1
|
Hung CH, Kwok YC, Yip J, Wong HH, Leung YY. Bioabsorbable Magnesium-Based Materials Potential and Safety in Bone Surgery: A Systematic Review. Craniomaxillofac Trauma Reconstr 2025; 18:24. [PMID: 40276521 PMCID: PMC12015880 DOI: 10.3390/cmtr18020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The goal of this study was to evaluate the clinical outcomes, safety, and clinical applications of bioabsorbable magnesium-based materials for fixation in bone surgeries. The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. An initial search was performed on electronic databases, followed by manual and reference searches. The articles selected were evaluated for patient characteristics, biocompatibility, the need for revision surgery, bone union rates, and the incidence of gas formation associated with implant degradation. Out of the 631 initially identified articles, 8 studies including a total of 386 patients were included in the final qualitative analysis. The magnesium (Mg) group carried a lower rate of revision surgery (1/275) when compared to the titanium (Ti) group (18/111). A high rate of bone union was found in the Mg group and a low infection rate (3/275) was found in the Mg group. The serum level of Mg and calcium (Ca) were not found to be affected. Mg implants are applied in various orthopedic surgeries but they are not applied in in oral or maxillofacial surgeries. Mg implants appear to be a safe alternative for bone fixation and are resorbable. Future research into the application of Mg implants in bone fixation in different anatomical sites is essential to fully harness their potential benefits for patients.
Collapse
Affiliation(s)
- Chun Ho Hung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (C.H.H.); (Y.C.K.); (J.Y.); (H.H.W.)
| | - Yui Chit Kwok
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (C.H.H.); (Y.C.K.); (J.Y.); (H.H.W.)
| | - Jason Yip
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (C.H.H.); (Y.C.K.); (J.Y.); (H.H.W.)
| | - Ho Hin Wong
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (C.H.H.); (Y.C.K.); (J.Y.); (H.H.W.)
| | - Yiu Yan Leung
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (C.H.H.); (Y.C.K.); (J.Y.); (H.H.W.)
| |
Collapse
|
2
|
Wang Y, Jan H, Zhong Z, Zhou L, Teng K, Chen Y, Xu J, Xie D, Chen D, Xu J, Qin L, Tuan RS, Li ZA. Multiscale metal-based nanocomposites for bone and joint disease therapies. Mater Today Bio 2025; 32:101773. [PMID: 40290898 PMCID: PMC12033929 DOI: 10.1016/j.mtbio.2025.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Bone and joint diseases are debilitating conditions that can result in significant functional impairment or even permanent disability. Multiscale metal-based nanocomposites, which integrate hierarchical structures ranging from the nanoscale to the macroscale, have emerged as a promising solution to this challenge. These materials combine the unique properties of metal-based nanoparticles (MNPs), such as enzyme-like activities, stimuli responsiveness, and photothermal conversion, with advanced manufacturing techniques, such as 3D printing and biohybrid systems. The integration of MNPs within polymer or ceramic matrices offers a degree of control over the mechanical strength, antimicrobial efficacy, and the manner of drug delivery, whilst concomitantly promoting the processes of osteogenesis and chondrogenesis. This review highlights breakthroughs in stimulus-responsive MNPs (e.g., photo-, magnetically-, or pH-activated systems) for on-demand therapy and their integration with biocomposite hybrids containing cells or extracellular vesicles to mimic the native tissue microenvironment. The applications of these composites are extensive, ranging from bone defects, infections, tumors, to degenerative joint diseases. The review emphasizes the enhanced load-bearing capacity, bioactivity, and tissue integration that can be achieved through hierarchical designs. Notwithstanding the potential of these applications, significant barriers to progress persist, including challenges related to long-term biocompatibility, regulatory hurdles, and scalable manufacturing. Finally, we propose future directions, including machine learning-guided design and patient-specific biomanufacturing to accelerate clinical translation. Multiscale metal-based nanocomposites, which bridge nanoscale innovations with macroscale functionality, are a revolutionary force in the field of biomedical engineering, providing personalized regenerative solutions for bone and joint diseases.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hasnain Jan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Zheng Zhong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Kexin Teng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Ye Chen
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Jiake Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhong Alan Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, NT, Hong Kong Special Administrative Region of China
| |
Collapse
|
3
|
