1
|
Khan H, Sangah AB, Nasir R, Khan SA, Shaikh SS, Ahmed I, Abbasi MK, Ahmed A, Siddiqui D, Hussain SA, Akhunzada NZ, Godfrey O. Efficacy of radiosurgery with and without angioembolization: A subgroup analysis of effectiveness in ruptured versus unruptured arteriovenous malformations - An updated systematic review and meta-analysis. Surg Neurol Int 2024; 15:467. [PMID: 39777180 PMCID: PMC11704434 DOI: 10.25259/sni_737_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background Congenital arterial defects such as cerebral arteriovenous malformations (AVMs) increase brain bleeding risk. Conservative therapy, microsurgical removal, percutaneous embolization, stereotactic radiosurgery (SRS), or a combination may treat this serious disease. This study compares angioembolization with SRS to SRS alone in ruptured or unruptured brain ateriovenous malformations (BAVM) patients. Methods We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations for this study. Until September 2023, PubMed/Medline, Cochrane, and Clinicaltrials.gov were searched for literature. English-language studies comparing SRS alone to embolization with SRS on ruptured or non-ruptured AVMs that could not be operated on were considered. The Newcastle-Ottawa Scale assessed research study quality. Results Results included 46 studies with a total of 7077 participants. There was a greater obliteration rate in the SRS-only group (60.4%) than in the embolization plus SRS group (49.73%). Particularly in the SRS-only group, ruptured AVMs showed a noticeably greater obliteration rate than unruptured AVMs (P = 0.002). However, no notable differences were found in hemorrhagic events or radiation-induced changes between the two groups; however, the SRS-only group had a slightly greater, yet not statistically significant, mortality rate. Conclusion Our data showed that ruptured brain AVMs had a much greater obliteration rate than unruptured ones, mostly due to SRS alone, without embolization. The aggregated data showed no significant changes, whereas SRS alone decreased radiation-induced alterations and hemorrhagic rates but with increased mortality. SRS alone may have a higher risk-to-reward ratio for nidus obliteration in ruptured brain AVM patients, so it should be used without embolization, although more research is needed to determine the effects of immediate and late complications.
Collapse
Affiliation(s)
- Hamza Khan
- Department of Neurosurgery, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Abdul Basit Sangah
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Roua Nasir
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Saad Akhtar Khan
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | | | - Ikhlas Ahmed
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Mohad Kamran Abbasi
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Asma Ahmed
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Dua Siddiqui
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Syeda Ayesha Hussain
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | | | - Oswin Godfrey
- Department of Neurosurgery, Sohail Trust Hospital, Karachi, Pakistan
| |
Collapse
|
2
|
Mohan A, Tiwari S, Pareek P, Fernandes A, Santhyavu S, Kombathula SH, Choubisa M, Gayen S, Irfad M, Solanki A. Linear Accelerator (LINAC) Radiosurgical Management of Brain Arteriovenous Malformations: An Experience From a Tertiary Care Center. Cureus 2024; 16:e76232. [PMID: 39845248 PMCID: PMC11751660 DOI: 10.7759/cureus.76232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs. MATERIALS AND METHODS Between December 2018 and April 2024, 15 patients with cerebral AVMs underwent SRS/hFSRT at a tertiary government hospital. Patient selection was based on AVM size, location, surgical unsuitability, and patient preference. All patients underwent MRI and cerebral angiography for nidus delineation. SRS was planned using Monaco TPS (treatment planning system) (Elekta AB, Stockholm, Sweden) with VMAT (volumetric modulated arc therapy) technique, delivering a median dose of 20 Gy in single fractions for small AVMs and 28 Gy in four fractions for large AVMs. Patients were followed up with annual MRI and angiography to assess obliteration. RESULTS The cohort had a median age of 22 years, with a median nidus volume of 3.76 cc. The crude obliteration rate was 60%, confirmed by MRI/angiography. Actuarial obliteration rates at two, three, and five years were 65.71%, 73.57%, and 77.14%, respectively. Smaller AVMs (<3 cc) and those with a modified AVM radiosurgery score <1.5 had nearly 100% obliteration rates. Large AVMs (>10 cc) treated with hypofractionated SRT showed partial responses only. Significant predictors of obliteration included prescription dose, AVM volume, and modified AVM radiosurgery score. CONCLUSION LINAC-based SRS demonstrates comparable efficacy to other modalities for treating cerebral AVMs, with obliteration rates influenced by dose, AVM volume, and pre-treatment radiosurgery score. Larger AVMs pose a greater challenge, suggesting a need for adjunctive treatments or higher fractionated doses to improve outcomes.
