1
|
Zhong YM, Luo K, Guo YD, Gao XH, Zhou HY. Moxibustion Regulates the Expression of T Cells in Rheumatoid Arthritis Through Tim-3/Gal-9 Signaling Pathway. Rejuvenation Res 2025; 28:17-24. [PMID: 39446757 PMCID: PMC11844223 DOI: 10.1089/rej.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
To observe the effects of moxibustion on T cells and T cell immunoglobulin and mucin-domain-containing molecule-3/galectin-9 (Tim-3/Gal-9) pathway in rats with rheumatoid arthritis (RA). To further explore the possible anti-inflammatory mechanism of moxibustion in the treatment of RA. Thirty Sprague Dawley rats were randomly divided into three groups, including a control group, an RA model group, and a moxibustion group. An RA model was created through the injection of Freund's complete adjuvant. In the moxibustion group, rats were treated with moxibustion at acupoints of "Shenshu" and "Zusanli." A total of three courses of treatment were conducted. Then the thickness of foot pad was measured, joint pathological changes were observed by hematoxylin-eosin (HE) staining, the proportion of CD4+T and CD8+T in peripheral blood was detected by flow cytometry, the expression levels of Tim-3 and Gal-9 in synovium were detected by polymerase chain reaction (PCR), and the expressions of CD4+T and CD8+T in synovium were detected by immunofluorescence. HE staining showed that the synovial tissue of the control group was smooth and neatly arranged without inflammatory cell infiltration. In the model group, the joint space was narrowed, the synovial tissue had congestion and edema, and a large number of inflammatory cells infiltrated. Compared with the model group, in the moxibustion group, the joint space narrowed with synovium hyperemia and edema, and the level of inflammatory cell infiltration decreased. Flow cytometry showed that compared with the model group, CD4+T expression in the moxibustion group was downregulated, while CD8+T expression was upregulated. PCR results showed that compared with the model group, the expressions of Tim-3 and Gal-9 in the moxibustion group were upregulated. Immunofluorescence results showed that compared with the model group, CD4+T expression in the moxibustion group was decreased, while CD8+T expression was increased. The results demonstrate that moxibustion not only suppressed the expression of CD4+T but also promoted the expression of CD8+T. The anti-inflammatory effect of moxibustion may be related to the regulation of T cell expression through the Tim-3/Gal-9 signaling pathway.
Collapse
Affiliation(s)
- Yu-mei Zhong
- Chengdu First People’s Hospital/Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-ding Guo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiu-hua Gao
- Health Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-yan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Gamus D, Shoenfeld Y. Acupuncture therapy in autoimmune diseases: A narrative review. Autoimmun Rev 2025; 24:103709. [PMID: 39586390 DOI: 10.1016/j.autrev.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
We provide a narrative review of experimental and clinical evidence for the effect of acupuncture in autoimmune diseases, based on randomized controlled studies, systematic review and meta-analyses, published between the years 2000-2023. Acupuncture in experimental models of rheumatoid arthritis (RA), multiple sclerosis, psoriasis, ulcerative colitis (UC) downregulated inflammatory cytokine expression, increased IL-10 expression, improved Treg cell differentiation, and also modulated macrophage polarization in RA and UC models. The anti-inflammatory effect of acupuncture in autoimmune disorders has been demonstrated to involve vagal-adrenal and cholinergic anti-inflammatory pathways. The analgesic effect of acupuncture involves both peripheral and central anti-nociceptive mechanisms. Randomized controlled studies support the use of acupuncture in rheumatoid arthritis, fibromyalgia, Crohn's disease and in Sjogren's syndrome. Some evidence indicates that acupuncture may be beneficial as a symptomatic treatment for multiple sclerosis, myasthenia gravis, psoriasis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Dorit Gamus
- Complementary and Integrative Medicine Service, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| | - Yehuda Shoenfeld
- Reichman University, Herzelia, Israel; Zabludowicz Center for Autoimmune Diseases (Founder), Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
3
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Zong S, Huang G, Pan B, Zhao S, Ling C, Cheng B. A Hypoxia-Related miRNA-mRNA Signature for Predicting the Response and Prognosis of Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:525-542. [PMID: 38496249 PMCID: PMC10944249 DOI: 10.2147/jhc.s454698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Transcatheter arterial chemoembolization (TACE) is commonly used in the treatment of hepatocellular carcinoma (HCC). However, not all patients respond to this treatment. TACE typically leads to hypoxia in the tumor microenvironment. Therefore, we aimed to construct a prognostic model based on hypoxia-related differentially expressed microRNA (miRNAs) in hepatocellular carcinoma (HCC) and to investigate the potential target mRNAs for predicting TACE response. Methods The hypoxia-related miRNAs (HRMs) were identified in liver cancer cells, then global test was performed to further select the miRNAs which were associated with recurrence and vascular invasion. A prognostic model was constructed based on multivariate Cox regression analysis; qRT-PCR analysis was used to validate the differentially expressed miRNAs in HCC cell lines under hypoxic condition. We further identified the putative target genes of the miRNAs and investigate the relationship between the target genes and TACE response, immune cells infiltration. Results We established a HRMs prognostic model for HCC patients, containing two miRNAs (miR-638, miR-501-5p), the patients with high-HRMs score showed worse survival in discovery and validation cohort; qRT-PCR analysis confirmed that these two miRNAs are up-regulated in hepatoma cells under hypoxic condition. Furthermore, four putative target genes of these two miRNAs were identified (ADH1B, CTH, FTCD, RCL1), which were significantly associated with TACE response, immune score, immunosuppressive immune cells infiltration, PDCD1 and CTLA4. Conclusion The HCC-HRMs signature may be utilized as a promising prognostic factor and may have implications for guiding TACE and immune therapy.