Chen Y, Chen QW, Fu FS, Yan JH, Su J, Zhang XZ, Yu A. Antibacterial Peptides-Produced Cell Hydrogel Eliminates Intracellular Pathogens and Remodels Immune Microenvironment for Osteomyelitis Therapy. ACS NANO 2025. [PMID: 40336314 DOI: 10.1021/acsnano.5c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Featuring bacterial invasion and colonization within cells, chronic infection-induced immune suppression, and inflammatory cell infiltration, osteomyelitis is currently an intractable and recurrent bone disease. In this study, an injectable hydrogel that gels in situ and is loaded with engineered antimicrobial cells (LL37-MSC@OCAHM) is developed. This anti-inflammatory hydrogel not only maintains cell activity in the inflammatory environment but also releases magnesium ions (Mg2+) to promote the differentiation of MSCs into bone-forming cells, contributing to bone mass formation, enhancing bone repair, and accelerating bone healing. The engineered cells continuously produce antimicrobial peptides of LL37, which effectively kill both extracellular and intracellular bacteria at the osteomyelitis site. Additionally, cell hydrogel also modulates the immune response by shifting the osteomyelitis environment from pro-inflammatory to anti-inflammatory, reducing the infiltration of immune cells and myeloid-derived suppressor cells (MDSCs). We also demonstrated its ability to activate immune responses and generate immune memory, thereby preventing the recurrence of secondary infections. This study introduces an engineered cell-based approach that combines active antimicrobial effect, immune modulation, and bone repair, for effectively eliminating osteomyelitis infections and preventing recurrence.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang-Sheng Fu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Junwei Su
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
4
|
Yang Y, Chen Z, Hu Y, Tian Y. Biomechanical evaluation of novel 3D-printed magnesium alloy scaffolds for treating proximal humerus fractures with medial column instability. Injury 2025; 56:112266. [PMID: 40121861 DOI: 10.1016/j.injury.2025.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Patients with complex proximal humerus fractures (PHFs) have a higher complication rate when treated with locking compression plate (LCP) alone. This increased complication rate may be due to humeral head collapse and insufficient medial column support in the proximal humerus. In response, we proposed the use of bionic porous 3D-printed magnesium alloy scaffolds (MAS) in combination with LCP for the treatment of PHFs. The aim of this study is to compare the biomechanical characteristics of the LCP alone versus LCP-MAS fixation constructs in treating PHFs with medial column instability. METHODS A three-dimensional model of a PHF with medial column instability was developed using computed tomography, and fixation was applied using LCP and LCP-MAS. Finite element analysis was employed to evaluate the biomechanical characteristics of these two fixation models, focusing on construct stiffness, von Mises stress distribution, and fracture displacements. RESULTS The construct stiffness of the LCP-MAS fixation construct was approximately 3.50 to 7.30 times greater than that of the LCP fixation construct under normal bone conditions, and 2.60 to 4.90 times greater under osteoporotic bone conditions. The LCP-MAS fixation reduced the maximum von Mises stress on the implants by at least 70 %-80 %. Furthermore, the LCP-MAS fixation significantly minimized fracture displacement compared to LCP alone. CONCLUSIONS The findings of this study suggest that the additional use of MAS can significantly enhance both the overall and local stability of PHFs. Thus, the LCP-MAS fixation approach presents a viable alternative for the treatment of PHFs.
Collapse
Affiliation(s)
- Yiyuan Yang
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Zhuo Chen
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
5
|
An Y, Zhang H, Zhang S, Zhang Y, Zheng L, Chen X, Tong W, Xu J, Qin L. Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment. Bioact Mater 2025; 46:331-346. [PMID: 39816475 PMCID: PMC11732853 DOI: 10.1016/j.bioactmat.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg2+), hydrogen gas (H2), and hydroxide ions (OH-) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the in vivo degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages. Bulk-RNA seq indicates that H2 and alkaline pH increase periosteal cell proliferation, while Mg2+ may mainly enhance extracellular matrix formation and cell adhesion in the femur ex vivo. In vivo studies further reveal that H2, Mg2+ and alkaline pH individually generate comparable effects to the enhanced bone regeneration in the Mg-IMN group. Mechanistically, the degradation products elevate sensory calcitonin gene-related peptide (CGRP) and simultaneously suppress adrenergic factors in newly formed bone. H2 and Mg2+, instead of alkaline pH, increase CGRP synthesis and inhibit adrenergic receptors. Our findings, for the first time, elucidate that Mg2+, H2, and alkaline pH environment generated by Mg-IMN act distinctly and synergistically mediated by the skeletal interoceptive regulation to accelerate bone regeneration. These findings may advance the understanding on biological functions of Mg-IMN in fracture repair and even other bone disorders.
