1
|
Zhang J, Zhang W, Yue W, Qin W, Zhao Y, Xu G. Research Progress of Bone Grafting: A Comprehensive Review. Int J Nanomedicine 2025; 20:4729-4757. [PMID: 40255675 PMCID: PMC12009056 DOI: 10.2147/ijn.s510524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 04/22/2025] Open
Abstract
Bone tissue, the second most transplanted tissue after blood, is utilized in over 2.2 million bone grafts annually to address various bone-related conditions including fractures, tumors, bone infections, scoliosis, congenital defects, osteoporosis, osteoarthritis, and osteogenesis imperfecta. According to incomplete statistics, $4.3 billion was spent on bone graft materials in 2015 alone, with projections suggesting this figure may reach $66 billion by 2026. The limited availability of autogenous bone graft considered the gold standard due to their three critical biological properties: osteoconduction, osteoinduction, and osteogenesis-alongside the increasing global aging population, may be contributing to this rising expenditure. Furthermore, advancements in biomaterials and engineering technologies have created opportunities for the exploration of new bone graft substitutes. In this review, we will examine the fundamental structure of natural bone and the characteristics of ideal bone graft, highlighting common bone graft materials currently available, such as true bone ceramics, decalcified bone matrix, freeze-dried bone and demineralized freeze-dried bone, bioactive glasses, bone marrow aspirate concentrate, polymer nanocomposites, which have different characteristics in osteogenic, osteoconductivity, osteoinductivity, biocompatibility, mechanical properties, and resorption. How to utilize its advantages to maximize the osteogenic effect will be the focus of this review, and some of the current challenges in the field of bone grafting will be identified, outlining potential directions for future development. In conclusion, the choice of bone graft is critical to bone repair and regeneration, and a comprehensive understanding of the advantages and disadvantages of bone graft materials can improve the effectiveness of related surgical interventions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wenjie Yue
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wenhe Qin
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, 100048, People’s Republic of China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
2
|
He Y, Zhang L, Chen X, Liu B, Shao X, Fang D, Lin J, Liu N, Lou Y, Qin J, Jiang Q, Guo B. Elimination of Senescent Osteocytes by Bone-Targeting Delivery of β-Galactose-Modified Maytansinoid Prevents Age-Related Bone Loss. Adv Healthc Mater 2024; 13:e2302972. [PMID: 38063283 DOI: 10.1002/adhm.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Indexed: 12/17/2023]
Abstract
The accumulation of senescent cells in bone during aging contributes to senile osteoporosis, and clearance of senescent cells by senolytics could effectively alleviate bone loss. However, the applications of senolytics are limited due to their potential toxicities. Herein, small extracellular vesicles (sEVs) have been modified by incorporating bone-targeting peptide, specifically (AspSerSer)6, to encapsulate galactose-modified Maytansinoids (DM1). These modified vesicles are referred to as (AspSerSer)6-sEVs/DM1-Gal, and they have been designed to specifically clear the senescent osteocytes in bone tissue. In addition, the elevated activity of lysosomal β-galactosidase in senescent osteocytes, but not normal cells in bone tissue, could break down DM1-Gal to release free DM1 for selective elimination of senescent osteocytes. Mechanically, DM1 could disrupt tubulin polymerization, subsequently inducing senescent osteocytes apoptosis. Further, administration of bone-targeting senolytics to aged mice could alleviate aged-related bone loss without non-obvious toxicity. Overall, this bone-targeting senolytics could act as a novel candidate for specific clearance of senescent osteocytes, ameliorating age-related bone loss, with a promising therapeutic potential for senile osteoporosis.
Collapse
Affiliation(s)
- Yi He
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Xiang Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaoyan Shao
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Depeng Fang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiaquan Lin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Na Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Lou
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Jianghui Qin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
3
|
Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301996. [PMID: 37116115 DOI: 10.1002/smll.202301996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The effective regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant clinical challenge. Traditional treatments such as autologous and allograft bone grafting have not been successful in achieving the desired outcomes, necessitating the need for innovative therapeutic approaches. Nucleic acids have attracted significant attention due to their ability to be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of nucleic acid nanotechnology offer numerous opportunities for in-cell and in vivo applications, and hold great promise for advancing the field of biomaterials. In this review, the current abilities of nucleic acid nanotechnology to be applied in bone and cartilage regeneration are summarized and insights into the challenges and future directions for the development of this technology are provided.