Collapse
Affiliation(s)
- Amith Mohan
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Sarbesh Tiwari
- Radiodiagnosis, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Puneet Pareek
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Antonio Fernandes
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Sanjay Santhyavu
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | | | - Mukul Choubisa
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Sanjib Gayen
- Medical Physics, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Mohammed Irfad
- Medical Physics, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Akanksha Solanki
- Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| |
Collapse
|
3
|
Larkin CJ, Abecassis ZA, Yerneni K, Nistal DA, Karras CL, Golnari P, Potts MB, Jahromi BS. Volume-staged versus dose-staged stereotactic radiosurgery, with or without embolization, in the treatment of large brain arteriovenous malformations: A systematic review and meta-analysis. J Clin Neurosci 2024; 129:110883. [PMID: 39454278 DOI: 10.1016/j.jocn.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND OBJECTIVE While safe and effective modalities exist to treat small arteriovenous malformations (AVMs), large (>10 cm3) AVMs remain difficult to cure via surgical or endovascular means. Staged stereotactic radiosurgery (SRS), either volume-staged (VS) or dose-staged (DS), has been proposed for large AVMs. The relative efficacy of these two strategies, with or without endovascular embolization, is unclear. Accordingly, the goal of this study is to review existing literature on VS-SRS and DS-SRS for large brain AVMs to compare obliteration rates and complications, and determine the utility of neoadjuvant embolization. METHODS MEDLINE, Scopus, and the Cochrane registry were searched for studies with at least five adult patients and an AVM volume of ≥10 cm3 prior to treatment. Meta-analyses of proportions were conducted and compared using a Wald-type test and the impact of prior embolization was investigated using weighted linear regression analysis. RESULTS Eighteen studies (VS-SRS n = 235, DS-SRS n = 157) fit inclusion criteria, all of which were retrospective and none of which directly compared both treatment strategies. The average rate of complete AVM obliteration was significantly higher with VS-SRS (46.6 %; 39.7 % - 53.6 %) than DS-SRS (17.8 %; 7.0 % - 38.2 %, p = 0.027). Complication rates were comparable between VS-SRS (18.0 %; 9.2 % - 32.1 %) and DS-SRS (23.6 %; 12.2 % - 40.8 %, p = 0.544). Regression analysis demonstrated no significant relationship between prior embolization and complete obliteration for either VS-SRS (r = -0.36, p = 0.34) or DS-SRS (r = 0.58, p = 0.29). CONCLUSION VS-SRS, without neoadjuvant embolization, appears to be the optimal approach when treating large AVMs with radiosurgery. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Collin J Larkin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Zachary A Abecassis
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Ketan Yerneni
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dominic A Nistal
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Constantine L Karras
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pedram Golnari
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew B Potts
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Babak S Jahromi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Grossen AA, Evans AR, Ernst GL, Behnen CC, Zhao X, Bauer AM. The current landscape of machine learning-based radiomics in arteriovenous malformations: a systematic review and radiomics quality score assessment. Front Neurol 2024; 15:1398876. [PMID: 38915798 PMCID: PMC11194423 DOI: 10.3389/fneur.2024.1398876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Arteriovenous malformations (AVMs) are rare vascular anomalies involving a disorganization of arteries and veins with no intervening capillaries. In the past 10 years, radiomics and machine learning (ML) models became increasingly popular for analyzing diagnostic medical images. The goal of this review was to provide a comprehensive summary of current radiomic models being employed for the diagnostic, therapeutic, prognostic, and predictive outcomes in AVM management. Methods A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, in which the PubMed and Embase databases were searched using the following terms: (cerebral OR brain OR intracranial OR central nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation OR arteriovenous malformations) AND (radiomics OR radiogenomics OR machine learning OR artificial intelligence OR deep learning OR computer-aided detection OR computer-aided prediction OR computer-aided treatment decision). A radiomics quality score (RQS) was calculated for all included studies. Results Thirteen studies were included, which were all retrospective in nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) addressed prognosis. No radiomics model had undergone external validation. The mean RQS was 15.92 (range: 10-18). Conclusion We demonstrated that radiomics is currently being studied in different facets of AVM management. While not ready for clinical use, radiomics is a rapidly emerging field expected to play a significant future role in medical imaging. More prospective studies are warranted to determine the role of radiomics in the diagnosis, prediction of comorbidities, and treatment selection in AVM management.