Collapse
Affiliation(s)
- Yuanming An
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shi'an Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xin Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhao DW, Zhang TW, Wang WD, Wang ZM, Wang FY, Yang X, Li RH, Cheng LL, Zhang Y, Wang HY, Zhu WW, Huang SB, Li WR, Qin L. Internal fixation with biodegradable high purity magnesium screws in the treatment of ankle fracture. J Orthop Translat 2025; 51:198-206. [PMID: 40166129 PMCID: PMC11957590 DOI: 10.1016/j.jot.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 04/02/2025] Open
Abstract
Background Metal plates and screws are widely used as internal fixations in the treatment of ankle fracture. However, there are many disadvantages such as "stress shielding" effect and the need for secondary surgical removal, which potentially affected the blood supply around the fracture site. In recent years, many studies confirmed that the biodegradable high purity magnesium (Mg) screws exhibited sufficient mechanical strength with adequate degradation rate for effective bone healing, avoiding the need for implant removal operations. Method We conducted a prospective study on patients with ankle fractures treated at Affiliated Zhongshan Hospital of Dalian University between January 2020 and January 2021. Twenty-four patients (twelve patients for each group) with ankle fractures were treated with high purity Mg screws or conventional titanium alloy plates and screws. Hematological examinations were performed in the early postoperative period, X-ray examinations were performed in the long-term postoperative follow-up. Postoperative complications, including infection, failure of internal fixation and malunion, were recorded during the follow-up. The visual analogue scale (VAS) was used to evaluate postoperative pain perceived by the patients, and the American Orthopedic Foot and Ankle Society (AOFAS) ankle-hindfoot scoring system was used to evaluate their postoperative ankle function. Results All patients achieved good fracture alignment, and imaging examination showed that the biodegradable high purity Mg screws degraded gradually without breakage or displacement. None of the patients experienced infection, failure of internal fixation, malunion or other complications in both groups. Conclusion The results showed that biodegradable high purity Mg screws could be effectively used in the clinical treatment of ankle fractures, ensuring safety and satisfactory postoperative functional recovery.The translational potential of this article: The biodegradable high purity Mg screws could provide sufficient mechanical strength and fixation stability for ankle fracture. Our study extended the clinical application of the biodegradable high purity Mg screws for fracture.
Collapse
Affiliation(s)
- De-Wei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
- College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, PR China
| | - Tian-Wei Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
- College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, PR China
| | - Wei-Dan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Zi-Ming Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Fu-Yang Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Xing Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Rong-Hua Li
- College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, PR China
| | - Liang-Liang Cheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Yu Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Hui-Ya Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Wang-Wei Zhu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Shi-Bo Huang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, PR China
| | - Wei-Rong Li
- Dongguan Eontec Co., Ltd, Dongguan, Guangzhou, 523000, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
7
|
Chathoth BM, Helmholz H, Angrisani N, Wiese B, Reifenrath J, Willumeit-Römer R. Investigating the Potential of Magnesium Microparticles on Cartilage and Bone Regeneration Utilizing an In Vitro Osteoarthritis Model. J Biomed Mater Res A 2025; 113:e37862. [PMID: 39719870 DOI: 10.1002/jbm.a.37862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression. In vitro assays based on mesenchymal stem cells (SCP-1) were applied to evaluate the Mg microparticle's compatibility and function. Biocompatibility documented through live-dead staining and lactate dehydrogenase assay revealed a 90% cell viability at a concentration below 10 mM after 3 days of exposure. An in vitro OA model based on the supplementation of the cytokines IL-1β, and TNF-α was established and disclosed the effect of Mg degradation products in differentiating SCP-1 cells. Sustained differentiation was confirmed through extracellular matrix staining and increased gene marker expression. The Mg supplementation reduced the release of inflammatory cytokines (IL-6 and IL-8) while promoting the expression of proteins such as collagen X, collagen I, and osteopontin in a time-dependent manner. The in vitro study suggests that Mg microparticles hold a therapeutic potential for OA treatment with their ability to support bone and cartilage repair mechanisms even under inflammatory conditions.
Collapse
Affiliation(s)
| | - Heike Helmholz
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Nina Angrisani
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | - Björn Wiese
- Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Janin Reifenrath
- Hannover Medical School, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover, Germany
| | | |
Collapse
|
8
|
Mota-Silva E, Martinez DC, Basta G, Babboni S, del Turco S, Fragnito D, Salvadori S, Kusmic C, Riehakainen L, Panetta D, Campanella B, Onor M, Plocinski T, Swieszkowski W, Menichetti L. Monitoring osseointegration and degradation of Mg-alloy implants through plasma biomarkers of inflammation and bone regeneration. J Tissue Eng 2025; 16:20417314241290595. [PMID: 40336953 PMCID: PMC12056334 DOI: 10.1177/20417314241290595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 05/09/2025] Open
Abstract
Magnesium-degradable implants have excellent mechanical and osteogenic properties for temporary orthopedic use but are underutilized due to insufficient methods to monitor implant osseointegration and tissue healing. This study evaluated the use of circulatory biomarkers to monitor the bilateral implantation of a Mg-alloy in rats' femurs. A total of 16 biomarkers were measured from plasma samples collected at multiple timepoints up to 90 days post-implantation. Mg-alloy, Ti-alloy, and Sham (noncritical bone defect) groups were followed with computed tomography, histological, and SEM-EDX analysis. The Sham group showed higher DKK1, OPG, VEGF, and KIM-1 levels than implanted groups. The Mg-alloy group had delayed bone regeneration due to gas release but demonstrated active regeneration up to 180 days and superior osseointegration. Elevated IL-10 and reduced FGF23 at day 28 correlated with accelerated implant degradation. These results underline the complex interactions between biomaterials and biological systems in orthopedic applications and show the value of circulating markers to follow-up implantation.
