1
|
Chen X, Wang J, Zhen C, Zhang G, Yang Z, Xu Y, Shang P. Hepcidin knockout exacerbates hindlimb unloading-induced bone loss in mice through inhibiting osteoblastic differentiation. BMC Musculoskelet Disord 2025; 26:276. [PMID: 40102891 PMCID: PMC11917043 DOI: 10.1186/s12891-025-08515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND An oligopeptide hepcidin is encoded by the human HAMP gene (Hamp in mice). Its deficiency can result in iron overload, while excess may lead to iron deficiency. Hepcidin knockout mice exhibited iron accumulation in multiple tissues, accompanied by degeneration of bone microarchitecture and reduced biomechanical properties. Astronauts who are exposed to weightlessness during prolonged spaceflight experience bone loss. After space missions, an interrelation exists between iron stores and bone mineral density (BMD). Bone loss in mice due to unloading is linked to iron excess and involves hepcidin. The potential role of hepcidin in unloading-induced bone loss remains unclear. METHODS Our study conducted relevant experiments using hepcidin knockout mice and their primary osteoblasts as the research subjects. We used the hindlimb unloading (HLU) model and the random positioning machine (RPM) system to simulate weightlessness in vivo and in vitro. RESULTS HLU mice exhibited reduced hepcidin levels in the serum and liver. Hepcidin knockout further diminished BMD and bone mineral content (BMC) in the femurs of HLU mice. Similarly, the bone volume fraction (BV/TV) and connectivity density (Conn.Dn) followed this downward trend, whereas trabecular separation (Tb.Sp) showed an inverse pattern. Moreover, hepcidin knockout decreased the ultimate load and elastic modulus in the tibias of HLU mice. Hepcidin knockout decreased PINP levels in the serum, a commonly used marker for bone formation, alongside elevated iron levels in the serum, liver, and bone of HLU mice. We also found higher serum MDA and SOD levels in these mice. In vitro, experimental data indicated that hepcidin knockout suppresses the osteoblastic differentiation capacity under RPM conditions. Additionally, this condition upregulates SOST protein levels and downregulates LRP6 and β-catenin protein levels in osteoblasts. CONCLUSION Hepcidin knockout exacerbates bone loss in HLU mice, most likely due to reduced osteoblastic activity.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, 518057, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Wang Y, Zhang R, Wang A, Wang X, Wang X, Zhang J, Liu G, Huang K, Liu B, Hu Y, Pan S, Ruze X, Zhai Q, Xu Y. COPB1 deficiency triggers osteoporosis with elevated iron stores by inducing osteoblast ferroptosis. J Orthop Translat 2025; 51:312-328. [PMID: 40206560 PMCID: PMC11981772 DOI: 10.1016/j.jot.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 04/11/2025] Open
Abstract
Background Osteoporosis (OP) is a systemic bone metabolic disease that results from an imbalance between bone formation and bone resorption. The accumulation of iron has been identified as an independent risk factor for osteoporosis. Ferroptosis, a novel form of programmed cell death, is driven by iron-dependent lipid peroxidation. Nevertheless, the precise role of ferroptosis in iron accumulation-induced osteoporosis remains uncertain. Methods We utilized proteomics and ELISA to screen key regulatory molecules related to iron accumulation in osteoporosis populations. HE staining was used to assess osteocyte changes in Hamp knockout (KO) iron accumulation mouse models. Western Blot, qPCR, ALP staining, and Alizarin Red staining were employed to explore the effects of siRNA-mediated gene knockdown on osteogenic differentiation in the MC3T3 cell line. ELISA, micro-CT, von Kossa staining, toluidine blue staining, TRAP staining, and calcein analysis were used to study the bone phenotype of conditional gene knockout mice. RNA-seq, endoplasmic reticulum activity probes, transmission electron microscopy (TEM), Western Blot, co-immunoprecipitation (Co-IP), flow cytometry, and ChIP-seq were employed to investigate the regulatory mechanisms of the target gene in osteogenic differentiation. OVX and Hamp KO mice were used to establish osteoporosis models, and AAV-mediated overexpression was employed to explore the intervention effects of the target gene on osteoporosis. Results The experiments demonstrate that iron accumulation can lead to changes in COPB1 expression levels in bone tissue. Cellular and animal experiments revealed that COPB1 deficiency reduces the osteogenic ability of osteoblasts. Transcriptome analysis and phenotypic experiments revealed that COPB1 deficiency induces ferroptosis and endoplasmic reticulum stress in cells. Further investigation confirmed that COPB1 plays a key role in endoplasmic reticulum stress by inhibits