Collapse
Affiliation(s)
- Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Luodian Hospital, Shanghai, 201908, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Jeong CH, Kim J, Kim HS, Lim SY, Han D, Huser AJ, Lee SB, Gim Y, Ji JH, Kim D, Aldosari AM, Yun K, Kwak YH. Acceleration of bone formation by octacalcium phosphate composite in a rat tibia critical-sized defect. J Orthop Translat 2022; 37:100-112. [PMID: 36262961 PMCID: PMC9574596 DOI: 10.1016/j.jot.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The osteogenic capabilities and biodegradability of octacalcium phosphate (OCP) composites make them unique. Despite the excellent characteristics of OCP, their use is limited due to handling difficulties. In this study, we aimed to evaluate and compare three types of OCPs (cemented OCP (C-OCP), C-OCP with collagen (OCP/Col), and synthetic OCP (S-OCP) with alginate (OCP/Alg)) versus commercially available β-tricalcium phosphate (β-TCP) regarding their potential to accelerate bone formation in defective rat tibias. Methods The specimens with OCP composite were manufactured into 5 mm cubes and inserted into the segmental defects of rat tibias fixed with an external fixator. In addition, 3 mm-hole defects in rat tibias were evaluated to compare the graft material properties in different clinical situations. Serial X-ray studies were evaluated weekly and the tibias were harvested at postoperative 6 weeks or 8 weeks for radiologic evaluation. Histological and histomorphometric analyses were performed to evaluate the acceleration of bone formation. Results In the critical-defect model, OCP/Alg showed bone bridges between segmentally resected bone ends that were comparable to those of β-TCP. However, differences were observed in the residual graft materials. Most β-TCP was maintained until 8 weeks postoperatively; however, OCP/Alg was more biodegradable. In addition calcification in the β-TCP occurred at the directly contacted area between graft particles and bony ingrowth was observed in the region adjacent resected surface of tibia. In contrast, no direct bony ingrowth was observed in OCP-based materials, but osteogenesis induced from resected surface of tibia was more active. In the hole-defect model, OCP/Col accelerated bone formation. β-TCP and OCP/Alg showed similar patterns with relatively higher biodegradability. In histology, among the OCP-based materials, directly contacted new bone was formed only in OCP/Alg group. The new bone formation in the periphery area of graft materials was much more active in the OCP-based materials, and the newly formed bone showed a thicker trabecular and more mature appearance than the β-TCP group. Conclusions In this study, OCP/Alg was equivalent to β-TCP in the acceleration of bone formation with better biodegradability appropriate for clinical situations in different circumstances. Our OCP/Col composite showed fast degradation, which makes it unsuitable for use in mechanical stress conditions in clinical orthopedic settings. The Translational Potential of this Article In our research, we compared our various manufactured OCP composites to commercially available β-TCP in critical-defect rat tibia model. OCP/Col showed acceleration in hole-defect model as previous studies in dental field but in our critical-sized defect model it resorbed fast without acceleration of bony union. OCP/Alg showed matched results compared to β-TCP and relatively fast resorption so we showed market value in special clinical indication depending on treatment strategy. This is the first OCP composite study in orthopaedics with animal critical-sized tibia bone study and further study should be considered for clinical application based on this study.