Collapse
Affiliation(s)
- Eduarda Mota-Silva
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Diana C. Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Serena del Turco
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Davide Fragnito
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Stefano Salvadori
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Leon Riehakainen
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| | - Beatrice Campanella
- Istituto di Chimica dei Composti Organometallici, CNR, San Cataldo Research Area, Pisa, Italy
| | - Massimo Onor
- Istituto di Chimica dei Composti Organometallici, CNR, San Cataldo Research Area, Pisa, Italy
| | - Tomasz Plocinski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Luca Menichetti
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Pisa, Italy
| |
Collapse
|
9
|
Zhang H, Xu S, Ding X, Xiong M, Duan P. Design of internal fixation implants for fracture: A review. J Orthop Translat 2025; 50:306-332. [PMID: 39917282 PMCID: PMC11800090 DOI: 10.1016/j.jot.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/29/2024] [Accepted: 09/29/2024] [Indexed: 02/09/2025] Open
Abstract
Internal fixation is the most common and effective fracture treatment, and the design of Internal Fixation Implants (IFI) is important for fracture healing. In recent decades, IFI have been designed from the aspects of materials, geometry, fixation methods and functional characteristics. However, there has been no comprehensive summary on the evaluation method and design methods of IFI. This paper aims to review and analyze the key issues involved in the design of IFI, to provide references for IFI design. Firstly, the main factors affecting the healing effect are summarized and the design requirements of IFI are put forward through the analysis of fracture healing process. Secondly, the evaluation methods of IFI are compared and summarized, and the importance of evaluation methods based on fracture healing theory is emphasized. Subsequently, the properties and application scopes of common biomaterials for IFI are introduced. And the IFI, which is used widely, such as bone plate, intramedullary nail and embracing device, are summed up from the aspects of design factors and design methods. Highlight the distinctive contributions of additive manufacturing for the fabrication of implants and surface treatment for improving the multifunctionality of implants. Finally, the design concept of ideal IFI and the potential research content in the future are proposed based on the design requirements and the summary of the existing design studies. The translational potential of this article This study summarizes and analyzes the key issues involved in the design of IFI, which provide references for IFI design. A discussion on future research directions and suggestion were made, which is expected to advance the research in this field.
Collapse
Affiliation(s)
- Heng Zhang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Shipeng Xu
- Shanghai Institute of Special Equipment Inspection and Technical Research, No.915 Jinshajiang Road, Shanghai, 200062, China
| | - Xiaohong Ding
- School of Mechanical Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiong
- School of Mechanical Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Pengyun Duan
- School of Mechanical Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
10
|
Müller E, Schoberwalter T, Mader K, Seitz JM, Kopp A, Baranowsky A, Keller J. The Biological Effects of Magnesium-Based Implants on the Skeleton and Their Clinical Implications in Orthopedic Trauma Surgery. Biomater Res 2024; 28:0122. [PMID: 39717475 PMCID: PMC11665827 DOI: 10.34133/bmr.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Magnesium (Mg)-based implants have evolved as a promising innovation in orthopedic trauma surgery, with the potential to revolutionize the treatment of bone diseases, including osteoporotic fractures and bone defects. Available clinical studies mostly show excellent patient outcomes of resorbable Mg-based implants, without the need for subsequent implant removal. However, the occurrence of radiolucent zones around Mg-based implants seems to be a noticeable drawback for a more widespread clinical use. Mechanistically, both in vivo and in vitro studies demonstrated beneficial effects on the formation of new bone, a unique characteristic of Mg-based implants. In this regard, Mg has been shown to exert pleiotropic functions on osteogenic differentiation and migration of osteoblasts and their precursors. Additionally, collective evidence suggests that Mg-based implants promote angiogenesis in newly formed bone and exert immunomodulatory effects in the bone microenvironment. Likewise, Mg-based implants and their degradation products were shown to inhibit bone resorption by impairing osteoclastogenesis. The purpose of this review is to provide a state-of-the-art summary of the clinical and basic science evidence regarding the performance of currently used Mg-based implants. In addition to the status of in vivo and in vitro research and clinical applications, future challenges and perspectives of Mg-based orthopedic implants are discussed.
