1
|
Xing Y, Li P, Jia Y, Zhang K, Liu M, Jiang J. Dorsal root ganglion-derived exosomes deteriorate neuropathic pain by activating microglia via the microRNA-16-5p/HECTD1/HSP90 axis. Biol Res 2024; 57:28. [PMID: 38750549 PMCID: PMC11094882 DOI: 10.1186/s40659-024-00513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism. METHODS A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments. RESULTS DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP. CONCLUSIONS miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.
Collapse
Affiliation(s)
- Yinghao Xing
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Pei Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yuanyuan Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Ming Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
He WY, Zhang B, Zhao WC, He J, Zhang L, Xiong QM, Wang J, Wang HB. Contributions of mTOR Activation-Mediated Upregulation of Synapsin II and Neurite Outgrowth to Hyperalgesia in STZ-Induced Diabetic Rats. ACS Chem Neurosci 2019; 10:2385-2396. [PMID: 30785256 DOI: 10.1021/acschemneuro.8b00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is among the common complications in diabetes mellitus (DM), with its underlying mechanisms largely unknown. Synapsin II is primarily expressed in the spinal dorsal horn, and its upregulation mediates a superfluous release of glutamate and a deficiency of GABAergic interneuron synaptic transmission, which is directly implicated in the facilitation of pain signals in the hyperalgesic nociceptive response. Recently, synapsin II has been revealed to be associated with the modulation of neurite outgrowth, whereas the process of this neuronal structural neuroplasticity following neuronal hyperexcitability still remains unclear. In this study, we found that under conditions of elevated glucose, TNF-α induced the activation of mTOR, mediating the upregulation of synapsin II and neurite outgrowth in dorsal horn neurons. In vivo, we demonstrated that mTOR and synapsin II were upregulated and coexpressed in the spinal dorsal horn neurons in rats with streptozotocin (STZ)-induced diabetes. Furthermore, the intrathecal administration of the mTOR inhibitor rapamycin or synapsin II shRNA significantly diminished the expression of synapsin II, effectively mitigating hyperalgesia in PDN rats. We are the first to discover that in STZ-induced diabetic rats the activation of mTOR mediates the upregulation of synapsin II and neurite outgrowth, both contributing to hyperalgesia. These findings may benefit the clinical therapy of PDN by provision of a novel target.
Collapse
Affiliation(s)
- Wan-you He
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Bin Zhang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Wei-cheng Zhao
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Jian He
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Lei Zhang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Qing-ming Xiong
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Jing Wang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| | - Han-bing Wang
- Department of Anesthesiology, The First People’s Hospital of Foshan, 81# North of Ling Nan Road, Foshan 528000, China
| |
Collapse
|
3
|
Kartha S, Bulka BA, Stiansen NS, Troche HR, Winkelstein BA. Repeated High Rate Facet Capsular Stretch at Strains That are Below the Pain Threshold Induces Pain and Spinal Inflammation With Decreased Ligament Strength in the Rat. J Biomech Eng 2018; 140:2679583. [PMID: 30003250 PMCID: PMC6056195 DOI: 10.1115/1.4040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Repeated loading of ligamentous tissues during repetitive occupational and physical tasks even within physiological ranges of motion has been implicated in the development of pain and joint instability. The pathophysiological mechanisms of pain after repetitive joint loading are not understood. Within the cervical spine, excessive stretch of the facet joint and its capsular ligament has been implicated in the development of pain. Although a single facet joint distraction (FJD) at magnitudes simulating physiologic strains is insufficient to induce pain, it is unknown whether repeated stretching of the facet joint and ligament may produce pain. This study evaluated if repeated loading of the facet at physiologic nonpainful strains alters the capsular ligament's mechanical response and induces pain. Male rats underwent either two subthreshold facet joint distractions (STFJDs) or sham surgeries each separated by 2 days. Pain was measured before the procedure and for 7 days; capsular mechanics were measured during each distraction and under tension at tissue failure. Spinal glial activation was also assessed to probe potential pathophysiologic mechanisms responsible for pain. Capsular displacement significantly increased (p = 0.019) and capsular stiffness decreased (p = 0.008) during the second distraction compared to the first. Pain was also induced after the second distraction and was sustained at day 7 (p < 0.048). Repeated loading weakened the capsular ligament with lower vertebral displacement (p = 0.041) and peak force (p = 0.014) at tissue rupture. Spinal glial activation was also induced after repeated loading. Together, these mechanical, physiological, and neurological findings demonstrate that repeated loading of the facet joint even within physiologic ranges of motion can be sufficient to induce pain, spinal inflammation, and alter capsular mechanics similar to a more injurious loading exposure.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Ben A. Bulka
