Andreopoulos F, Travascio F, Jackson A. Hybrid Hydrogels Augmented via Additive Network Integration (HANI) for Meniscal Tissue Engineering Applications. Gels 2025; 11:223. [PMID: 40277659 DOI: 10.3390/gels11040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
Orthopedic soft tissue injuries, such as those to the fibrocartilaginous meniscus in the knee, present a significant clinical challenge, impacting millions globally and often requiring surgical interventions that fail to fully restore mechanical function. Current bioengineered meniscal replacement options that incorporate synthetic and/or natural scaffolds have limitations in biomechanical performance and biological integration. This study introduces a novel scaffold fabrication approach, termed Hybrid Hydrogels Augmented via Additive Network Integration (HANI) with great potential for meniscal tissue engineering applications. HANI scaffolds combine cross-linked gelatin-based hydrogels with polycaprolactone (PCL) additive networks, created via Fused Deposition Modeling (FDM), to enhance mechanical strength and replicate the anisotropic properties of the meniscus. Custom Stereolithography (SLA)-printed molds ensure precise dimensional control and seamless incorporation of PCL networks within the hydrogel matrix. The mechanical evaluation of HANI scaffolds showed improvements in compressive stiffness, stress relaxation behavior, and load-bearing capacity, especially with circumferential and 3D PCL reinforcements, when compared to hydrogel scaffolds without additive networks. These findings highlight HANI's potential as a cost-effective, scalable, and tunable scaffold fabrication approach for meniscal tissue engineering applications.
Collapse
Affiliation(s)
- Anthony El Kommos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Praveen Magesh
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Samantha Lattanze
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Andrew Perros
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136, USA
| | - Alicia Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
3
|
Mok S, Almajed Y, Alomiery A, Soames R, Alashkham A. Morphology of the sternoclavicular joint and its microanatomical changes in response to osteoarthritic degeneration. Clin Anat 2024. [PMID: 39704465 DOI: 10.1002/ca.24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/23/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Although the sternoclavicular joint shares structural similarities with the knee and hip joints as a diarthrodial joint, its biomechanics differ significantly due to its non-weight-bearing nature. Nevertheless, it is subject to considerable loading, leading to increased susceptibility to osteoarthritis, a prevalent condition characterized by the degeneration of the joint's articular surfaces and fibrocartilaginous intra-articular disc. The osteoarthritic degeneration of the fibrocartilaginous and cartilaginous surfaces of the sternoclavicular joint has been investigated, considering multiple factors. These include cell count, collagen alignment, surface fibrillation, cyst formation, and glycosaminoglycan content, with the findings deemed significant. However, current treatments for osteoarthritis of the sternoclavicular joint tend to focus on symptom management rather than active prevention of disease progression. Therefore, a detailed understanding of the anatomy, biomechanics, and morphological changes of the sternoclavicular joint during all stages of the osteoarthritic disease is essential for effective management to allow for maximum patient outcomes. This review explores the current literature on the anatomy of the sternoclavicular joint, starting with its structure and comparison to surrounding joints, biomechanics, and morphology, before considering the microanatomical changes that occur due to osteoarthritic degeneration. Early identification of osteoarthritic changes within this joint can enhance treatment and management outcomes before advancing joint degeneration, improving the quality of life for those affected.
Collapse
Affiliation(s)
- Sophie Mok
- Anatomy, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yousef Almajed
- Anatomy, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Roger Soames
- Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Abduelmenem Alashkham
- Anatomy, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Zawia Faculty of Medicine, University of Zawia, Zawia, Libya
| |
Collapse
|
4
|
Zhou J, Ren R, Zhan Y, Song N, Zhu S, Jiang N. Comparing microstructural and micromechanical deformation of the TMJ disc in two anterior disc displacement models. J Oral Rehabil 2024; 51:2390-2397. [PMID: 39152540 DOI: 10.1111/joor.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 07/17/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Anterior disc displacement (ADD) has been used to establish temporomandibular joint disorder (TMD) models. Based on whether preserve of the retrodiscal attachment, the modelling methodologies include ADD with dissecting the retrodiscal attachment (ADDwd) and ADD without dissecting the retrodiscal attachment (ADDwod). This article aims to determine which model better matches the micromechanical and microstructural progression of TMD. METHODS Through meticulous microscopic observations, the microstructure and micromechanical deformation of the TMJ discs in ADDwd and ADDwod rabbit models were compared at 2 and 20 weeks. RESULT Scanning electron microscopy and transmission electron microscopy showed that collagen fibres became slenderized and straightened, collagen fibrils lost diameter and arrangement in the ADDwd group at 2 weeks. Meanwhile, nanoindentation and atomic electron microscopy showed that the micro- and nano- mechanical properties decreased dramatically. However, the ADDwod group exhibited no significant microstructure and micromechanical deformations at 2 weeks. Dissection of the retrodiscal attachment contribute in the acceleration of disease progression at the early stage, the devastating discal phenotype remained fundamentally the same within the two models at 20 weeks. CONCLUSION ADDwod models, induced stable and persistent disc deformation, therefore, can better match the progression of TMD. While ADDwd models can be considered for experiments which aim to obtain advanced phenotype in a short time.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Ning Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Sabouri P, Hashemi A. Effect of loading direction and anatomical location on the ultimate tensile stress, fracture toughness, and failure patterns of knee meniscus. Knee 2024; 48:120-127. [PMID: 38579436 DOI: 10.1016/j.knee.