Collapse
Affiliation(s)
- Elena Müller
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Till Schoberwalter
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Konrad Mader
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Alexander Kopp
- Medical Magnesium GmbH, 52068 Aachen, Germany
- Meotec GmbH, 52068 Aachen, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
11
|
Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. Biomaterials for bone tissue engineering: achievements to date and future directions. Biomed Mater 2024; 20:012001. [PMID: 39577395 DOI: 10.1088/1748-605x/ad967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Advancement in medicine and technology has resulted into prevention of countless deaths and increased life span. However, it is important to note that, the modern lifestyle has altered the food habits, witnessed increased life-style stresses and road accidents leading to several health complications and one of the primary victims is the bone health. More often than ever, healthcare professionals encounter cases of massive bone fracture, bone loss and generation of critical sized bone defects. Surgical interventions, through the use of bone grafting techniques are necessary in such cases. Natural bone grafts (allografts, autografts and xenografts) however, have major drawbacks in terms of delayed rehabilitation, lack of appropriate donors, infection and morbidity that shifted the focus of several investigators to the direction of synthetic bone grafts. By employing biomaterials that are based on bone tissue engineering (BTE), synthetic bone grafts provide a more biologically acceptable approach to establishing the phases of bone healing. In BTE, various materials are utilized to support and enhance bone regeneration. Biodegradable polymers like poly-(lactic acid), poly-(glycolic acid), and poly-(ϵ-caprolactone) are commonly used for their customizable mechanical properties and ability to degrade over time, allowing for natural bone growth. PEG is employed in hydrogels to promote cell adhesion and growth. Ceramics, such as hydroxyapatite and beta-tricalcium phosphate (β-TCP) mimic natural bone mineral and support bone cell attachment, withβ-TCP gradually resorbing as new bone forms. Composite materials, including polymer-ceramic and polymer-glasses, combine the benefits of both polymers and ceramics/glasses to offer enhanced mechanical and biological properties. Natural biomaterials like collagen, gelatin, and chitosan provide a natural matrix for cell attachment and tissue formation, with chitosan also offering antimicrobial properties. Hybrid materials such as decellularized bone matrix retain natural bone structure and biological factors, while functionalized scaffolds incorporate growth factors or bioactive molecules to further stimulate bone healing and integration. The current review article provides the critical insights on several biomaterials that could yield to revolutionary improvements in orthopedic medical fields. The introduction section of this article focuses on the statistical information on the requirements of various bone scaffolds globally and its impact on economy. In the later section, anatomy of the human bone, defects and diseases pertaining to human bone, and limitations of natural bone scaffolds and synthetic bone scaffolds were detailed. Biopolymers, bioceramics, and biometals-based biomaterials were discussed in further depth in the sections that followed. The article then concludes with a summary addressing the current trends and the future prospects of potential bone transplants.
Collapse
Affiliation(s)
- Adithya Garimella
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
12
|
Tabrizian P, Davis S, Su B. From bone to nacre - development of biomimetic materials for bone implants: a review. Biomater Sci 2024; 12:5680-5703. [PMID: 39397519 DOI: 10.1039/d4bm00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The field of bone repair and regeneration has undergone significant advancements, yet challenges persist in achieving optimal bone implants or scaffolds, particularly load-bearing bone implants. This review explores the current landscape of bone implants, emphasizing the complexity of bone anatomy and the emerging paradigm of biomimicry inspired by natural structures. Nature, as a master architect, offers insights into the design of biomaterials that can closely emulate the mechanical properties and hierarchical organization of bone. By drawing parallels with nacre, the mollusk shells renowned for their exceptional strength and toughness, researchers have endeavored to develop bone implants with enhanced biocompatibility and mechanical robustness. This paper surveys the literature on various nacre-inspired composites, particularly ceramic/polymer composites like calcium phosphate (CaP), which exhibit promising similarities to native bone tissue. By harnessing the principles of hierarchical organization and organic-inorganic interfaces observed in natural structures, researchers aim to overcome existing limitations in bone implant technology, paving the way for more durable, biocompatible, and functionally integrated solutions in orthopedic and dental applications.