Collapse
Affiliation(s)
- Cheol-Hee Jeong
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jooseong Kim
- Department of Biomedical Engineering, Yeungnam University, Daegu, Republic of Korea.,HudensBio Co., Ltd., Gwangju, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Song-Yi Lim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Aaron J Huser
- Paley Advanced Limb Lengthening Institutute, St. Mary's Hospital, West Palm Beach, FL, USA
| | - Sang Bae Lee
- Center for Testing and Evaluation of Dental Biomaterials, Ministry of Food and Drug Safety Recognition Laboratory, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeonji Gim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Jeong Hyun Ji
- Department of Laboratory Animal Resources, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dohun Kim
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | - Amaal M Aldosari
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea.,Department of Orthopedic Surgery, Al Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Kyelim Yun
- HudensBio Co., Ltd., Gwangju, Republic of Korea
| | - Yoon Hae Kwak
- Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Advancing medical device regulatory reforms for innovation, translation and industry development in China. J Orthop Translat 2022; 37:89-93. [PMID: 36262965 PMCID: PMC9550533 DOI: 10.1016/j.jot.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The blossoming Chinese medical device market calls for a science-based regulatory system in China. Consistent efforts have been made to advance the medical device regulatory reforms for innovation, translation and industry development. In this article, we report both the latest regulatory requirements which aim to ensure safety and efficacy for patients while encouraging innovation of the medical device industry, and the key programs on medical devices covered in the Regulatory Science Action Plan (RSAP) of the National Medical Products Administration of China (NMPA). The main features of the revised regulations are first elucidated before the opportunities for translational research are interpreted, including those for additive manufacturing and customized devices, drug–device combination products, artificial intelligence-powered software and surgical robots, and nanomaterials for medical devices. Finally, a regulatory perspective is provided to researchers who expect to translate their technologies in the Chinese medical device market. Important issues including early attention to critical market and clinical needs, understanding the true principle and spirit underlying the changing regulations and standards, and protecting intellectual property rights with comprehensive measures, are discussed. These developments warrant further investigations into the distinct role of regulatory science in shaping medical devices research and development.
Collapse
|
6
|
Xu J, Shen J, Sun Y, Wu T, Sun Y, Chai Y, Kang Q, Rui B, Li G. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J Orthop Translat 2022; 37:143-151. [PMID: 36313532 PMCID: PMC9582585 DOI: 10.1016/j.jot.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Neovascularization is critical for bone regeneration. Numerous studies have explored prevascularization preimplant strategies, ranging from calcium phosphate cement (CPC) scaffolds to co-culturing CPCs with stem cells. The aim of the present study was to evaluate an alternative in vivo prevascularization approach, using preimplant-prepared macroporous beta-tricalcium phosphate (β-TCP) scaffolds and subsequent transplantation in bone defect model. Methods The morphology of β-TCPs was characterized by scanning electron microscopy. After 3 weeks of prevascularization within a muscle pouch at the lateral size of rat tibia, we transplanted prevascularized macroporous β-TCPs in segmental tibia defects, using blank β-TCPs as a control. Extent of neovascularization was determined by angiography and immunohistochemical (IHC) evaluations. Tibia samples were collected at different time points for biomechanical, radiological, and histological analyses. RT-PCR and western blotting were used to evaluate angio- and osteo-specific markers. Results With macroporous β-TCPs, we documented more vascular and supporting tissue invasion in the macroporous β-TCPs with prior in vivo prevascularization. Radiography, biomechanical, IHC, and histological analyses revealed considerably more vascularity and bone consolidation in β-TCP scaffolds that had undergone the prevascularization step compared to the blank β-TCP scaffolds. Moreover, the prevascularization treatment remarkably upregulated mRNA and protein expression of BMP2 and vascular endothelial growth factor (VEGF) during bone regeneration. Conclusion This novel in vivo prevascularization strategy successfully accelerated vascular formation to bone regeneration. Our findings indicate that prevascularized tissue-engineered bone grafts have promising potential in clinical applications. The translational potential of this article This study indicates a novel in vivo prevascularization strategy for growing vasculature on β-TCP scaffolds to be used for repair of large segmental bone defects, might serve as a promising tissue-engineered bone grafts in the future.
Collapse
Affiliation(s)
- Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - YunChu Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tianyi Wu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Biyu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China.
| | - Gang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
- Corresponding author.