SLC7A11 transcription via ATF6. This reduces cystine uptake, ultimately inducing ferroptosis. Overexpression of COPB1 can restore osteogenic function in both cells and mice. Conclusion This study elucidated the essential role of COPB1 in maintaining bone homeostasis and highlights it as a potential therapeutic target for treating iron accumulation-related osteoporosis. The translational potential of this article Our data elucidate the critical role of COPB1 in maintaining bone homeostasis and demonstrate that COPB1 can directly promote bone formation, making it a potential therapeutic target for the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yike Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ruizhi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aifei Wang
- Department of Orthopaedics, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiongyi Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiajun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Baoshan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yutong Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xieyidai Ruze
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiaocheng Zhai
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
4
|
Zhen C, Wang S, Yang J, Zhang G, Cai C, Wang J, Wang A, Xu Y, Fang Y, Wei M, Yin D, Luo X, Gong M, Zhang H, Shang P. Moderate static magnetic field regulates iron metabolism and salvage bone loss caused by iron accumulation. J Orthop Translat 2025; 50:144-157. [PMID: 40171108 PMCID: PMC11960543 DOI: 10.1016/j.jot.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 04/03/2025] Open
Abstract
Objective Clinical studies, epidemiological investigations and animal experiments have demonstrated that iron overload lead to bone loss, especially postmenopausal osteoporosis. As a physiotherapy tool, electromagnetic fields already used in clinical treatment of osteoporosis and participates in bone remodeling by affecting the iron metabolism of organisms. As an electromagnetic field with constant magnetic flux density and direction, the mechanism of static magnetic field (SMF) regulating iron metabolism remains unclear. Therefore, the aim of this study was to investigate the effects of moderate static magnetic field (MMF) on iron metabolism and bone metabolism in postmenopausal osteoporosis and HAMP-deficient mouse models, and to elucidate the underlying mechanisms. Methods Firstly, the effects of MMF on bone metabolism and iron metabolism in 22 postmenopausal osteoporosis participants were evaluated by comparing the changes of bone mineral density (BMD) and serum ferritin before and after treatment. Secondly, 10-week-old male C57BL/6 HAMP +/+ and HAMP -/- mice were randomly divided into four groups, namely GMF-HAMP +/+ group and MMF-HAMP +/+ group, GMF-HAMP -/- group and MMF-HAMP -/- group (n = 8/group). The MMF-treated mice were exposed daily to MMF, while the remaining group was exposed to geomagnetic field (GMF) for 8 weeks. BMD was scanned and bone tissues were collected for mechanical, structural and histological analysis. In addition, analysis of serum and tissue iron content evaluated the regulation of systemic iron metabolism by MMF. Finally, the effects of MMF on the differentiation of primary macrophages and primary osteoblasts were evaluated in vitro. Results In clinical trial, MMF decreased serum ferritin levels in postmenopausal osteoporosis patients, which was negatively correlated with changes in lumbar BMD. In vivo, the results showed that HAMP-deficient mice were accompanied by iron overload, along with reduced lumbar vertebra bone mass and bone quality. MMF improved the bone mass, microstructure and biomechanical properties of lumbar vertebrae in HAMP -/- mice. In vitro, MMF reduced the number and differentiation of osteoclasts in HAMP -/- mice, and promoted primary osteoblast differentiation by activating Wnt/β-catenin signaling pathway. Further, MMF also reduced the iron ion conversion and enhanced the antioxidant system of HAMP -/- mice. These data suggested that MMF could regulate iron metabolism and salvage bone loss caused by iron accumulation. Conclusions The clinical trial and laboratory results suggested that MMF intervention has a protective effect on bone loss caused by iron metabolism disorders. Translational potential of this article Translational potential of this article: This study demonstrated the feasibility and potential effectiveness of MMF in the treatment of postmenopausal osteoporosis patients, demonstrating for the first time that MMF can reduce bone loss in mice with inherited iron metabolism abnormalities. It was suggested that MMF plays an important role in iron metabolism disorders or as an alternative therapy to ameliorate osteoporosis caused by iron accumulation.
