1
|
Sztulman L, Ritter A, de Rosa R, Pfeiffer V, Leppik L, Busse LC, Kontaxi E, Störmann P, Verboket R, Adam E, Marzi I, Weber B. Cardiac damage after polytrauma: the role of systematic transthoracic echocardiography - a pilot study. World J Emerg Surg 2025; 20:21. [PMID: 40069898 PMCID: PMC11895250 DOI: 10.1186/s13017-025-00596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Heart injuries following polytrauma (PT) are identified as a predictor of poor outcome. The diagnostic algorithm of cardiac damage after trauma consists of the systemic measurement of cardiac damage markers, a 3-channel ECG and if there are any suspicious findings, the conduction of a transthoracic echocardiography (TTE). The aim of this study was to implement a systematic analysis of cardiac function using TTE in PT-patients. METHODS This study is a prospective non-randomized study, conducted in a German Level 1 Trauma Centre between January and July 2024. All polytraumatized patients with an ISS ≥ 16 were included immediately after entering the emergency department. Blood samples were withdrawn at 6 timepoints, at the Emergency room, 24 h, 48 h, three, five and ten days after admission to the hospital. Cardiac damage was measured by Troponin T (TnT) ECLIA, as well as NT-proBNP measurements. Entering the intensive care unit, transthoracic echocardiography was performed at two time points (day 1 and 2), by an experienced Cardiologist. RESULTS During the pilot phase, cardiac contusion was detected in 14.3% of patients, with significantly elevated TnT levels on arrival, after 24 (**p ≤ 0.01) and 48 h (*p ≤ 0.05) compared to patients without cardiac contusion. Echocardiographic findings revealed that 25% of all patients had wall motion abnormalities, and 20% showed relaxation disorders. Right ventricular function, measured by TAPSE (tricuspid annular plane systolic excursion), RVEDD (right ventricular end diastolic diameter) and sPAP (systolic pulmonary arterial pressure), was slightly impaired in trauma patients, while the left ventricular function (ejection fraction (EF) and left ventricular end diastolic diameter (LVEDD)) was preserved. We observed the increase of TnT and an increase of the heart failure marker NT-proBNP over the time. These biomarkers were associated with pre-existing cardiac risk factors, the ISS and changes in the right or left ventricular function. Mitral valve insufficiency (grade 1) was present in 50% and tricuspid valve (grade 1) insufficiency in 30%. CONCLUSIONS Taken together, we conducted for the first time of our knowledge, a systematic TTE analysis in PT-patients. We observed a slightly reduced right ventricular function, as well as mitral and tricuspid valve regurgitations in the patients.
Collapse
Affiliation(s)
- Larissa Sztulman
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Aileen Ritter
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Roberta de Rosa
- Department of Cardiology, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Victoria Pfeiffer
- Department of Cardiology, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Lewin-Caspar Busse
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Elena Kontaxi
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Philipp Störmann
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - René Verboket
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Elisabeth Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Birte Weber
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Lu J, Shi X, Zhou Z, Lu N, Chu G, Jin H, Zhu L, Chen A. Enhancing Fracture Healing with 3D Bioprinted Hif1a-Overexpressing BMSCs Hydrogel: A Novel Approach to Accelerated Bone Repair. Adv Healthc Mater 2025; 14:e2402415. [PMID: 39580668 DOI: 10.1002/adhm.202402415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Addressing the urgent need for effective fracture treatments, this study investigates the efficacy of a 3D bioprinted biomimetic hydrogel, enriched with bone marrow mesenchymal stem cells (BMSCs) and targeted hypoxia-inducible factor 1 alpha (Hif1a) gene activation, in enhancing fracture healing. A photocross-linkable bioink, gelatin methacryloyl bone matrix anhydride (GBMA) is developed, and selected its 5% concentration for bioink formulation. Rat BMSCs are isolated and combined with GBMA to create the GBMA@BMSCs bioink. This bioink is then used in 3D bioprinting to fabricate a hydrogel for application in a rat femoral fracture model. Through transcriptome sequencing, WGCNA, and Venn analysis, the hypoxia-inducible factor Hif1a is identified as a critical gene in the fracture healing process. In vitro studies showed that Hif1a promoted BMSC proliferation, chondrogenic differentiation, and cartilage matrix stability. The in vivo application of the GBMA@BMSCs hydrogel with Hif1a overexpression significantly accelerated fracture healing, evidenced by early and enhanced cartilage callus formation. The study demonstrates that 3D bioprinting of GBMA@BMSCs hydrogel, particularly with Hif1a-enhanced BMSCs, offers a promising approach for rapid and effective fracture repair.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Xiaojian Shi