| |
Collapse
|
7
|
Xu G, Guo R, Han L, Bie X, Hu X, Li L, Li Z, Zhao Y. Comparison of osteogenesis of bovine bone xenografts between true bone ceramics and decalcified bone matrix. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:75. [PMID: 36243895 PMCID: PMC9569310 DOI: 10.1007/s10856-022-06696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Xenograft bone scaffolds have certain advantages such as mechanical strength, osteoinductive properties, sufficient source and safety. This study aimed to compare osteogenesis of the two main bovine bone xenografts namely true bone ceramics (TBC) and decalcified bone matrix (DBM), and TBC or DBM combined with bone morphogenetic protein (BMP)-2 (TBC&BMP-2 and DBM&BMP-2). The characteristics of TBC and DBM were investigated by observing the appearance and scanning electron microscopic images, examining mechanical strength, evaluating cytotoxicity and detecting BMP-2 release after being combined with BMP-2 in vitro. The femoral condyle defect and radial defect models were successively established to evaluate the performance of the proposed scaffolds in repairing cortical and cancellous bone defects. General observation, hematoxylin and eosin (HE) staining, mirco-CT scanning, calcein double labeling, X-ray film observation, three-point bending test in vivo were then performed. It indicated that the repair with xenograft bone scaffolds of 8 weeks were needed and the repair results were better than those of 4 weeks whatever the type of defects. To femoral condyle defect, TBC and TBC&BMP-2 were better than DBM and DBM&BMP-2, and TBC&BMP-2 was better than TBC alone; to radial defect, DBM and DBM&BMP-2 were better than TBC and TBC&BMP-2, and DBM&BMP-2 was better than DBM alone. This study has shown that TBC and DBM xenograft scaffolds can be more suitable for the repair of cancellous bone and cortical bone defects for 8 weeks in rats, respectively. We also have exhibited the use of BMP-2 in combination with DBM or TBC provides the possibility to treat bone defects more effectively. We thus believe that we probably need to select the more suitable scaffold according to bone defect types, and both TBC and DBM are promising xenograft materials for bone tissue engineering and regenerative medicine. Graphical abstract.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, PR China
| | - Ruizhou Guo
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China
| | - Liwei Han
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China
| | - Xiaomei Bie
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China
| | - Xiantong Hu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China
| | - Li Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China.
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, PR China.
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopedics Implants, 100048, Beijing, PR China.
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
8
|
Zhang Y, Li C, Zhang W, Deng J, Nie Y, Du X, Qin L, Lai Y. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact Mater 2022; 16:218-231. [PMID: 35415289 PMCID: PMC8965852 DOI: 10.1016/j.bioactmat.2021.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023] Open
Abstract
Patients with bone defects suffer from a high rate of disability and deformity. Poor contact of grafts with defective bones and insufficient osteogenic activities lead to increased loose risks and unsatisfied repair efficacy. Although self-expanding scaffolds were developed to enhance bone integration, the limitations on the high transition temperature and the unsatisfied bioactivity hindered greatly their clinical application. Herein, we report a near-infrared-responsive and tight-contacting scaffold that comprises of shape memory polyurethane (SMPU) as the thermal-responsive matrix and magnesium (Mg) as the photothermal and bioactive component, which fabricated by the low temperature rapid prototyping (LT-RP) 3D printing technology. As designed, due to synergistic effects of the components and the fabrication approach, the composite scaffold possesses a homogeneously porous structure, significantly improved mechanical properties and stable photothermal effects. The programmed scaffold can be heated to recover under near infrared irradiation in 60s. With 4 wt% Mg, the scaffold has the balanced shape fixity ratio of 93.6% and shape recovery ratio of 95.4%. The compressed composite scaffold could lift a 100 g weight under NIR light, which was more than 1700 times of its own weight. The results of the push-out tests and the finite element analysis (FEA) confirmed the tight-contacting ability of the SMPU/4 wt%Mg scaffold, which had a signficant enhancement compared to the scaffold without shape memory effects. Furthermore, The osteopromotive function of the scaffold has been demonstrated through a series of in vitro and in vivo studies. We envision this scaffold can be a clinically effective strategy for robust bone regeneration.
Collapse
Affiliation(s)
- Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junjie Deng
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangfu Du
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| |
Collapse
|
9
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Tang R, Shao C, Chen L, Yi L, Zhang B, Tang J, Ma W. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. BIOMATERIALS ADVANCES 2022; 137:212864. [PMID: 35929282 DOI: 10.1016/j.bioadv.2022.212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Osseointegration between implants and bone tissue lays the foundation for the long-term stability of implants. The incorporation of a porous structure and local slow release of siRNA to silence casein kinase-2 interacting protein-1 (CKIP-1), a downregulator of bone formation, is expected to promote osseointegration. Here, porous implants with a porous outer layer and dense inner core were prepared by metal coinjection molding (MIM). Mg-doped calcium phosphate nanoparticles (CaPNPs)-grafted arginine-glycine-aspartate cell adhesion sequence (RGD) and transcribed activator (TAT) (MCPRT)/CKIP-1 siRNA complex and polylysine (PLL) were coated onto the surface of the porous implants by layer-by-layer (LBL) self-deposition. The in vitro results showed that the MCPRT-siRNA coating promoted MG63 cell adhesion and proliferation, enhanced the protein expressions (ALP and OC) and bone formation-related gene expression (OPN, OC and COL-1α) in vitro. The in vivo results demonstrated that the porous structure enhanced bone ingrowth and that the local slow release of MCPRT-siRNA accelerated new bone formation at the early stage. The porous structure coupled with local CKIP-1 siRNA delivery constitutes a promising approach to achieve faster and stronger osseointegration for dental implants.