Collapse
Affiliation(s)
- Audrey A. Grossen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alexander R. Evans
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Griffin L. Ernst
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Connor C. Behnen
- Data Science and Analytics, University of Oklahoma, Norman, OK, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew M. Bauer
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Joseph J, Raju KP, Jonathan GE, B R, Ganesh S, S P, Godson HF. Hypofractionated stereotactic radiotherapy in Spetzler Martin grades 4 and 5 arteriovenous malformations in the pediatric population: Is it a viable alternative? Childs Nerv Syst 2024; 40:1185-1192. [PMID: 38071636 DOI: 10.1007/s00381-023-06244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/28/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To analyze the outcomes of hypofractionated stereotactic radiotherapy (HFSRT) for Spetzler Martin grades 4 and 5 arteriovenous malformations (AVMs) in a pediatric population. METHODS Fourteen patients with Spetzler Martin (SM) grades IV and V large AVMs who underwent HFSRT between January 2013 and July 2019 were retrospectively reviewed. All patients received HFSRT at a dose of 30-36 Gy in 5 to 6 fractions. They were followed up annually with clinical and imaging assessments to evaluate obliteration rates. RESULTS The median age at presentation was 15 years (range 8-21 years). Ten (71%) were SM grade 4 AVMs and the rest were SM grade 5 AVMs. The majority presented with headache (8 [57%]), and 3 (21%) presented with bleeding. The median nidus volume was 39.4 cc (IQR, 31.4-52.4). Two (14%) patients had infratentorial AVMs. All of them had deep venous drainage. The median clinical follow-up duration was 75 months (range 31-107 months). There was complete obliteration of the nidus in 3 (21%) patients with a median time to obliteration of 39 months. HFSRT resulted in a reduction of the AVM volume to 12 cc or less in nearly 70% of patients. None of the patients experienced re-bleeding. 79% reported an improvement in their symptoms. CONCLUSION HFSRT is a highly effective treatment for high-grade AVMs in children, which can result in either complete elimination or significant reduction of the nidus volume or make it suitable for additional treatment, such as single-session stereotactic radiosurgery (SRS).
Collapse
Affiliation(s)
- Jeena Joseph
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Krishna Prabhu Raju
- Department of Neurological Sciences, Christian Medical College, Vellore, India.
| | | | - Rajesh B
- Department of Radiation Oncology, Christian Medical College, Vellore, India
| | - Swaminathan Ganesh
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Patricia S
- Department of Radiation Oncology, Christian Medical College, Vellore, India
| | | |
Collapse
|
6
|
Shah SN, Shah SS, Kaki P, Satti SR, Shah SA. Efficacy of Dose-Escalated Hypofractionated Radiosurgery for Arteriovenous Malformations. Cureus 2024; 16:e52514. [PMID: 38371098 PMCID: PMC10874255 DOI: 10.7759/cureus.52514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
There is considerable controversy about the management of arteriovenous malformations (AVMs) that are high risk for surgical resection. Stereotactic radiosurgery (SRS) has a reported success rate of less than 50% with unacceptably high rates of radiation necrosis with larger AVM volumes. Neither volume staging nor hypo-fractionated SRS have conclusively been demonstrated to improve results. We hypothesized that the failure of previous hypo-fractionation SRS trials was due to an insufficient biologically effective dose (BED) of radiation. We initiated a pilot study of treating AVM patients with a total dose divided into three or five fractions designed to deliver the equivalent BED of 20 Gy in a single fraction (α/β =3). We performed a retrospective analysis of 37 AVM patients who had a minimum of two years of follow-up or underwent obliteration. Patients were treated with 30 Gy/3 fractions, 33 Gy/3 fractions, or 40 Gy/5 fractions using a CyberKnife device (Accuracy Incorporated, Madison, Wisconsin, United States). The primary endpoint was complete AVM obliteration, determined by MRA imaging. Most obliterations were confirmed with diagnostic cerebral angiography. Secondary endpoints were post-radiosurgery hemorrhage and radiation-related necrosis. Kaplan-Meier analysis was used to determine obliteration rates. From 2013 to 2021, 37 patients fitting inclusion criteria were identified (62% male, average age at treatment = 48.88 years). Fifteen (41%) patients had prior treatment (surgery, radiosurgery, embolization) for their AVM, 32 (86%) had AVMs in eloquent locations, 17 (46%) had high-risk features, and 14 (38%) experienced AVM rupture prior to treatment. The average modified radiosurgery-based AVM score (mRBAS) was 1.81 (standard deviation (SD)= 0.52), and the mean AVM volume was 6.77 ccs (SD = 6.09). Complete AVM obliteration was achieved in 100% of patients after an average of 26.13 (SD = 14.62) months. The Kaplan-Meier analysis showed AVM obliteration rates at one, two, and three years to be 16.2%, 46.9%, and 81.1%, respectively. Post-operative AVM rupture or hemorrhage occurred in one (2.7%) patient, after nine months. Radiation necrosis occurred in four (11%) patients after an average period of 17.3 (SD =14.7) months. The SRS dose used in this study is the highest BED of any AVM hypofractionation trial in the published literature. This study suggests that dose-escalated hypofractionated radiosurgery can be a successful strategy for AVMs with acceptable long-term complication rates. Further investigation of this treatment regimen should be performed to assess its efficacy.