- Department of Orthopedic Trauma, Haimen People's Hospital of Jiangsu Province, Haimen, 226100, P. R. China
| | - Zhibin Zhou
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, P. R. China
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Aimin Chen
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
3
|
Bollen Pinto B, Ackland GL. Pathophysiological mechanisms underlying increased circulating cardiac troponin in noncardiac surgery: a narrative review. Br J Anaesth 2024; 132:653-666. [PMID: 38262855 DOI: 10.1016/j.bja.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Assay-specific increases in circulating cardiac troponin are observed in 20-40% of patients after noncardiac surgery, depending on patient age, type of surgery, and comorbidities. Increased cardiac troponin is consistently associated with excess morbidity and mortality after noncardiac surgery. Despite these findings, the underlying mechanisms are unclear. The majority of interventional trials have been designed on the premise that ischaemic cardiac disease drives elevated perioperative cardiac troponin concentrations. We consider data showing that elevated circulating cardiac troponin after surgery could be a nonspecific marker of cardiomyocyte stress. Elevated concentrations of circulating cardiac troponin could reflect coordinated pathological processes underpinning organ injury that are not necessarily caused by ischaemia. Laboratory studies suggest that matching of coronary artery autoregulation and myocardial perfusion-contraction coupling limit the impact of systemic haemodynamic changes in the myocardium, and that type 2 ischaemia might not be the likeliest explanation for cardiac troponin elevation in noncardiac surgery. The perioperative period triggers multiple pathological mechanisms that might cause cardiac troponin to cross the sarcolemma. A two-hit model involving two or more triggers including systemic inflammation, haemodynamic strain, adrenergic stress, and autonomic dysfunction might exacerbate or initiate acute myocardial injury directly in the absence of cell death. Consideration of these diverse mechanisms is pivotal for the design and interpretation of interventional perioperative trials.
Collapse
Affiliation(s)
- Bernardo Bollen Pinto
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Alizadeh E, Sabet N, Soltani Z, Khaksari M, Jafari E, Karamouzian S. The administration of oral mucosal mesenchymal-derived stem cells improves hepatic inflammation, oxidative stress, and histopathology following traumatic brain injury. Transpl Immunol 2023; 81:101950. [PMID: 37918577 DOI: 10.1016/j.trim.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The inflammatory mediators produced after traumatic brain injury (TBI) are reaching peripheral organs causing organ and tissue damage, including the liver. Our study assessed the effect of intravenous (i.v.) infusion of oral mesenchymal stem cells (OMSCs) on TBI-induced liver damage by measuring liver inflammatory factors and liver oxidative stress. METHODS Twenty-eight adult male Wistar rats were divided into four groups: 1) sham control; 2) TBI alone (TBI); 3) TBI vehicle (Veh)-control; and 4) TBI with OMSC treatment (SC). OMSCs were obtained from oral mucosa biopsies. OMSCs were administered and administered i.v. at 1 and 24 h after TBI. Within 48 h after TBI, multiple parameters were analyzed, including inflammation, oxidative stress, and histopathological changes. RESULTS In comparison to sham controls, the TBI alone showed in liver significantly increased levels of interleukin-1β (IL-1β; P < 0.001), interleukin-6 (IL-6; P < 0.001), malondialdehyde (MDA; P < 0.001), and protein carbonyl (PC; P < 0.001). At the same time the TBI alone decreased the liver levels of superoxide dismutase (SOD; P < 0.001), total antioxidant capacity (TAC; P < 0.001), catalase (CAT; P < 0.001), and interleukin-10 (IL-10; P < 0.001). In comparison to the TBI alone group, the therapeutic group treated with i.v. infusion of OMSCs demonstrated significantly reduced changes of IL-1β (P < 0.001), IL-6 (P < 0.01), MDA (P < 0.01), PC (P < 0.05), SOD (P < 0.001), TAC (P < 0.01), CAT (P < 0.01), and IL-10 (P < 0.01). Histopathological evaluation showed in TBI alone group that the total score of liver tissue injury included extensive hydropic degeneration, lobular necrosis, inflammation as well as central vein congestion with subendothelial hemorrhage increased compared the sham group (P < 0.001). Administration of OMSC showed significantly smaller increase in the injury score compared to the TBI alone group (P < 0.001). CONCLUSION Therapy with i.v. OMSCs administration after TBI reduces liver injury, as measured by inflammation and oxidative stress. The use of OMSCs can be considered for treatment of liver injury caused by TBI.