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Rupture of the knee menisci is a common injury that can have implications for other conditions, such as osteoarthritis. The fracture toughness of soft tissue (Jc) is a mechanical property that characterizes its resistance to tear extension. To date, Jc of the meniscus has not been quantified. METHODS Cyclic tensile tests were conducted on meniscus samples to determine Jc and explore its characteristics. Initially, the study investigated the impact of an initial notch on the ultimate tensile stress. This allowed for an understanding of how the presence of a notch affects its structural integrity. Subsequently, Jc was measured in both the radial and circumferential directions to assess its loading direction dependency. Furthermore, the study assessed the effect of anatomical location by comparing samples collected from the femoral and tibial layers. RESULTS Defect tolerance of the meniscus is influenced by the loading direction. In the circumferential direction, the presence of an initial notch did not affect the ultimate stress, and no crack expansion was observed. In radial samples with a notch length of 40% or more of the total width, crack propagation occurred, leading to a decrease in the ultimate stress (p< 0.01). Additionally, Jc was found to be higher in the femoral layer compared to the tibial layer (p= 0.017). CONCLUSION The study also examined the failure patterns of the meniscus to enhance our understanding of its pathology. These insights contribute to a better comprehension of meniscus injuries and can aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Pouya Sabouri
- Biomechanical Engineering Group, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Ata Hashemi
- Biomechanical Engineering Group, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran.
| |
Collapse
|
6
|
El Kommos A, Jackson AR, Andreopoulos F, Travascio F. Development of Improved Confined Compression Testing Setups for Use in Stress Relaxation Testing of Viscoelastic Biomaterials. Gels 2024; 10:329. [PMID: 38786246 PMCID: PMC11121465 DOI: 10.3390/gels10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The development of cell-based biomaterial alternatives holds significant promise in tissue engineering applications, but it requires accurate mechanical assessment. Herein, we present the development of a novel 3D-printed confined compression apparatus, fabricated using clear resin, designed to cater to the unique demands of biomaterial developers. Our objective was to enhance the precision of force measurements and improve sample visibility during compression testing. We compared the performance of our innovative 3D-printed confined compression setup to a conventional setup by performing stress relaxation testing on hydrogels with variable degrees of crosslinking. We assessed equilibrium force, aggregate modulus, and peak force. This study demonstrates that our revised setup can capture a larger range of force values while simultaneously improving accuracy. We were able to detect significant differences in force and aggregate modulus measurements of hydrogels with variable degrees of crosslinking using our revised setup, whereas these were indistinguishable with the convectional apparatus. Further, by incorporating a clear resin in the fabrication of the compression chamber, we improved sample visibility, thus enabling real-time monitoring and informed assessment of biomaterial behavior under compressive testing.
Collapse
Affiliation(s)
- Anthony El Kommos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (A.R.J.)
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (A.R.J.)
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (A.R.J.)
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136, USA
- Max Biedermann Institute for Biomechanics, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
7
|
Peña-Trabalon A, Perez-Blanca A, Moreno-Vegas S, Estebanez Campos MB, Prado-Novoa M. Age influence on resistance and deformation of the human sutured meniscal horn in the immediate postoperative period. Front Bioeng Biotechnol 2024; 11:1249982. [PMID: 38249802 PMCID: PMC10796521 DOI: 10.3389/fbioe.2023.1249982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: To preserve knee function, surgical repair is indicated when a meniscal root disinsertion occurs. However, this surgery has not yet achieved complete recovery of the joint´s natural biomechanics, with the meniscus-suture interface identified as a potentially determining factor. Knowing the deformation and resistance behavior of the sutured meniscal horn and whether these properties are preserved as the patient ages could greatly contribute to improving repair outcomes. Methods: A cadaveric experimental study was conducted on human sutured menisci classified into three n = 22 age groups (young ≤55; 55 < middle-aged ≤75; 75 < old) were subjected to load-to-failure test by suture pulling. Meniscal thickness at the suture hole was measured and the applied traction force and tissue deformation in the suture area in the direction of traction were recorded during the test. The traction load that initiated the meniscal cut-out, F c , maximum load borne by the meniscus, F u , tissue stress at the cut-out initiation, S c , and equivalent stiffness modulus at the suture area, m s , were calculated. Results: At the tissue level, the resistance in terms of S c decrease with age (young: 47.2 MPa; middle-aged: 44.7 MPa; old: 33.8 MPa) being significantly different between the young and the old group (p = 0.015). Mean meniscal thickness increased with age (young: 2.50 mm; middle-aged: 2.92 mm; old: 3.38 mm; p = 0.001). Probably due to thickening, no differences in resistance were found at the specimen level, i.e., in F c (overall mean 58.2 N) and F u (overall mean 73.6 N). As for elasticity, m s was lower in the old group than in the young group (57.5 MPa vs. 113.6 MPa, p = 0.02) and the middle-aged one (57.5 MPa vs. 108.0 MPa, p = 0.04). Conclusion: Regarding the influence of age on the sutured meniscal horn tissue, in vitro experimentation revealed that meniscal horn specimens older than 75 years old had a more elastic tissue which was less resistant to cut-out than younger menisci at the suture hole area. However, a thickening of the meniscal horns with age, which was also found, leveled out the difference in the force that initiated the tear, as well as in the maximum force borne by the meniscus in the load-to-failure test.