Collapse
Affiliation(s)
- Parinaz Tabrizian
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| | - Sean Davis
- School of Chemistry, University of Bristol, UK
| | - Bo Su
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| |
Collapse
|
13
|
He P, Zhao Y, Wang B, Liu G, Zhang L, Li M, Xu B, Cai W, Chu C, Cong Y. A biodegradable magnesium phosphate cement incorporating chitosan and rhBMP-2 designed for bone defect repair. J Orthop Translat 2024; 49:167-180. [PMID: 39483125 PMCID: PMC11525125 DOI: 10.1016/j.jot.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Background The repair of bone defects has always been a significant challenge in clinical medicine. To address this challenge, doctors often utilize autologous bone grafts, allogeneic bone grafts and artificial bone substitutes. However, the former two methods may result in additional trauma and complications, while allogeneic bone grafts carry the risks of immune rejection and disease transmission. Magnesium phosphate cement (MPC), as a artificial bone substitutes, has been a potential biomaterial for repairing bone defects, but its clinical application is limited by insufficient mechanical strength and poor osteoinductive activity. Methods In this study, the cement liquid phase base on rhBMP-2 and chitosan solution into MPC were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, and cellular responses and bone regeneration in response to CHI-rhBMP2 MPC were investigated in vitro and in vivo. Results After the chemical component modification, CHI-rhBMP2 MPC possessed controllable degradation rate, moderate setting time, appropriate cuing temperature, good injectability, and improved initial strength. In vitro tests showed that the CHIrhBMP2 MPC could promote cell proliferation and adhesion, as well as that contribute to osteoblast differentiation and mineralization. In addition, cement materials were implanted into the rabbit femoral condyles for in vivo osseointegration evaluation. The results displayed that more new bone grew around CHI-rhBMP2 MPC, verifying improved osseointegration capacity. Transcriptome analysis revealed that focal adhesion, Forkhead box O(FoxO) signaling pathway and P13K/AKT signaling pathway were may involved in CHI-rhBMP2 MPC induced new bone formation. Conclusion This work provides a new strategy for the rational design of potential bone repair candidate materials.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Guoyin Liu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Xu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| |
Collapse
|
14
|
Iskhakova K, Cwieka H, Meers S, Helmholz H, Davydok A, Storm M, Baltruschat IM, Galli S, Pröfrock D, Will O, Gerle M, Damm T, Sefa S, He W, MacRenaris K, Soujon M, Beckmann F, Moosmann J, O'Hallaran T, Guillory RJ, Wieland DF, Zeller-Plumhoff B, Willumeit-Römer R. Multi-modal investigation of the bone micro- and ultrastructure, and elemental distribution in the presence of Mg-xGd screws at mid-term healing stages. Bioact Mater 2024; 41:657-671. [PMID: 39296873 PMCID: PMC11408010 DOI: 10.1016/j.bioactmat.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
Magnesium (Mg) - based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Svenja Meers
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Anton Davydok
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Malte Storm
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Mirko Gerle
- The Department of Oral and Maxillofacial Surgery Campus Kiel, UKSH, Kiel, Germany
| | - Timo Damm
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith MacRenaris
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Malte Soujon
- Institute of Materials Mechanics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Thomas O'Hallaran
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Roger J. Guillory
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, USA
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
15
|
Li C, Zhang W, Nie Y, Du X, Huang C, Li L, Long J, Wang X, Tong W, Qin L, Lai Y. Time-Sequential and Multi-Functional 3D Printed MgO 2/PLGA Scaffold Developed as a Novel Biodegradable and Bioactive Bone Substitute for Challenging Postsurgical Osteosarcoma Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308875. [PMID: 38091500 DOI: 10.1002/adma.202308875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Indexed: 12/26/2023]
Abstract
Osteosarcoma (OS) is the most commonly occurring primary bone malignant tumor. The clinical postsurgical OS treatment faces big challenges for the staged therapeutic requirements of early anti-tumor, anti-bacterial, and long-lasting osteogenesis. Herein, multi-functional bioactive scaffolds with time-sequential functions of preventing tumor recurrence, inhibiting bacterial infection, and promoting bone defect repair are designed as a novel strategy. Nanocomposite scaffold magnesium peroxide (MgO2)/poly (lactide-co-glycolide) is prepared by low-temperature 3D printing for controllable releasing magnesium ions (Mg2+) and reactive oxygen species in a time-sequential manner. The scaffold with 20 wt% MgO2 (20MP) is verified with desired mechanical properties, as well as exhibits staged release behavior of bioactive elements with hydrogen peroxide (H2O2) release for the first 3 weeks, and long-lasting Mg2+ release for 12 weeks. The released H2O2 initiates chemodynamic therapy to induce apoptosis and ferroptosis in tumor cells, along with activating the anticancer immune microenvironment by M1 polarization of macrophages. The released Mg2+ subsequently enhances bone repair by activating the Wnt3a/GSK-3β/β-catenin signaling pathway to promote osteogenic differentiation of bone marrow mesenchymal stem cells and create osteopromotive immune microenvironment by M2 polarization of macrophages. In conclusion, the multi-functional 20MP scaffold demonstrates time-sequential therapeutic properties as an innovative strategy for OS-associated bone defect treatment.
Collapse
Affiliation(s)
- Cairong Li
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Zhang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yangyi Nie
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiangfu Du
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Cuishan Huang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Long Li
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Long
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinluan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenxue Tong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ling Qin
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
16
|
Xu J, Bao G, Jia B, Wang M, Wen P, Kan T, Zhang S, Liu A, Tang H, Yang H, Yue B, Dai K, Zheng Y, Qu X. An adaptive biodegradable zinc alloy with bidirectional regulation of bone homeostasis for treating fractures and aged bone defects. Bioact Mater 2024; 38:207-224. [PMID: 38756201 PMCID: PMC11096722 DOI: 10.1016/j.bioactmat.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.