Collapse
Affiliation(s)
- Eshagh Alizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Karamouzian
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Xia D, Wu R, Xue Q, Jiang G, Xu S. Metabolomics provides insights into acceleration of bone healing in fractured patients with traumatic brain injuries. Biomed Chromatogr 2023; 37:e5733. [PMID: 37705144 DOI: 10.1002/bmc.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
While clinical surveys have frequently reported that patients with traumatic brain injuries (TBIs) and comorbidities experience faster healing, the underlying mechanisms have been investigated but remain unclear. As a comprehensive comparison and analysis of the metabolic characteristics of these two pathologies have not been undertaken, we developed a rat model of fracture and TBI and collected serum samples for metabolomic analysis using ultra-high performance liquid chromatography-quadrupole time-of-flight MS (UHPLC-Q-TOF/MS). In total, we identified 40 differential metabolites and uncovered related pathways and potential mechanisms, including aminoacyl-transfer RNA biosynthesis; differential amino acids such as leucine, cholylhistidine, aspartyl-lysine; and related lipid metabolism, and discussed their impacts on bone formation in detail. This study highlights that the UHPLC-Q-TOF/MS-based metabolomics approach offers a better understanding of the metabolic links between TBI and accelerated bone recovery.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qian Xue
- Cinical Research Unit, Changhai Hospital, Naval Military University, Shanghai, China
| | - Gehan Jiang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Shuogui Xu
- Department of Orthopedics, Changhai Hospital, Naval Military University, Shanghai, China
| |
Collapse
|
6
|
Haffner-Luntzer M, Weber B, Morioka K, Lackner I, Fischer V, Bahney C, Ignatius A, Kalbitz M, Marcucio R, Miclau T. Altered early immune response after fracture and traumatic brain injury. Front Immunol 2023; 14:1074207. [PMID: 36761764 PMCID: PMC9905106 DOI: 10.3389/fimmu.2023.1074207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Birte Weber
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Steadman Phillipon Research Institute, Vail, CO, United States
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
The Prescription of Oral Mucosal Mesenchymal Stem Cells post-Traumatic Brain Injury Improved the Kidney and Heart Inflammation and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8235961. [PMID: 36408281 PMCID: PMC9671733 DOI: 10.1155/2022/8235961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Background In the last years, mesenchymal stem cells (MSCs) have been considered as a useful strategy to treat many diseases such as traumatic brain injury (TBI). The production of inflammatory agents by TBI elicits an inflammatory response directed to other systems of body, such as the heart and the kidneys. In this study, the efficacy of oral mucosal mesenchymal stem cells (OMSCs) prescription after TBI in inflammation and oxidative stress of the heart and kidneys was evaluated. Methods Twenty-four male rats were located in groups as follows: sham, TBI, vehicle (Veh), and stem cell (SC). OMSCs were injected intravenously 1 and 24 hours after TBI. Inflammatory, oxidative stress, and histopathological outcomes of the heart and kidney tissues were investigated 48 hours after TBI. Results TBI caused an increase in the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), malondialdehyde (MDA), and carbonyl protein (PC) of the heart and kidney compared to the sham group. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), and interleukin-10 (IL-10) of the heart and kidney decreased after TBI. The use of OMSCs after TBI reduced the changes of these factors in both the heart and the kidney. Conclusion Application of OMSCs after TBI can decrease inflammation and oxidative stress of the heart and kidney tissues leading to the reduction of damage. Therefore, this method can be evaluated in the TBI patients in future studies.