Collapse
Affiliation(s)
- Ruimin Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Chunsheng Shao
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Liangjian Chen
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China.
| | - Li Yi
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Bo Zhang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Jiangjie Tang
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Weina Ma
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
11
|
Kang M, Lee CS, Lee M. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration. Bioengineering (Basel) 2021; 8:bioengineering8100137. [PMID: 34677210 PMCID: PMC8533541 DOI: 10.3390/bioengineering8100137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
With population aging and increased life expectancy, an increasing number of people are facing musculoskeletal health problems that necessitate therapeutic intervention at defect sites. Bone tissue engineering (BTE) has become a promising approach for bone graft substitutes as traditional treatments using autografts or allografts involve clinical complications. Significant advancements have been made in developing ideal BTE scaffolds that can integrate bioactive molecules promoting robust bone repair. Herein, we review bioactive scaffolds tuned for local bone regenerative therapy, particularly through integrating synthetic liposomal vesicles or extracellular vesicles to the scaffolds. Liposomes offer an excellent drug delivery system providing sustained release of the loaded bioactive molecules. Extracellular vesicles, with their inherent capacity to carry bioactive molecules, are emerging as an advanced substitute of synthetic nanoparticles and a novel cell-free therapy for bone regeneration. We discuss the recent advance in the use of synthetic liposomes and extracellular vesicles as bioactive materials combined with scaffolds, highlighting major challenges and opportunities for their applications in bone regeneration. We put a particular focus on strategies to integrate vesicles to various biomaterial scaffolds and introduce the latest advances in achieving sustained release of bioactive molecules from the vesicle-loaded scaffolds at the bone defect site.
Collapse
Affiliation(s)
- Minjee Kang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea;
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA;
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
12
|
Yang T, Tamaddon M, Jiang L, Wang J, Liu Z, Liu Z, Meng H, Hu Y, Gao J, Yang X, Zhao Y, Wang Y, Wang A, Wu Q, Liu C, Peng J, Sun X, Xue Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Translat 2021; 30:112-121. [PMID: 34722154 PMCID: PMC8526903 DOI: 10.1016/j.jot.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND/OBJECTIVE We seek to figure out the effect of stable and powerful mechanical microenvironment provided by Ti alloy as a part of subchondral bone scaffold on long-term cartilage regeneration.Methods: we developed a bilayered osteochondral scaffold based on the assumption that a stiff subchondral bony compartment would provide stable mechanical support for cartilage regeneration and enhance subchondral bone regeneration. The subchondral bony compartment was prepared from 3D printed Ti alloy, and the cartilage compartment was created from a freeze-dried collagen sponge, which was reinforced by poly-lactic-co-glycolic acid (PLGA). RESULTS In vitro evaluations confirmed the biocompatibility of the scaffold materials, while in vivo evaluations demonstrated that the mechanical support provided by 3D printed Ti alloy layer plays an important role in the long-term regeneration of cartilage by accelerating osteochondral formation and its integration with the adjacent host tissue in osteochondral defect model at rabbit femoral trochlea after 24 weeks. CONCLUSION Mechanical support provided by 3D printing Ti alloy promotes cartilage regeneration by promoting subchondral bone regeneration and providing mechanical support platform for cartilage synergistically. TRANSLATIONAL POTENTIAL STATEMENT The raw materials used in our double-layer osteochondral scaffolds are all FDA approved materials for clinical use. 3D printed titanium alloy scaffolds can promote bone regeneration and provide mechanical support for cartilage regeneration, which is very suitable for clinical scenes of osteochondral defects. In fact, we are conducting clinical trials based on our scaffolds. We believe that in the near future, the scaffold we designed and developed can be formally applied in clinical practice.
Collapse
Affiliation(s)
- Tao Yang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Ziyu Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Haoye Meng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jianming Gao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xuan Yang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanxu Zhao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Aiyuan Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Jiang Peng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingyun Xue
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| |
Collapse
|