Collapse
Affiliation(s)
- Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- Department of Vertebra Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Aifei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Huzhou, 313300, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Huzhou, 313300, China
| | - Dachuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xinle Luo
- Department of Vertebra Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Ming Gong
- Department of Vertebra Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Hao Zhang
- Department of Vertebra Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
5
|
Dou J, Chen X, Zhang J, Yang L, Lin J, Zhu W, Huang D, Tan X. P. Gingivalis induce macrophage polarization by regulating hepcidin expression in chronic apical periodontitis. Int Immunopharmacol 2024; 142:113139. [PMID: 39278061 DOI: 10.1016/j.intimp.2024.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Hepcidin, a central regulatory molecule of iron metabolism, is upregulated through the IL-6/STAT3 signaling pathway in inflammatory and infectious states, contributing to the pathogenesis of various diseases. In chronic apical periodontitis (CAP), Porphyromonas gingivalis (P. gingivalis) and its lipopolysaccharides (LPS) activate various immune responses in vivo, contributing to disease progression. This study evaluated the role and mechanism of hepcidin in P. gingivalis-induced bone tissue damage in CAP, focusing on its promotion of macrophage M1 polarization via the IL-6/STAT3 signaling pathway. METHODS We analyzed a GSE77459 dataset from the GEO database, containing data from inflammatory and normal dental pulp tissues. RT-qPCR and immunofluorescence staining were used to detect the expression of hepcidin in human CAP tissues and its relationship with macrophages. Mouse bone marrow derived macrophages (BMDMs) were cultured in vitro and stimulated with P. gingivalis LPS. The effects of Stattic on macrophage hepcidin expression, IL-6 expression, STAT3 phosphorylation, and macrophage polarization were detected by ELISA, western blotting, RT-qPCR, and flow cytometry, respectively. RESULTS Hepcidin expression in human inflammatory dental pulp tissues was upregulated via the IL-6/STAT3 pathway and correlated with macrophage polarization. Hepcidin-encoding genes were found to be highly expressed and primarily associated with M1 macrophages in CAP tissues. In vitro experiments revealed that P. gingivalis LPS stimulation induced macrophages to express hepcidin through the IL-6/STAT3 pathway and polarize to M1. Additionally, the IL-6/STAT3 pathway inhibitor Stattic suppressed these changes. CONCLUSIONS Our study demonstrates that in CAP, macrophages highly express hepcidin, which subsequently alters macrophage metabolism, regulates M1 polarization, and leads to bone tissue destruction.
Collapse
Affiliation(s)
- Jinge Dou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong, China
| | - Jinglan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanling Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Zhang Y, Cong Y, Du J, Guo D, Huang J, Pan J, Liang Y, Zhang J, Ye Z, Liu Y, Zhou Y. Lif-deficiency promote systemic Iron metabolism disorders and increases the susceptibility of osteoblasts to ferroptosis. Bone 2024; 189:117266. [PMID: 39341481 DOI: 10.1016/j.bone.2024.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Leukemia inhibitory factor (LIF) is a multifunctional cytokine that plays a crucial role in various biological processes. However, LIF involvement in iron metabolism remains almost unexplored. This study aimed to explore the impact of LIF on systemic iron transportation and its potential role in ferroptosis in osteoblasts. We observed that the Lif-deficient (Lif-/-) mice is characterized by a reduction in bone mass and a decrease in bone mineral density compared with wild-type (WT) mice. Energy-dispersive X-ray spectroscopy revealed a marked increase in iron content on the surface of femurs from Lif-/- mice. Meanwhile, iron stores test lower iron levels in the spleens and higher levels in the femurs of Lif-/- mice. Besides, Lif-/- mice display increased levels of serum iron, total iron-binding capacity, unsaturated iron-binding capacity, and transferrin saturation and serum ferritin relative to WT mice. Hepcidin mRNA expression reduction in the liver of Lif-/- mice. It also holds true in the AML-12 hepatocyte cell line after Lif-knockdown. Immunohistochemistry and RT-PCR revealed elevated ferroportin (FPN) in duodenal cells of Lif-/- mice. Lif-deficiency decreases SLC7A11 levels in osteoblasts. In addition, overexpression of LIF downregulates CD71, DCYTB, and DMT1, thereby reducing iron uptake in iron-overloaded cells. Femur immunohistochemistry (IHC) revealed increased ACSL4 and decreased GPX4 and SLC7A11, indicating an increase in ferroptosis of osteoblasts in Lif-/- mice. Whole-transcriptome sequencing showed gene expression changes after Lif-knockdown, exhibiting a negative correlation with genes involved in long-chain fatty acid transport, mitochondrial organization, and the p38 MAPK signaling pathway. These results demonstrate that Lif-deficiency alter systemic iron metabolism and increases the susceptibility of osteoblasts to ferroptosis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaqi Cong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Juan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Junchen Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Youde Liang
- The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi Liu
- Department of Stomatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435002, China.