Collapse
Affiliation(s)
- Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Guo Bao
- Laboratory Animal centre, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bo Jia
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianyou Kan
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
17
|
Chen L, Han J, Guo C. Research status and prospects of biodegradable magnesium-based metal guided bone regeneration membranes. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:415-425. [PMID: 39049628 PMCID: PMC11338478 DOI: 10.7518/hxkq.2024.2024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable magnesium-based metal guided bone regeneration (GBR) membranes possess excellent mechanical properties, biodegradability, and osteopromotive capabilities, making them ideal implants for the treatment of maxillofacial bone defects. This review summarizes the current status and future research trends related to magnesium-based GBR membranes. First, the research history and application fields of magnesium-based metals are introduced, and the advantages of the use of magnesium-based materials for GBR membranes, including their mechanical properties, biocompatibility, osteopromotive performance, and underlying mechanisms are discussed. Finally, this review addresses the current limitations of magnesium-based GBR membranes and their applications and prospects in the field of dentistry. In conclusion, considerable advancements have been in fundamental and translational research on magnesium-based GBR membranes, which lays a crucial foundation for the treatment of maxillofacial bone defects.
Collapse
Affiliation(s)
- Liangwei Chen
- Dept. of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jianmin Han
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Dept. of Key Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Chuanbin Guo
- Dept. of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
18
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
19
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
20
|
Liu B, Liu J, Wang C, Wang Z, Min S, Wang C, Zheng Y, Wen P, Tian Y. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater 2024; 32:177-189. [PMID: 37859690 PMCID: PMC10582357 DOI: 10.1016/j.bioactmat.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Reconstruction of subarticular bone defects is an intractable challenge in orthopedics. The simultaneous repair of cancellous defects, fractures, and cartilage damage is an ideal surgical outcome. 3D printed porous anatomical WE43 (magnesium with 4 wt% yttrium and 3 wt% rare earths) scaffolds have many advantages for repairing such bone defects, including good biocompatibility, appropriate mechanical strength, customizable shape and structure, and biodegradability. In a previous investigation, we successfully enhanced the corrosion resistance of WE43 samples via high temperature oxidation (HTO). In the present study, we explored the feasibility and effectiveness of HTO-treated 3D printed porous anatomical WE43 scaffolds for repairing the cancellous bone defects accompanied by split fractures via in vitro and in vivo experiments. After HTO treatment, a dense oxidation layer mainly composed of Y2O3 and Nd2O3 formed on the surface of scaffolds. In addition, the majority of the grains were equiaxed, with an average grain size of 7.4 μm. Cell and rabbit experiments confirmed the non-cytotoxicity and biocompatibility of the HTO-treated WE43 scaffolds. After the implantation of scaffolds inside bone defects, their porous structures could be maintained for more than 12 weeks without penetration and for more than 6 weeks with penetration. During the postoperative follow-up period for up to 48 weeks, radiographic examinations and histological analysis revealed that abundant bone gradually regenerated along with scaffold degradation, and stable osseointegration formed between new bone and scaffold residues. MRI images further demonstrated no evidence of any obvious damage to the cartilage, ligaments, or menisci, confirming the absence of traumatic osteoarthritis. Moreover, finite element analysis and biomechanical tests further verified that the scaffolds was conducive to a uniform mechanical distribution. In conclusion, applying the HTO-treated 3D printed porous anatomical WE43 scaffolds exhibited favorable repairing effects for subarticular cancellous bone defects, possessing great potential for clinical application.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jinge Liu
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chaoxin Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Shuyuan Min
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
21
|
Ashammakhi N. CORR Insights®: Mg-Zn-Ca Alloy (ZX00) Screws Are Resorbed at a Mean of 2.5 Years After Medial Malleolar Fracture Fixation: Follow-up of a First-in-humans Application and Insights From a Sheep Model. Clin Orthop Relat Res 2024; 482:198-200. [PMID: 37768868 PMCID: PMC10723840 DOI: 10.1097/corr.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Nureddin Ashammakhi
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
23
|
Brito-Pereira R, Martins P, Lanceros-Mendez S, Ribeiro C. Polymer-based magnetoelectric scaffolds for wireless bone repair: The fillers’ effect on extracellular microenvironments. COMPOSITES SCIENCE AND TECHNOLOGY 2023; 243:110263. [DOI: 10.1016/j.compscitech.2023.110263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Liang W, Zhou C, Zhang H, Bai J, Jiang B, Jiang C, Ming W, Zhang H, Long H, Huang X, Zhao J. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng 2023; 17:56. [PMID: 37644461 PMCID: PMC10466721 DOI: 10.1186/s13036-023-00371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The use of biodegradable polymers for treating bone-related diseases has become a focal point in the field of biomedicine. Recent advancements in material technology have expanded the range of materials suitable for orthopaedic implants. Three-dimensional (3D) printing technology has become prevalent in healthcare, and while organ printing is still in its early stages and faces ethical and technical hurdles, 3D printing is capable of creating 3D structures that are supportive and controllable. The technique has shown promise in fields such as tissue engineering and regenerative medicine, and new innovations in cell and bio-printing and printing materials have expanded its possibilities. In clinical settings, 3D printing of biodegradable metals is mainly used in orthopedics and stomatology. 3D-printed patient-specific osteotomy instruments, orthopedic implants, and dental implants have been approved by the US FDA for clinical use. Metals are often used to provide support for hard tissue and prevent complications. Currently, 70-80% of clinically used implants are made from niobium, tantalum, nitinol, titanium alloys, cobalt-chromium alloys, and stainless steels. However, there has been increasing interest in biodegradable metals such as magnesium, calcium, zinc, and iron, with numerous recent findings. The advantages of 3D printing, such as low manufacturing costs, complex geometry capabilities, and short fabrication periods, have led to widespread adoption in academia and industry. 3D printing of metals with controllable structures represents a cutting-edge technology for developing metallic implants for biomedical applications. This review explores existing biomaterials used in 3D printing-based orthopedics as well as biodegradable metals and their applications in developing metallic medical implants and devices. The challenges and future directions of this technology are also discussed.
