1
|
Wille A, Weske S, von Wnuck Lipinski K, Wollnitzke P, Schröder NH, Thomas N, Nowak MK, Deister-Jonas J, Behr B, Keul P, Levkau B. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner. J Bone Miner Res 2024; 39:357-372. [PMID: 38477738 PMCID: PMC11240155 DOI: 10.1093/jbmr/zjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.
Collapse
Affiliation(s)
- Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital BG Bergmannsheil, 44789 Bochum, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
3
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
4
|
Lee SH, Kim JS, Koh JM. The Fracture Risk Assessment Tool Probability and Trabecular Bone Score Mediate the Relationship between Sphingosine 1-phosphate Levels and Fracture Risk. J Bone Metab 2023; 30:355-364. [PMID: 38073269 PMCID: PMC10721379 DOI: 10.11005/jbm.2023.30.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The sphingosine 1-phosphate (S1P) concentration is a potential biomarker of osteoporotic fracture and is associated with both the fracture risk assessment tool (FRAX) probability and trabecular bone score (TBS), which are well-known predictors of fracture. We sought to estimate the effect of the S1P concentration on fracture risk using the FRAX probability and TBS as mediators. METHODS Plasma S1P concentrations, FRAX variables, and TBSs were measured in 66 postmenopausal women with fractures and 273 postmenopausal women without fractures. Associations between S1P concentration, FRAX probability, TBS, and fracture risk were analyzed using correlation, logistic regression, and mediation analyses. RESULTS Subjects in the highest S1P concentration tertile had a higher fracture risk (odds ratio [OR], 5.09; 95% confidence interval [CI], 2.22-11.67) than those in the lowest S1P concentration tertile before adjustment. Subjects in the highest FRAX probability tertile had a higher fracture risk (OR, 14.59; 95% CI, 5.01-42.53) than those in the lowest FRAX probability tertile before adjustment. Subjects in the lowest TBS tertile had a higher fracture risk (OR, 4.76; 95% CI, 2.28-9.93) than those in the highest TBS tertile before adjustment. After adjustment for FRAX probability and TBS, the highest S1P concentration tertile was still associated with a higher fracture risk (OR, 3.13; 95% CI, 1.28-7.66). The FRAX probability and TBS accounted for 32.6% and 21.7%, respectively, of the relationship between the S1P concentration and fracture risk. CONCLUSIONS The relationship between the circulating S1P concentration and fracture risk was partly mediated by the FRAX probability, bone microarchitecture, and other factors.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
5
|
Frost K, Naylor AJ, McGettrick HM. The Ying and Yang of Sphingosine-1-Phosphate Signalling within the Bone. Int J Mol Sci 2023; 24:6935. [PMID: 37108099 PMCID: PMC10139073 DOI: 10.3390/ijms24086935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bone remodelling is a highly active and dynamic process that involves the tight regulation of osteoblasts, osteoclasts, and their progenitors to allow for a balance of bone resorption and formation to be maintained. Ageing and inflammation are risk factors for the dysregulation of bone remodelling. Once the balance between bone formation and resorption is lost, bone mass becomes compromised, resulting in disorders such as osteoporosis and Paget's disease. Key molecules in the sphingosine-1-phosphate signalling pathway have been identified for their role in regulating bone remodelling, in addition to its more recognised role in inflammatory responses. This review discusses the accumulating evidence for the different, and, in certain circumstances, opposing, roles of S1P in bone homeostasis and disease, including osteoporosis, Paget's disease, and inflammatory bone loss. Specifically, we describe the current, often conflicting, evidence surrounding S1P function in osteoblasts, osteoclasts, and their precursors in health and disease, concluding that S1P may be an effective biomarker of bone disease and also an attractive therapeutic target for disease.
Collapse
Affiliation(s)
| | - Amy J. Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
6
|
Grewe JM, Knapstein PR, Donat A, Jiang S, Smit DJ, Xie W, Keller J. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res 2022; 10:34. [PMID: 35396384 PMCID: PMC8993882 DOI: 10.1038/s41413-022-00205-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic bone disease that affects more than 200 million people worldwide and is caused by the disruption of the equilibrium between osteoclastic bone resorption and osteoblastic bone formation. Sphingosine-1-phosphate (S1P) is a natural, bioactive sphingolipid that has been shown to play a major role in cardiovascular and immunological pathologies by regulating biological and cellular processes, including migration, differentiation, proliferation and survival. Recent studies also suggest a central role for S1P in bone diseases, including osteoporosis; however, the effects of S1P, particularly in bone metabolism, remain to be further elucidated. In this review, we summarize the available literature on the role of S1P in bone metabolism with a focus on osteoporosis. On the cellular level, S1P acts as an osteoclast-osteoblast coupling factor to promote osteoblast proliferation and bone formation. Moreover, the recruitment of osteoclast precursors to resorption sites is regulated by the interplay of S1P gradients and S1P receptor expression. From a clinical perspective, increasing evidence suggests that systemically elevated S1P blood levels may serve as an independent risk factor for osteoporosis-related fractures. Taken together, S1P signaling is a potential therapeutic target and may serve as a novel biomarker in patients with systemic bone disease.
Collapse
Affiliation(s)
- Justus M Grewe
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Clinic and Polyclinic for Vascular Medicine, University Heart Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paul-Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|