Collapse
Affiliation(s)
- Sophia N Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Sohan S Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Praneet Kaki
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Sudhakar R Satti
- Interventional Neuroradiology, Christiana Care Health System, Newark, USA
| | - Sunjay A Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| |
Collapse
|
7
|
Pérez-Alfayate R, Grasso G. State of the Art and Future Direction in Diagnosis, Molecular Biology, Genetics, and Treatment of Brain Arteriovenous Malformations. World Neurosurg 2022; 159:362-372. [PMID: 35255635 DOI: 10.1016/j.wneu.2021.08.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are uncommon and represent a heterogeneous group of lesions. Although these 2 facts have delayed research on this topic, knowledge about the pathophysiology, diagnosis, and treatment of bAVMs has evolved in recent years. We conducted a review of the literature to update the knowledge about diagnosis, molecular biology, genetic, pathology, and treatment by searching for the following terms: "Epidemiology AND Natural History," "risk of hemorrhage," "intracranial hemorrhage," "diagnosis," "angiogenesis," "molecular genetics," "VEGF," "KRAS," "radiosurgery," "endovascular," "microsurgery," or "surgical resection." Our understanding of bAVMs has significantly evolved in recent years. The latest investigations have helped in defining some molecular pathways involved in the pathology of bAVM. Although there is still more to learn and discover, describing these pathways will allow the creation of targeted treatments that could improve the prognosis of patients with bAVMs.
Collapse
Affiliation(s)
- Rebeca Pérez-Alfayate
- Department of Neurosurgery, Neuroscience Institute, Hospital Clínico San Carlos, Madrid, Spain.
| | - Giovanni Grasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Meng X, Gao D, Jin H, Wang K, Bao E, Liu A, Li Y, Sun S. Factors Affecting Volume Reduction Velocity for Arteriovenous Malformations After Treatment With Dose-Stage Stereotactic Radiosurgery. Front Oncol 2022; 11:769533. [PMID: 34988014 PMCID: PMC8722676 DOI: 10.3389/fonc.2021.769533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose The purpose of this study was to identify morphologic and dosimetric features associated with volume reduction velocity for arteriovenous malformation (AVM) after dose-stage stereotactic radiosurgery (DS-SRS). Methods Thirty patients with intracranial AVM were treated with DS fractionated SRS at Beijing Tiantan Hospital from 2011 to 2019. The AVM nidus was automatically segmented from DICOMRT files using the 3D Slicer software. The change in lesion volume was obtained from the decrease in the planning target volume (PTV) between the two treatment sessions. The volume reduction velocity was measured by the change in volume divided by the time interval between treatments. Fourteen morphologic features of AVM prior to treatment were extracted from the PTV using ‘Pyradiomics’ implemented in Python. Along with other dosimetric features, univariate and multivariate analyses were performed to explore predictors of the volume reduction velocity. Results Among the 15 male (50.0%) and 15 female (50.0%) patients enrolled in this study, 17 patients (56.7%) initially presented with hemorrhage. The mean treatment interval between the initial and second SRS was 35.73 months. In multivariate analysis, the SurfaceVolumeRatio was the only independent factor associated with the volume reduction velocity (p=0.010, odds ratio=0.720, 95% confidence interval: 0.560–0.925). The area under the curve of this feature for predicting the volume reduction velocity after the initial treatment of DS-SRS was 0.83. (p=0.0018). Conclusions The morphologic features correlated well with the volume reduction velocity in patients with intracranial AVM who underwent DS-SRS treatment. The SurfaceVolumeRatio could predict the rate of volume reduction of AVMs after DS-SRS.