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Dogan DY, Hornung I, Pettinato M, Pagani A, Baschant U, Seebohm G, Hofbauer LC, Silvestri L, Rauner M, Steinbicker AU. Bone phenotyping of murine hemochromatosis models with deficiencies of Hjv, Alk2, or Alk3: The influence of sex and the bone compartment. FASEB J 2024; 38:e70179. [PMID: 39545682 PMCID: PMC11698015 DOI: 10.1096/fj.202401015r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Osteopenia is frequently observed in patients with iron overload, especially in those with HFE-dependent hereditary hemochromatosis (HH). Interestingly, not all mouse models of HH show bone loss, suggesting that iron overload alone may not suffice to induce bone loss. In this study, the bone phenotypes of Hjv-/- and hepatocyte-specific Alk2- and Alk3-deficient mice as additional mouse models of HH were investigated to further clarify, how high iron levels lead to bone loss and which signaling mechanisms are operational. Neither male nor female 12-week-old Hjv-/- mice had an altered trabecular or cortical bone mass or bone turnover, despite severe iron overload. Male 12-month-old Hjv-/- mice even presented with a higher femoral trabecular bone volume compared to wildtype mice. Similarly, female mice with hepatocyte-specific Alk2 or Alk3 deficiency did not show an altered bone phenotype at 3, 6, and 12 months of age. Male hepatocyte-specific Alk3-deficient mice also had a normal trabecular bone mass at all ages analyzed, despite showing increased bone resorption and decreased bone formation parameters. Interestingly, hepatocyte-specific Alk2-deficient mice showed reduced femoral trabecular bone at 6 months of age due to suppressed bone formation. Cortical thickness at the femur was reduced in both, 6-month-old male hepatocyte-specific Alk2- and Alk3-deficient mice. Raising hepatocyte-specific Alk2-deficient male mice on an iron-deficient diet rescued the bone phenotype. Taken together, despite iron overload, trabecular bone microarchitecture was not altered in mice deficient of Hjv or Alk3. Only male hepatocyte-specific Alk2-deficient mice showed site-specific lower trabecular and cortical bone mass at the femur, which was dependent on iron. Thus, bone loss does not correlate with the extent of iron overload in these mouse models, but may relate to the amount of iron-loaded macrophages, as precursors of osteoclasts, in the bone marrow.