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Nick S. Stiansen
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Harrison R. Troche
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Beth A. Winkelstein
- Fellow ASME
Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall 210,
South 33rd Street,
Philadelphia, PA 19104
e-mail:
| |
Collapse
|
4
|
Patel R, Montagut‐Bordas C, Dickenson AH. Calcium channel modulation as a target in chronic pain control. Br J Pharmacol 2018; 175:2173-2184. [PMID: 28320042 PMCID: PMC5980588 DOI: 10.1111/bph.13789] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Cav 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Cav 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
5
|
Weisshaar CL, Kras JV, Pall PS, Kartha S, Winkelstein BA. Ablation of IB4 non-peptidergic afferents in the rat facet joint prevents injury-induced pain and thalamic hyperexcitability via supraspinal glutamate transporters. Neurosci Lett 2017; 655:82-89. [PMID: 28689926 DOI: 10.1016/j.neulet.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
The facet joint is a common source of neck pain, particularly after excessive stretch of its capsular ligament. Peptidergic afferents have been shown to have an important role in the development and maintenance of mechanical hyperalgesia, dysregulated nociceptive signaling, and spinal hyperexcitability that develop after mechanical injury to the facet joint. However, the role of non-peptidergic isolectin-B4 (IB4) cells in mediating joint pain is unknown. Isolectin-B4 saporin (IB4-SAP) was injected into the facet joint to ablate non-peptidergic cells, and the facet joint later underwent a ligament stretch known to induce pain. Behavioral sensitivity, thalamic glutamate transporter expression, and thalamic hyperexcitability were evaluated up to and at day 7. Administering IB4-SAP prior to a painful injury prevented the development of mechanical hyperalgesia that is typically present. Intra-articular IB4-SAP also prevented the upregulation of the glutamate transporters GLT-1 and EAAC1 in the ventral posterolateral nucleus of the thalamus and reduced thalamic neuronal hyperexcitability at day 7. These findings suggest that a painful facet injury induces changes extending to supraspinal structures and that IB4-positive afferents in the facet joint may be critical for the development and maintenance of sensitization in the thalamus after a painful facet joint injury.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Parul S Pall
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
The Physiological Basis of Cervical Facet-Mediated Persistent Pain: Basic Science and Clinical Challenges. J Orthop Sports Phys Ther 2017. [PMID: 28622486 DOI: 10.2519/jospt.2017.7255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis Chronic neck pain is a common condition and a primary clinical symptom of whiplash and other spinal injuries. Loading-induced neck injuries produce abnormal kinematics between the vertebrae, with the potential to injure facet joints and the afferent fibers that innervate the specific joint tissues, including the capsular ligament. Mechanoreceptive and nociceptive afferents that innervate the facet have their peripheral terminals in the capsule, cell bodies in the dorsal root ganglia, and terminal processes in the spinal cord. As such, biomechanical loading of these afferents can initiate nociceptive signaling in the peripheral and central nervous systems. Their activation depends on the local mechanical environment of the joint and encodes the neural processes that initiate pain and lead to its persistence. This commentary reviews the complex anatomical, biomechanical, and physiological consequences of facet-mediated whiplash injury and pain. The clinical presentation of facet-mediated pain is complex in its sensory and emotional components. Yet, human studies are limited in their ability to elucidate the physiological mechanisms by which abnormal facet loading leads to pain. Over the past decade, however, in vivo models of cervical facet injury that reproduce clinical pain symptoms have been developed and used to define the complicated and multifaceted electrophysiological, inflammatory, and nociceptive signaling cascades that are involved in the pathophysiology of whiplash facet pain. Integrating the whiplash-like mechanics in vivo and in vitro allows transmission of pathophysiological mechanisms across scales, with the hope of informing clinical management. Yet, despite these advances, many challenges remain. This commentary further describes and highlights such challenges. J Orthop Sports Phys Ther 2017;47(7):450-461. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7255.