Collapse
Affiliation(s)
- Xiangyu Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dezhi Gao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengwei Jin
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Enmeng Bao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ali Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shibin Sun
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Gamma-Knife Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Graffeo CS, Sahgal A, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Regis JM, Sheehan J, Suh J, Yomo S, Pollock BE. Stereotactic Radiosurgery for Spetzler-Martin Grade I and II Arteriovenous Malformations: International Society of Stereotactic Radiosurgery (ISRS) Practice Guideline. Neurosurgery 2020; 87:442-452. [PMID: 32065836 PMCID: PMC7426190 DOI: 10.1093/neuros/nyaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/30/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND No guidelines have been published regarding stereotactic radiosurgery (SRS) in the management of Spetzler-Martin grade I and II arteriovenous malformations (AVMs). OBJECTIVE To establish SRS practice guidelines for grade I-II AVMs on the basis of a systematic literature review. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant search of Medline, Embase, and Scopus, 1986-2018, for publications reporting post-SRS outcomes in ≥10 grade I-II AVMs with a follow-up of ≥24 mo. Primary endpoints were obliteration and hemorrhage; secondary outcomes included Spetzler-Martin parameters, dosimetric variables, and “excellent” outcomes (defined as total obliteration without new post-SRS deficit). RESULTS Of 447 abstracts screened, 8 were included (n = 1, level 2 evidence; n = 7, level 4 evidence), representing 1102 AVMs, of which 836 (76%) were grade II. Obliteration was achieved in 884 (80%) at a median of 37 mo; 66 hemorrhages (6%) occurred during a median follow-up of 68 mo. Total obliteration without hemorrhage was achieved in 78%. Of 836 grade II AVMs, Spetzler-Martin parameters were reported in 680: 377 were eloquent brain and 178 had deep venous drainage, totaling 555/680 (82%) high-risk SRS-treated grade II AVMs. CONCLUSION The literature regarding SRS for grade I-II AVM is low quality, limiting interpretation. Cautiously, we observed that SRS appears to be a safe, effective treatment for grade I-II AVM and may be considered a front-line treatment, particularly for lesions in deep or eloquent locations. Preceding publications may be influenced by selection bias, with favorable AVMs undergoing resection, whereas those at increased risk of complications and nonobliteration are disproportionately referred for SRS.
Collapse
Affiliation(s)
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
| | - Laura Fariselli
- Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Unità di Radioterapia, Milan, Italy
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Ian Paddick
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jean Marie Regis
- Department of Functional Neurosurgery, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota.,Department Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Srinivas S, Retson T, Simon A, Hattangadi-Gluth J, Hsiao A, Farid N. Quantification of hemodynamics of cerebral arteriovenous malformations after stereotactic radiosurgery using 4D flow magnetic resonance imaging. J Magn Reson Imaging 2020; 53:1841-1850. [PMID: 33354852 DOI: 10.1002/jmri.27490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is used to treat cerebral arteriovenous malformations (AVMs). However, early evaluation of efficacy is difficult as structural magnetic resonance imaging (MRI)/magnetic resonance angiography (MRA) often does not demonstrate appreciable changes within the first 6 months. The aim of this study was to evaluate the use of four-dimensional (4D) flow MRI to quantify hemodynamic changes after SRS as early as 2 months. This was a retrospective observational study, which included 14 patients with both pre-SRS and post-SRS imaging obtained at multiple time points from 1 to 27 months after SRS. A 3T MRI Scanner was used to obtain T2 single-shot fast spin echo, time-of-flight MRA, and postcontrast 4D flow with three-dimensional velocity encoding between 150 and 200 cm/s. Post-hoc two-dimensional cross-sectional flow was measured for the dominant feeding artery, the draining vein, and the corresponding contralateral artery as a control. Measurements were performed by two independent observers, and reproducibility was assessed. Wilcoxon signed-rank tests were used to compare differences in flow, circumference, and pulsatility between the feeding artery and the contralateral artery both before and after SRS; and differences in nidus size and flow and circumference of the feeding artery and draining vein before and after SRS. Arterial flow (L/min) decreased in the primary feeding artery (mean: 0.1 ± 0.07 vs. 0.3 ± 0.2; p < 0.05) and normalized in comparison to the contralateral artery (mean: 0.1 ± 0.07 vs. 0.1 ± 0.07; p = 0.068). Flow decreased in the draining vein (mean: 0.1 ± 0.2 vs. 0.2 ± 0.2; p < 0.05), and the circumference of the draining vein also decreased (mean: 16.1 ± 8.3 vs. 15.7 ± 6.7; p < 0.05). AVM volume decreased after SRS (mean: 45.3 ± 84.8 vs. 38.1 ± 78.7; p < 0.05). However, circumference (mm) of the primary feeding artery remained similar after SRS (mean: 15.7 ± 2.7 vs. 16.1 ± 3.1; p = 0.600). 4D flow may be able to demonstrate early hemodynamic changes in AVMs treated with radiosurgery, and these changes appear to be more pronounced and occur earlier than the structural changes on standard MRI/MRA. Level of Evidence: 4 Technical Efficacy Stage: 1.