Collapse
Affiliation(s)
- Deniz Y. Dogan
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Isabelle Hornung
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Guiscard Seebohm
- IfGH– Cellular Electrophysiology, Department of Cardiology and AngiologyUniversity Hospital of MünsterMünsterGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
- School of MedicineVita‐Salute San Raffaele UniversityMilanItaly
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Andrea U. Steinbicker
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
- Present address:
Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care MedicineUniversity of CologneCologneGermany
| |
Collapse
|
8
|
Tao ZS, Hu XF, Wu XJ, Wang ZY, Shen CL. Protocatechualdehyde inhibits iron overload-induced bone loss by inhibiting inflammation and oxidative stress in senile rats. Int Immunopharmacol 2024; 141:113016. [PMID: 39182269 DOI: 10.1016/j.intimp.2024.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The accumulating evidence has made it clear that iron overload is a crucial mechanism in bone loss. Protocatechualdehyde (PCA) has also been used to prevent osteoporosis in recent years. Whether PCA can reverse the harmful effects of iron overload on bone mass in aged rats is still unknown. Therefore, this study aimed to assess the role of PCA in iron overload-induced bone loss in senile rats. In the aged rat model, we observed that iron overload affects bone metabolism and bone remodeling, manifested by bone loss and decreased bone mineral density. The administration of PCA effectively mitigated the detrimental effects caused by iron overload, and concomitant reduction in MDA serum levels and elevation of SOD were noted. In addition, PCA-treated rats were observed to have significantly increased bone mass and elevated expression of SIRT3,BMP2,SOD2 and reduced expression of TNF-α in bone tissue. We also observed that PCA was able to reduce oxidative stress and inflammation and restore the imbalance in bone metabolism. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclasts differentiation, PCA intervention could significantly recover the restriction of osteogenic differentiation and up-regulation of osteoclast differentiation treated by iron overload. Further, by detecting changes in ROS, SOD, MDA, expression of SIRT3 and mitochondrial membrane potentials, we confirm that the damage caused to cells by iron overload is associated with decreased SIRT3 activity, and that 3-TYP have similar effects on oxidative stress caused by FAC. In conclusion, PCA can resist iron overload-induced bone damage by improving SIRT3 activity, anti-inflammatory and anti-oxidative stress.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China
| | - Xu-Feng Hu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Zheng-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China.
| |
Collapse
|
9
|
Baschant U, Fuqua BK, Ledesma-Colunga M, Vulpe CD, McLachlan S, Hofbauer LC, Lusis AJ, Rauner M. Effects of dietary iron deficiency or overload on bone: Dietary details matter. Bone 2024; 184:117092. [PMID: 38575048 DOI: 10.1016/j.bone.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Brie K Fuqua
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Maria Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
10
|
Ledesma-Colunga MG, Passin V, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Comparison of the effects of high dietary iron levels on bone microarchitecture responses in the mouse strains 129/Sv and C57BL/6J. Sci Rep 2024; 14:4887. [PMID: 38418857 PMCID: PMC10902348 DOI: 10.1038/s41598-024-55303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Iron is an essential nutrient for all living organisms. Both iron deficiency and excess can be harmful. Bone, a highly metabolic active organ, is particularly sensitive to fluctuations in iron levels. In this study, we investigated the effects of dietary iron overload on bone homeostasis with a specific focus on two frequently utilized mouse strains: 129/Sv and C57BL/6J. Our findings revealed that after 6 weeks on an iron-rich diet, 129/Sv mice exhibited a decrease in trabecular and cortical bone density in both vertebral and femoral bones, which was linked to reduced bone turnover. In contrast, there was no evidence of bone changes associated with iron overload in age-matched C57BL/6J mice. Interestingly, 129/Sv mice exposed to an iron-rich diet during their prenatal development were protected from iron-induced bone loss, suggesting the presence of potential adaptive mechanisms. Overall, our study underscores the critical role of genetic background in modulating the effects of iron overload on bone health. This should be considered when studying effects of iron on bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Vanessa Passin
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
11
|
Li GF, Gao Y, Weinberg ED, Huang X, Xu YJ. Role of Iron Accumulation in Osteoporosis and the Underlying Mechanisms. Curr Med Sci 2023; 43:647-654. [PMID: 37326889 DOI: 10.1007/s11596-023-2764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/09/2021] [Indexed: 06/17/2023]
Abstract
Osteoporosis is prevalent in postmenopausal women. The underlying reason is mainly estrogen deficiency, but recent studies have indicated that osteoporosis is also associated with iron accumulation after menopause. It has been confirmed that some methods of decreasing iron accumulation can improve the abnormal bone metabolism associated with postmenopausal osteoporosis. However, the mechanism of iron accumulation-induced osteoporosis is still unclear. Iron accumulation may inhibit the canonical Wnt/β-catenin pathway via oxidative stress, leading to osteoporosis by decreasing bone formation and increasing bone resorption via the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-B ligand (RANKL)/receptor activator of nuclear factor kappa-B (RANK) system. In addition to oxidative stress, iron accumulation also has been reported to inhibit either osteoblastogenesis or osteoblastic function as well as to stimulate either osteoclastogenesis or osteoclastic function directly. Furthermore, serum ferritin has been widely used for the prediction of bone status, and nontraumatic measurement of iron content by magnetic resonance imaging may be a promising early indicator of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guang-Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - Yan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - E D Weinberg
- Department of Biology & Program in Medical Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Xi Huang
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, 10016, USA
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China.