Collapse
|
8
|
Lackner I, Weber B, Pressmar J, Odwarka A, Lam C, Haffner-Luntzer M, Marcucio R, Miclau T, Kalbitz M. Cardiac alterations following experimental hip fracture - inflammaging as independent risk factor. Front Immunol 2022; 13:895888. [PMID: 36131923 PMCID: PMC9484325 DOI: 10.3389/fimmu.2022.895888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cardiac injuries following trauma are associated with a worse clinical outcome. So-called trauma-induced secondary cardiac injuries have been recently described after experimental long bone fracture even in absence of direct heart damage. With the progressive aging of our society, the number of elderly trauma victims rises and therefore the incidence of hip fractures increases. Hip fractures were previously shown to be associated with adverse cardiac events in elderly individuals, which have mainly been attributed to pre-conditioned cardiac diseases. The aim of the present study was to investigate the effect of hip fractures on the heart in healthy young and middle-aged mice. Materials and Methods Young (12-week-old) and middle-aged (52-week-old) female C57BL/6 mice either received an intramedullary stabilized proximal femur fracture or sham treatment. The observation time points included 6 and 24 h. Systemic levels of pro-inflammatory mediators as well as local inflammation and alterations in myocardial structure, metabolism and calcium homeostasis in left ventricular tissue was analyzed following hip fracture by multiplex analysis, RT-qPCR and immunohistochemistry. Results After hip fracture young and middle-aged mice showed increased systemic IL-6 and KC levels, which were significantly elevated in the middle-aged animals. Furthermore, the middle-aged mice showed enhanced myocardial expression of HMGB1, TLR2/4, TNF, IL1β and NLRP3 as well as considerable alterations in the myocardial expression of glucose- and fatty acid transporters (HFABP, GLUT4), calcium homeostasis proteins (SERCA) and cardiac structure proteins (desmin, troponin I) compared to the young animals following hip fracture. Conclusion Young and middle-aged mice showed local myocardial alterations, which might predispose for the development of secondary cardiac injury following hip fracture. Age and the age-associated phenomenon of ‘inflammaging’ seemed to be an independent risk factor aggravating and accelerating cardiac alterations following hip fracture.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University of Frankfurt, Frankfurt, Germany
| | - Jochen Pressmar
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Anna Odwarka
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Charles Lam
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie Haffner-Luntzer
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Miriam Kalbitz,
| |
Collapse
|
9
|
Fu M, Zhang Y, Guo J, Zhao Y, Hou Z, Wang Z, Zhang Y. Application of integrated management bundle incorporating with multidisciplinary measures improved in-hospital outcomes and early survival in geriatric hip fracture patients with perioperative heart failure: a retrospective cohort study. Aging Clin Exp Res 2022; 34:1149-1158. [PMID: 35067910 PMCID: PMC9135836 DOI: 10.1007/s40520-021-02038-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In elderly, hip fracture is often complicated by perioperative heart failure, related to worse prognosis. We aimed to analyze the effects of integrated management bundle incorporating with multidisciplinary measures on in-hospital outcomes and early survival in elderly hip fracture patients with perioperative heart failure. METHODS In this retrospective cohort study, a total of 421 hip fracture patients aged 65 and over who developed perioperative heart failure were included. According to different perioperative management modes applied, patients were retrospectively divided into multidisciplinary management group (Group A), including 277 patients, and integrated management bundle group (Group B), including 144 patients. The B-type natriuretic peptide (BNP) and C-reactive protein (CRP) levels, complications, length of stay, and hospitalization costs were observed and compared between two groups. Overall survival was compared by Kaplan-Meier methods. Cox regression analysis was used to identify prognostic factors associated with overall survival. RESULTS A total of 421 patients were enrolled for analysis, including 277 in Group A and 144 in Group B. BNP and CRP levels were significantly decreased compared with admission (P < 0.05). Furthermore, BNP and CRP in Group B decreased much more than those in Group A (P < 0.05). The reductions were observed in length of stay, hospitalization costs and incidence of pulmonary infection, hypoproteinemia, and acute cerebral infarction in Group B (all P < 0.05). The Kaplan-Meier plots showed significantly superior overall survival in Group B. Integrated management bundle was independent favorable prognostic factors. CONCLUSIONS The integrated management bundle incorporating with multidisciplinary measures significantly improved the therapeutic effect of perioperative heart failure, reduced inflammatory response, and yielded better hospital outcomes. It brought better survival benefits for geriatric hip fracture patients with perioperative heart failure. The results of this study can play an important role in clinical work and provide a valuable theoretical basis for selection of management model in elderly hip fracture patients with perioperative heart failure.
Collapse
Affiliation(s)
- Mingming Fu
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yaqian Zhang
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Junfei Guo
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yuqi Zhao
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), Hebei, People's Republic of China
| | - Zhiqian Wang
- Department of Geriatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China.
- NHC Key Laboratory of Intelligent Orthopeadic Equipment (The Third Hospital of Hebei Medical University), Hebei, People's Republic of China.
- Chinese Academy of Engineering, Beijing, 100088, People's Republic of China.
| |
Collapse
|