Collapse
Affiliation(s)
- Shanmukha Srinivas
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Tara Retson
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Aaron Simon
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Albert Hsiao
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Nikdokht Farid
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
11
|
Tam AKY, Chan DYC, Lim K, Poon D, Kam M, Cheung M, Wong GKC. Long term treatment efficacy & complications of hypofractionated stereotactic radiosurgery in brain arteriovenous malformations. J Clin Neurosci 2020; 82:241-246. [PMID: 33246903 DOI: 10.1016/j.jocn.2020.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate long term treatment efficacy and complications of hypofractionated stereotactic radiosurgery (hfSRS) and identify factors that predict outcomes. METHODS A retrospective review was conducted on 34 consecutive patients who received hfSRS from 2008 to 2017. Demographic, clinical, angio-architectural characteristics, and radiosurgery data were extracted from the Clinical Data Analysis and Reporting System and our unit's iPlan (BrainLAB, Munich) system. Data was analysed using SPSS. RESULTS 5-year obliteration rate was 39.1%. Most patients (n = 29, 85.3%) recovered well with GOS of 4-5. 26.9% (n = 9) patients have at least one post-radiosurgery complication including hemorrhage, neurological deficits, radionecrosis. Neurological morbidity and mortality was 17.6% (n = 6). A higher modified radiosurgery arteriovenous malformation score (mRBAS) is associated with a lower 5-year obliteration rate (Rho = -0.486, p = 0.025). None of the bAVM were obliterated once mRBAS exceeds 5.35. As expected, a larger 20-Gy volume outside lesion is associated with more complications and poorer GOS. Interestingly, irradiated drainage vein volume indexed to AVM volume (iiDVV) correlates with increased risks of post-hfSRS haemorrhage (Rho = 0.472, p = 0.031) and reduced event-free survival (Rho = -0.472, p = 0.031). Once iiDVV exceeds 20%, a high rebleeding rate after hfSRS is anticipated (AUC under ROC 0.889). CONCLUSION Hypofractionated stereotactic radiosurgery is an alternative radiosurgery treatment for bAVM unsuitable for single-fraction SRS. mRBAS predicts obliteration rate and morbidity in hfSRS. Index irradiated drainage vein volume (iiDVV) is associated with event-free survival and rebleeding and should be minimized if feasible.
Collapse
Affiliation(s)
- Aurora K Y Tam
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - David Y C Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Lim
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Darren Poon
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Michael Kam
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Michael Cheung
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - George K C Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Byun J, Kwon DH, Lee DH, Park W, Park JC, Ahn JS. Radiosurgery for Cerebral Arteriovenous Malformation (AVM) : Current Treatment Strategy and Radiosurgical Technique for Large Cerebral AVM. J Korean Neurosurg Soc 2020; 63:415-426. [PMID: 32423182 PMCID: PMC7365281 DOI: 10.3340/jkns.2020.0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 11/27/2022] Open
Abstract
Arteriovenous malformations (AVMs) are congenital anomalies of the cerebrovascular system. AVM harbors 2.2% annual hemorrhage risk in unruptured cases and 4.5% annual hemorrhage risk of previously ruptured cases. Stereotactic radiosurgery (SRS) have been shown excellent treatment outcomes for patients with small- to moderated sized AVM which can be achieved in 80–90% complete obliteration rate with a 2–3 years latency period. The most important factors are associated with obliteration after SRS is the radiation dose to the AVM. In our institutional clinical practice, now 22 Gy (50% isodose line) dose of radiation has been used for treatment of cerebral AVM in single-session radiosurgery. However, dose-volume relationship can be unfavorable for large AVMs when treated in a single-session radiosurgery, resulting high complication rates for effective dose. Thus, various strategies should be considered to treat large AVM. The role of pre-SRS embolization is permanent volume reduction of the nidus and treat high-risk lesion such as AVM-related aneurysm and high-flow arteriovenous shunt. Various staging technique of radiosurgery including volume-staged radiosurgery, hypofractionated radiotherapy and dose-staged radiosurgery are possible option for large AVM. The incidence of post-radiosurgery complication is varied, the incidence rate of radiological post-radiosurgical complication has been reported 30–40% and symptomatic complication rate was reported from 8.1% to 11.8%. In the future, novel therapy which incorporate endovascular treatment using liquid embolic material and new radiosurgical technique such as gene or cytokine-targeted radio-sensitization should be needed.