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
12
|
Ma J, Wang A, Zhang H, Liu B, Geng Y, Xu Y, Zuo G, Jia P. Iron overload induced osteocytes apoptosis and led to bone loss in Hepcidin -/- mice through increasing sclerostin and RANKL/OPG. Bone 2022; 164:116511. [PMID: 35933095 DOI: 10.1016/j.bone.2022.116511] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that iron overload is a risk factor of osteoporosis. However, there has been no systematic and in-depth studies on the effect of iron overload on osteocytes and its role in iron overload-induced bone loss. Therefore, to address this problem, we carried out in vitro and in vivo studies using MLO-Y4 osteocyte-like cells and Hepcidin-/- mice as iron overload models. METHODS (1) MLO-Y4 cells were treated with ferric ammonium citrate (FAC). Intracellular reactive oxygen species (ROS) levels and apoptosis of MLO-Y4 cells were determined by flow cytometry. Western blotting was performed to evaluate the effect of FAC on the expression of sclerostin and RANKL/OPG. (2) The conditioned medium of MLO-Y4 cells after treatment with FAC was collected and used to treat pre-osteoblasts and monocytes. Alkaline phosphatase (ALP) staining and alizarin red (AR) staining were used to evaluate osteogenic differentiation capacity, and tartrate-resistant acid phosphatase (TRAP) staining was performed to demonstrate osteoclast differentiation capacity. (3) In vivo studies included a wild type mouse, Hepcidin-/- mice, Hepcidin-/- mice + deferoxamine (DFO), and Hepcidin-/- mice + N-actyl-l-cysteine (NAC) group. Micro-CT was performed to evaluate the bone mineral density (BMD), bone volume, and bone micro-architecture of the mice, and three bending tests were used to assess bone strength. Histological analysis was used to detect alterations in bone turnover. TUNEL staining and scanning electron microscopy (SEM) were performed to evaluate the apoptosis and morphology of osteocytes. Immunohistochemical staining and Western blotting were used to determine alterations in sclerostin and RANKL/OPG expression levels in mice. RESULTS (1) FAC increased intracellular ROS and apoptosis in MLO-Y4 cells, while FAC enhanced the expression of sclerostin and RANKL/OPG in MLO-Y4 cells. (2) Conditioned medium of MLO-Y4 cells inhibited the osteogenic capacity of osteoblasts while stimulating osteoclast differentiation. (3) By increasing oxidative stress, iron overload promotes the apoptosis of osteocytes and undermines the morphology of osteocytes in Hepcidin-/- mice, further increasing the expression levels of sclerostin and RANKL/OPG in osteocytes, which is considered to be the causative factor for reduced bone formation and enhanced bone resorption. DFO administration reduced iron levels, and NAC treatment decreased oxidative stress in Hepcidin-/- mice. Therefore, DFO or NAC treatment rescued the decrease in BMD, bone volume, and bone strength and attenuated the deterioration of bone architecture in Hepcidin-/- mice by attenuating the effect of iron overload on osteocytes. CONCLUSION Osteocyte apoptosis due to increased ROS and resultant sclerostin and RANKL/OPG expression alteration was the main reason for bone loss in Hepcidin-/- mice. Osteocytes are the main targets for the prevention and treatment of iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Jiawei Ma
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Aifei Wang
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Hui Zhang
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Baoshan Liu
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Yu Geng
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Youjia Xu
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China
| | - Guilai Zuo
- Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Orthopedic Department, China.
| | - Peng Jia
- Second Affiliated Hospital of Soochow University, Orthopedic Department, China; Osteoporosis Research Institute of Soochow University, China.