Collapse
Affiliation(s)
- Alejandro Peña-Trabalon
- Clinical Biomechanics Laboratory of Andalusia (BIOCLINA), University of Malaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
8
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Morejon A, Schwartz G, Best TM, Travascio F, Jackson AR. Effect of molecular weight and tissue layer on solute partitioning in the knee meniscus. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100360. [PMID: 37122844 PMCID: PMC10133802 DOI: 10.1016/j.ocarto.2023.100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Knee meniscus tissue is partly vascularized, meaning that nutrients must be transported through the extracellular matrix of the avascular portion to reach resident cells. Similarly, drugs used as therapeutic agents to treat meniscal pathologies rely on transport through the tissue. The driving force of diffusive transport is the gradient of concentration, which depends on molecular solubility. The meniscus is organized into a core region sandwiched between the tibial and femoral superficial layers. Structural differences exist across meniscal regions; therefore, regional differences in solubility are also hypothesized. Methods Samples from the core, tibial and femoral layers were obtained from 5 medial and 5 lateral porcine menisci. The partition coefficient (K) of fluorescein, 3 kDa and 40 kDa dextrans in the layers of the meniscus was measured using an equilibration experiment. The effect of meniscal compartment, layer, and solute molecular weight on K was analyzed using a three-way ANOVA. Results K ranged from a high of ∼2.9 in fluorescein to a low of ∼0.1 in 40 kDa dextran and was inversely related to the solute molecular weight across all tissue regions. Tissue layer only had a significant effect on partitioning of 40k Dex solute, which was lower in the tibial surface layer relative to the core (p = 0.032). Conclusion This study provides insight into depth-dependent partitioning in the meniscus, indicating the limiting effect of the meniscus superficial layer on solubility increases with solute molecular size. This illustrates how the surface layers could potentially reduce the effectiveness of drug delivery therapies incorporating large molecules (>40 kDa).
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, Coral Gables, FL, USA
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276, Coral Gables, FL 33146, USA.
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 USA.
| |
Collapse
|
10
|
Morejon A, Dalbo PL, Best TM, Jackson AR, Travascio F. Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content. Front Bioeng Biotechnol 2023; 11:1205512. [PMID: 37324417 PMCID: PMC10264653 DOI: 10.3389/fbioe.2023.1205512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content. Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01-1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young's Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated. Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05). Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue.
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
| | - Pedro L. Dalbo
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- UHealth Sports Medicine Institute, Coral Gables, FL, United States
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
11
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
12
|
Schwartz G, Morejon A, Best TM, Jackson AR, Travascio F. Strain-Dependent Diffusivity of Small and Large Molecules in Meniscus. J Biomech Eng 2022; 144:111010. [PMID: 35789377 PMCID: PMC9309715 DOI: 10.1115/1.4054931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Due to lack of full vascularization, the meniscus relies on diffusion through the extracellular matrix to deliver small (e.g., nutrients) and large (e.g., proteins) to resident cells. Under normal physiological conditions, the meniscus undergoes up to 20% compressive strains. While previous studies characterized solute diffusivity in the uncompressed meniscus, to date, little is known about the diffusive transport under physiological strain levels. This information is crucial to fully understand the pathophysiology of the meniscus. The objective of this study was to investigate strain-dependent diffusive properties of the meniscus fibrocartilage. Tissue samples were harvested from the central portion of porcine medial menisci and tested via fluorescence recovery after photobleaching to measure diffusivity of fluorescein (332 Da) and 40 K Da dextran (D40K) under 0%, 10%, and 20% compressive strain. Specifically, average diffusion coefficient and anisotropic ratio, defined as the ratio of the diffusion coefficient in the direction of the tissue collagen fibers to that orthogonal, were determined. For all the experimental conditions investigated, fluorescein diffusivity was statistically faster than that of D40K. Also, for both molecules, diffusion coefficients significantly decreased, up to ∼45%, as the strain increased. In contrast, the anisotropic ratios of both molecules were similar and not affected by the strain applied to the tissue. This suggests that compressive strains used in this study did not alter the diffusive pathways in the meniscus. Our findings provide new knowledge on the transport properties of the meniscus fibrocartilage that can be leveraged to further understand tissue pathophysiology and approaches to tissue restoration.
Collapse
Affiliation(s)
- Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146
| | - Thomas M Best
- Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146;UHealth Sports Medicine Institute, Coral Gables, FL 33146
| | - Alicia R Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146; Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136; Max Biedermann Institute for Biomechanics at Mount, Sinai Medical Center, Miami Beach, FL 33140
| |
Collapse
|