Collapse
Affiliation(s)
- Joonho Byun
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Hoon Kwon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Heui Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wonhyoung Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zhong J, Press RH, Olson JJ, Oyesiku NM, Shu HKG, Eaton BR. The use of Hypofractionated Radiosurgery for the Treatment of Intracranial Lesions Unsuitable for Single-Fraction Radiosurgery. Neurosurgery 2019; 83:850-857. [PMID: 29718388 DOI: 10.1093/neuros/nyy145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is commonly used in the treatment of brain metastases, benign tumors, and arteriovenous malformations (AVM). Single-fraction radiosurgery, though ubiquitous, is limited by lesion size and location. In these cases, hypofractionated radiosurgery (hfSRS) offers comparable efficacy and toxicity. We review the recent literature concerning hfSRS in the treatment of brain metastases, benign tumors, and AVMs that are poorly suited for single-fraction SRS. Published retrospective analyses suggest that local control rates for brain metastases and benign tumors, as well as the rates of AVM obliteration, following hfSRS treatment are comparable to those reported for single-fraction SRS. Additionally, the toxicities from hypofractionated treatment appear comparable to those seen with single-fractioned SRS to small lesions.
Collapse
Affiliation(s)
- Jim Zhong
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Robert H Press
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | | | - Hui-Kuo G Shu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bree R Eaton
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Dose Hypofractionated Stereotactic Radiotherapy for Intracranial Arteriovenous Malformations: A Case Series and Review of the Literature. World Neurosurg 2019; 126:e1456-e1467. [DOI: 10.1016/j.wneu.2019.03.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
|
15
|
Ilyas A, Chen CJ, Ding D, Taylor DG, Moosa S, Lee CC, Cohen-Inbar O, Sheehan JP. Volume-staged versus dose-staged stereotactic radiosurgery outcomes for large brain arteriovenous malformations: a systematic review. J Neurosurg 2018; 128:154-164. [PMID: 28128692 DOI: 10.3171/2016.9.jns161571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Several recent studies have improved our understanding of the outcomes of volume-staged (VS) and dose-staged (DS) stereotactic radiosurgery (SRS) for the treatment of large (volume > 10 cm3) brain arteriovenous malformations (AVMs). In light of these recent additions to the literature, the aim of this systematic review is to provide an updated comparison of VS-SRS and DS-SRS for large AVMs. METHODS A systematic review of the literature was performed using PubMed to identify cohorts of 5 or more patients with large AVMs who had been treated with VS-SRS or DS-SRS. Baseline data and post-SRS outcomes were extracted for analysis. RESULTS A total of 11 VS-SRS and 10 DS-SRS studies comprising 299 and 219 eligible patients, respectively, were included for analysis. The mean obliteration rates for VS-SRS and DS-SRS were 41.2% (95% CI 31.4%-50.9%) and 32.3% (95% CI 15.9%-48.8%), respectively. Based on pooled individual patient data, the outcomes for patients treated with VS-SRS were obliteration in 40.3% (110/273), symptomatic radiation-induced changes (RICs) in 13.7% (44/322), post-SRS hemorrhage in 19.5% (50/256), and death in 7.4% (24/323); whereas the outcomes for patients treated with DS-SRS were obliteration in 32.7% (72/220), symptomatic RICs in 12.2% (31/254), post-SRS hemorrhage in 10.6% (30/282), and death in 4.6% (13/281). CONCLUSIONS Volume-staged SRS appears to afford higher obliteration rates than those achieved with DS-SRS, although with a less favorable complication profile. Therefore, VS-SRS or DS-SRS may be a reasonable treatment approach for large AVMs, either as stand-alone therapy or as a component of a multimodality management strategy.