| |
Collapse
|
13
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
14
|
Combined Therapy of Yishen Zhuanggu Decoction and Caltrate D600 Alleviates Postmenopausal Osteoporosis by Targeting FoxO3a and Activating the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7732508. [PMID: 35873637 PMCID: PMC9307327 DOI: 10.1155/2022/7732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background Postmenopausal osteoporosis (PMO) is the most prevalent metabolic bone disease in women. Yishen Zhuanggu (YSZG) decoction and Caltrate D600 reportedly affects bone formation. This study aimed to investigate the efficacy and mechanism of YSZG decoction combined with Caltrate D600 in PMO treatment. Methods Ovariectomy-induced PMO rat model was treated with YSZG or/and Caltrate D600 for 12 weeks. Femur bone mineral density (BMD), osteoporosis-related protein expression, and serum parameters were measured. Pathological features of femur bone tissues were observed using hematoxylin and eosin staining. Serum levels of oxidative stress parameters were measured using corresponding commercial kits. The mRNA and protein expression of FoxO3a, Wnt, and β-catenin was detected using qRT-PCR and western blotting. Results The BMD and ultimate load of PMO rats were increased after treatment with YSZG. YSZG treatment promoted the bone trabeculae formation of PMO rats. YSZG treatment also induced bone differentiation and suppress oxidative stress in PMO rats, evidenced by the increased BALP, Runx2, OPG, SOD, and CAT levels, as well as the decreased TRACP 5b, RANKL, ROS, and MDA levels. Additionally, YSZG treatment downregulated the FoxO3a expression and upregulated the levels of Wnt and β-catenin in PMO rats. Caltrate D600 addition showed an auxiliary effect for YSZG. Conclusion YSZG decoction exerts the antiosteoporotic effect on PMO by restraining the FoxO3a expression and activating the Wnt/β-catenin pathway, which has an impressive synergistic effect with Caltrate D600.
Collapse
|
15
|
Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin. Int J Sport Nutr Exerc Metab 2022; 32:177-185. [PMID: 34942595 DOI: 10.1123/ijsnem.2021-0263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.
Collapse
|
16
|
Xu Y, Bao X, Chen X, Wu P, Chen S, Zhang B, Ma J, Xu G, Ma D. STARD3NL inhibits the osteogenic differentiation by inactivating the Wnt/β‐catenin pathway via binding to Annexin A2 in osteoporosis. J Cell Mol Med 2022; 26:1643-1655. [PMID: 35098646 PMCID: PMC8899174 DOI: 10.1111/jcmm.17205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is one of the leading forms of systemic diseases related to bone metabolism in the world. STARD3 N‐terminal like (STARD3NL) showed robust association with osteoporosis‐related traits. Yet, the molecular functional mechanisms of STARD3NL in osteoblasts is still obscure. In this study, we demonstrated a high level of STARD3NL expression in the bone tissues from the patients with low bone mass and ovariectomized (OVX)‐induced osteoporotic mice. We identified Stard3nl as a potent factor that negatively and positively regulates osteoblast differentiation and cell proliferation, respectively. Furthermore, inhibition of Stard3nl induced β‐catenin gene expression and the nuclear translocation of β‐catenin, as well as Wnt signalling activities, contributing to the activation of Wnt/β‐catenin signalling. Mechanistic studies revealed that Stard3nl bound with Annexin A2 (Anxa2) to suppress β‐catenin expression, resulting into the suppression of Wnt signalling and downstream osteogenic differentiation. Moreover, adeno‐associated virus 9 (AAV9)‐mediated silencing of Stard3nl reversed bone loss in OVX‐induced osteoporotic mice by the injection into the knee joints. Collectively, our study revealed that Stard3nl suppressed osteogenesis via binding with Anxa2, resulting into the inactivation of Wnt signalling. It also highlights the preventive and therapeutic potential of STARD3NL as a specific and novel target for osteoporotic patients.