Collapse
Affiliation(s)
- Shaoqi Zong
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Guokai Huang
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Bo Pan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Shasha Zhao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200043, People’s Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, People’s Republic of China
| |
Collapse
|
6
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Kuang G, Tan X, Liu X, Li N, Yi N, Mi Y, Shi Q, Zeng F, Xie X, Lu M, Xu X. The Role of Innate Immunity in Osteoarthritis and the Connotation of "Immune-joint" Axis: A Narrative Review. Comb Chem High Throughput Screen 2024; 27:2170-2179. [PMID: 38243960 DOI: 10.2174/0113862073264389231101190637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 01/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the "immune-joint" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the "immune-joint" axis.
Collapse
Affiliation(s)
- Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China
| | - Xin Liu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Nanxing Yi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yilin Mi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyun Shi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Fan Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinjun Xie
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| |
Collapse
|
8
|
Zhang W, Zhang Y, Zhang J, Deng C, Zhang C. Naringenin ameliorates collagen-induced arthritis through activating AMPK-mediated autophagy in macrophages. Immun Inflamm Dis 2023; 11:e983. [PMID: 37904715 PMCID: PMC10588338 DOI: 10.1002/iid3.983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Naringenin is widely recognized for its notable attributes, including anti-inflammatory, anti-cancer, and immunomodulatory activities. However, its specific implications for rheumatoid arthritis (RA) and the underlying mechanisms remain to be explored. This study aimed to investigate the therapeutic efficacy and pharmacological mechanism of Naringenin in the treatment of collagen-induced arthritis (CIA). METHODS A CIA model was established in DBA/1 mice, and various doses of Naringenin were administered orally to assess its impact on RA. The study also involved lipopolysaccharides (LPS)-induced RAW264.7 cells to further evaluate the effects of Naringenin. Mechanistic studies were conducted to elucidate the signaling pathways involved in Naringenin's actions. RESULTS Naringenin significantly alleviated foot inflammation in DBA/1 CIA mice and attenuated the levels of pro-inflammatory cytokines in serum. It also enhanced antioxidant capacity in the CIA model. In vitro studies with LPS-induced RAW264.7 cells demonstrated that Naringenin attenuated pro-inflammatory cytokines and reactive oxygen species (ROS) levels. Mechanistic studies confirmed that Naringenin activated autophagy and increased autophagic flux. Blocking autophagy, either by silencing Atg5 or inhibiting autophagolysosome using chloroquine, effectively counteracted the impact of Naringenin on pro-inflammatory cytokines. Further exploration revealed that Naringenin activated the AMPK/ULK1 signaling pathway, and inhibition of AMPK reversed the initiation of autophagy and reduced pro-inflammatory cytokine secretion induced by Naringenin. CONCLUSIONS This study unveils a novel mechanism by which Naringenin may be used to treat RA. It demonstrates the therapeutic efficacy of Naringenin in a CIA model by reducing inflammation, modulating cytokine levels, and enhancing antioxidant capacity. Moreover, the activation of autophagy through the AMPK/ULK1 signaling pathway appears to play a critical role in Naringenin's anti-inflammatory effects. These findings suggest potential strategies for the development of anti-rheumatic medications based on Naringenin.
Collapse
Affiliation(s)
- Wei Zhang
- Department of OrthopedicAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Yuan Zhang
- Department of OrthopedicAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Jianguang Zhang
- Department of OrthopedicAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Chunbiao Deng
- Department of OrthopedicAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Chao Zhang
- Department of OrthopedicAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|