Collapse
Affiliation(s)
- Adeel Ilyas
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Ching-Jen Chen
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Dale Ding
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Davis G Taylor
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Shayan Moosa
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Cheng-Chia Lee
- 2Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Or Cohen-Inbar
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Jason P Sheehan
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
16
|
Feutren T, Huertas A, Salleron J, Anxionnat R, Bracard S, Klein O, Peiffert D, Bernier-Chastagner V. Modern robot-assisted radiosurgery of cerebral angiomas-own experiences, system comparisons, and comprehensive literature overview. Neurosurg Rev 2017; 41:787-797. [PMID: 29105011 DOI: 10.1007/s10143-017-0926-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/07/2017] [Accepted: 10/23/2017] [Indexed: 02/05/2023]
Abstract
Cerebral arteriovenous malformations (AVMs) are rare vascular lesions potentially responsible for substantial neurological morbidity and mortality. Over the past four decades, radiosurgery has become a valid therapeutic option for many patients with small intracranial AVMs, but reports describing the use of robotic stereotactic radiosurgery (SRS) are rare. The purposes of this study are to describe the efficacy and toxicity of robotic SRS for AVMs and to review the literature. The reports of 48 consecutive patients treated with SRS were reviewed. A total dose of 18 Gy in a single fraction was prescribed to the 70% isodose line. Efficacy (i.e., total obliteration of the AVM) and toxicity were analyzed. Literature search was performed on Embase and PubMed for the terms "Radiosurgery and AVMs", "Cyberknife and AVMs" and "Radiation therapy and AVMs." The median follow-up was 41 months. The median AVM volume was 2.62 cm3. The incidence of obliteration was 59% at 3 years. Regarding toxicity, 92% of patients remained symptom-free, 66% developed radiogenic edema on MRI, and none developed radionecrosis. Forty-one patients (85%) had embolization prior to SRS. Our study was incorporated in an exhaustive review of 25 trials categorized by SRS technique. In this review, the median follow-up was 60 months. The median nidus volume was 2 cm3. The median overall obliteration rate for SRS was 68% (range 36 to 92). The median embolization rate prior to SRS was 31% (range 8.23 to 90). Compared to other studies, tolerability was excellent and the obliteration rate was acceptable but probably affected by the high embolization rate prior to radiosurgery. Our study suggests that a higher dose is feasible. A larger cohort with a longer follow-up period will be needed to confirm the safety and effectiveness, and subsequently validate different prognosis and predictive scores with this treatment modality to maximize the benefits of this technology for selected patients in the long term.
Collapse
Affiliation(s)
- Thomas Feutren
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France.
| | - Andres Huertas
- Department of Radiotherapy, Hôpital Européen Georges Pompidou, Paris, France
| | - Julia Salleron
- Department of Biostatistics and Data Management, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - René Anxionnat
- Department of Neuroradiology, Hôpital Central CHU de Nancy, Nancy, France
| | - Serge Bracard
- Department of Neuroradiology, Hôpital Central CHU de Nancy, Nancy, France
| | - Olivier Klein
- Department of Neurosurgery, Hôpital Central CHU de Nancy, Nancy, France
| | - Didier Peiffert
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| | - Valérie Bernier-Chastagner
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| |
Collapse
|
17
|
Ilyas A, Chen CJ, Ding D, Buell TJ, Raper DMS, Lee CC, Xu Z, Sheehan JP. Radiation-Induced Changes After Stereotactic Radiosurgery for Brain Arteriovenous Malformations: A Systematic Review and Meta-Analysis. Neurosurgery 2017; 83:365-376. [DOI: 10.1093/neuros/nyx502] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Dale Ding
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
- Department of Neurosurgery, Barrow Neurologic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Thomas J Buell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel M S Raper
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Cheng-Chia Lee
- Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
18
|
Affiliation(s)
- Robert A Solomon
- From Columbia University College of Physicians and Surgeons and the Department of Neurological Surgery, New York Presbyterian Hospital, New York
| | - E Sander Connolly
- From Columbia University College of Physicians and Surgeons and the Department of Neurological Surgery, New York Presbyterian Hospital, New York
| |
Collapse
|
19
|
Treatment of Cerebral Arteriovenous Malformations with Radiosurgery or Hypofractionated Stereotactic Radiotherapy in a Consecutive Pooled Linear Accelerator Series. World Neurosurg 2016; 94:328-338. [DOI: 10.1016/j.wneu.2016.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
|