Collapse
Affiliation(s)
- Yuexin Xu
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiaogang Bao
- Department of Orthopedic Surgery The Spine Surgical CenterSecond Affiliated Hospital of Naval Medical University Shanghai China
| | - Xiaoyun Chen
- Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong City Hong Kong
| | - Peixuan Wu
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Shiyu Chen
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Bowen Zhang
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Guohua Xu
- Department of Orthopedic Surgery The Spine Surgical CenterSecond Affiliated Hospital of Naval Medical University Shanghai China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
17
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
18
|
Zhang Y, Wang J, Qu Y, Chen Y. 6-Shogaol Suppresses the Progression of Liver Cancer via the Inactivation of Wnt/[Formula: see text]-Catenin Signaling by Regulating TLR4. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:2033-2048. [PMID: 34961414 DOI: 10.1142/s0192415x21500968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver cancer is a gastrointestinal malignant tumor with high lethality. The prognosis of liver cancer remains poor. Compounds derived from natural products have been confirmed to alleviate the progression of various diseases, including cancers. Additionally, 6-Shogaol has been reported to induce apoptosis in liver cancer cells. However, the mechanism by which 6-shogaol regulates apoptosis in liver cancer cells remains unclear. To investigate the function of 6-shogaol in liver cancer, RT-qPCR and western blotting were used to detect the expression of TLR4 and FOXO3a in liver cancer cells, respectively. The OD value of liver cancer cells was measured using the MTT assay. Flow cytometry was used to measure cell apoptosis. 6-Shogaol inhibited the growth of liver cancer cells. TLR4 and Wnt/[Formula: see text]-catenin were upregulated in liver cancer cells, and FOXO3a was inactivated, but 6-Shogaol reversed the expression of TLR4, Wnt/[Formula: see text]-catenin and FOXO3a in liver cancer cells. Additionally, TLR4 overexpression partially reversed the inhibitory effect of 6-shogaol on the progression of liver cancer cells via Wnt/[Formula: see text]-catenin signaling. Furthermore, the 6-shogaol-induced increase in FOXO3a expression in liver cancer was notably suppressed by TLR4 or Wnt/[Formula: see text]-catenin upregulation. Thus, 6-Shogaol suppresses the progression of liver cancer by mediating Wnt/[Formula: see text]-catenin signaling and is a potential agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, P. R. China
| | - Jingjing Wang
- Pharmaceutical Department, Wuhan Third Hospital (Tongren Hospital of Wuhan University, Wuhan 430060, Hubei Province, P. R. China
| | - Yong Qu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, P. R. China
| | - Yunzhong Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, P. R. China
| |
Collapse
|
19
|
LncRNA TUG1 exhibits pro-fibrosis activity in hypertrophic scar through TAK1/YAP/TAZ pathway via miR-27b-3p. Mol Cell Biochem 2021; 476:3009-3020. [PMID: 33791919 DOI: 10.1007/s11010-021-04142-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
Hypertrophic Scar (HS) is a complicated fibrotic disease. In addition, its pathogenesis is still to be further explored. Long non-coding RNAs (lncRNAs) have been proved to be participated in multiple diseases, including HS. However, the role of lncRNA TUG1 in HS remains unclear. The expression level of RNA and protein in cells were detected by q-PCR and western blot, respectively. MTT assay was performed to test the cell proliferation. Cell migration was detected by transwell assay. Cell apoptosis was measured by flow cytometry. Dual luciferase report assay and RNA pull down were used to verify the relationship between TUG1, miR-27b-3p and TAK1.TUG1 and TAK1 were upregulated in HS, while miR-27b-3p was downregulated. Knockdown of TUG1 significantly suppressed the proliferation and migration and induced the apoptosis of HS fibroblasts (HSF). In addition, silencing of TUG1 notably inhibited the extracellular matrix (ECM) biosynthesis in HSF. Overexpression of miR-27b-3p has the same effect on HS as that of TUG1 knockdown. Meanwhile, TUG1 could sponge miR-27b-3p, and TAK1 was the direct target of miR-27b-3p. Furthermore, knockdown of TUG1 significantly suppressed the fibrosis in HS via miR-27b-3p/TAK1/YAP/TAZ axis mediation. LncRNA TUG1 promotes the fibrosis in HS via sponging miR-27b-3p and then activates TAK1/YAP/TAZ pathway, which may serve as a potential target for treatment of HS.
Collapse
|
20
|
Hopkins C, Qin L. Transformation of preclinical study results into clinical applications: Improving protocols and clinical practice in translational orthopaedics. J Orthop Translat 2020; 23:A4. [PMID: 32834998 PMCID: PMC7423332 DOI: 10.1016/j.jot.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|