Collapse
Grants
- (LGF22H060023 to WQL) Public Technology Applied Research Projects of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2021FSYYZY45 to WQL) Research Fund Projects of The Affiliated Hospital of Zhejiang Chinese Medicine University
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000 China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 China
| | - Chanyi Jiang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 Zhejiang Province P.R. China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| |
Collapse
|
25
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
26
|
Hu J, Shao J, Huang G, Zhang J, Pan S. In Vitro and In Vivo Applications of Magnesium-Enriched Biomaterials for Vascularized Osteogenesis in Bone Tissue Engineering: A Review of Literature. J Funct Biomater 2023; 14:326. [PMID: 37367290 DOI: 10.3390/jfb14060326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Bone is a highly vascularized tissue, and the ability of magnesium (Mg) to promote osteogenesis and angiogenesis has been widely studied. The aim of bone tissue engineering is to repair bone tissue defects and restore its normal function. Various Mg-enriched materials that can promote angiogenesis and osteogenesis have been made. Here, we introduce several types of orthopedic clinical uses of Mg; recent advances in the study of metal materials releasing Mg ions (pure Mg, Mg alloy, coated Mg, Mg-rich composite, ceramic, and hydrogel) are reviewed. Most studies suggest that Mg can enhance vascularized osteogenesis in bone defect areas. Additionally, we summarized some research on the mechanisms related to vascularized osteogenesis. In addition, the experimental strategies for the research of Mg-enriched materials in the future are put forward, in which clarifying the specific mechanism of promoting angiogenesis is the crux.
Collapse
Affiliation(s)
- Jie Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahui Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jieyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
27
|
Dong J, Zhong J, Hou R, Hu X, Chen Y, Weng H, Zhang Z, Liu B, Yang S, Peng Z. Polymer bilayer-Micro arc oxidation surface coating on pure magnesium for bone implantation. J Orthop Translat 2023; 40:27-36. [PMID: 37274179 PMCID: PMC10232471 DOI: 10.1016/j.jot.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background Pure magnesium-based ortho-implants have a number of advantages. However, vital parameters like degradation rate and biocompatibility still call for significant improvement. Methods In this study, poly (1,3-trimethylene carbonate) (PTMC) and polydopamine (PDA) bilayer and micro arc oxidation composite coatings were prepared successively on magnesium surface by immersion method and microarc oxidation. Its corrosion resistance and biocompatibility were evaluated by in vitro corrosion tests, cellular compatibility experiments, and in vivo animal experiments. Results In vitro experiments demonstrated that the composite coating provides excellent corrosion protection and biocompatibility. Animal studies demonstrated that the composite coating slowed the degradation of the implant and was not toxic to animal viscera. Conclusion In conclusion, the inorganic-organic composite coating proposed in this study provided good corrosion resistance and enhanced biocompatibility for pure magnesium implants. The translational potential of this article The translational potential of this article is to develop an anti-corrosion composite coating on a pure magnesium surface and to verify the viability of its use in animal models. It is hoped to open up a new approach to the design of new degradable orthopedic magnesium-based implants.
Collapse
Affiliation(s)
- Jieyang Dong
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Zhong
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Ruixia Hou
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiaodong Hu
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yujiong Chen
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hangbin Weng
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Zhewei Zhang
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Botao Liu
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Ningbo University School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Zhaoxiang Peng
- Ningbo University Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| |
Collapse
|
28
|
Tang T. Orthopaedic therapeutic advancement driven by innovations in biomaterial research and stem cell biology. J Orthop Translat 2022; 36:A1-A2. [PMID: 36438982 PMCID: PMC9669395 DOI: 10.1016/j.jot.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|