Collapse
|
7
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
9
|
Zeeman ME, Kartha S, Jaumard NV, Baig HA, Stablow AM, Lee J, Guarino BB, Winkelstein BA. Whole-body Vibration at Thoracic Resonance Induces Sustained Pain and Widespread Cervical Neuroinflammation in the Rat. Clin Orthop Relat Res 2015; 473:2936-47. [PMID: 25917423 PMCID: PMC4523525 DOI: 10.1007/s11999-015-4315-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Whole-body vibration (WBV) is associated with back and neck pain in military personnel and civilians. However, the role of vibration frequency and the physiological mechanisms involved in pain symptoms are unknown. QUESTIONS/PURPOSES This study asked the following questions: (1) What is the resonance frequency of the rat spine for WBV along the spinal axis, and how does frequency of WBV alter the extent of spinal compression/extension? (2) Does a single WBV exposure at resonance induce pain that is sustained? (3) Does WBV at resonance alter the protein kinase C epsilon (PKCε) response in the dorsal root ganglia (DRG)? (4) Does WBV at resonance alter expression of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn? (5) Does WBV at resonance alter the spinal neuroimmune responses that regulate pain? METHODS Resonance of the rat (410 ± 34 g, n = 9) was measured by imposing WBV at frequencies from 3 to 15 Hz. Separate groups (317 ± 20 g, n = 10/treatment) underwent WBV at resonance (8 Hz) or at a nonresonant frequency (15 Hz). Behavioral sensitivity was assessed throughout to measure pain, and PKCε in the DRG was quantified as well as spinal CGRP, glial activation, and cytokine levels at Day 14. RESULTS Accelerometer-based thoracic transmissibility peaks at 8 Hz (1.86 ± 0.19) and 9 Hz (1.95 ± 0.19, mean difference [MD] 0.290 ± 0.266, p < 0.03), whereas the video-based thoracic transmissibility peaks at 8 Hz (1.90 ± 0.27), 9 Hz (2.07 ± 0.20), and 10 Hz (1.80 ± 0.25, MD 0.359 ± 0.284, p < 0.01). WBV at 8 Hz produces more cervical extension (0.745 ± 0.582 mm, MD 0.242 ± 0.214, p < 0.03) and compression (0.870 ± 0.676 mm, MD 0.326 ± 0.261, p < 0.02) than 15 Hz (extension, 0.503 ± 0.279 mm; compression, 0.544 ± 0.400 mm). Pain is longer lasting (through Day 14) and more robust (p < 0.01) after WBV at the resonant frequency (8 Hz) compared with 15 Hz WBV. PKCε in the nociceptors of the DRG increases according to the severity of WBV with greatest increases after 8 Hz WBV (p < 0.03). However, spinal CGRP, cytokines, and glial activation are only evident after painful WBV at resonance. CONCLUSIONS WBV at resonance produces long-lasting pain and widespread activation of a host of nociceptive and neuroimmune responses as compared with WBV at a nonresonance condition. Based on this work, future investigations into the temporal and regional neuroimmune response to resonant WBV in both genders would be useful. CLINICAL RELEVANCE Although WBV is a major issue affecting the military population, there is little insight about its mechanisms of injury and pain. The neuroimmune responses produced by WBV are similar to other pain states, suggesting that pain from WBV may be mediated by similar mechanisms as other neuropathic pain conditions. This mechanistic insight suggests WBV-induced injury and pain may be tempered by antiinflammatory intervention.
Collapse
Affiliation(s)
- Martha E. Zeeman
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Nicolas V. Jaumard
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Hassam A. Baig
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Alec M. Stablow
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Jasmine Lee
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Benjamin B. Guarino
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd Street, Philadelphia, PA 19104-6321 USA
| |
Collapse
|
10
|
Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and Tonic Spinal Cord Stimulation Differentially Activate GABAergic Mechanisms to Attenuate Pain in a Rat Model of Cervical Radiculopathy. IEEE Trans Biomed Eng 2015; 62:1604-13. [PMID: 25667344 DOI: 10.1109/tbme.2015.2399374] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is widely used to treat neuropathic pain. Burst SCS, an alternative mode of stimulation, reduces neuropathic pain without paresthesia. However, the effects and mechanisms of burst SCS have not been compared to conventional tonic SCS in controlled investigations. This study compares the attenuation of spinal neuronal activity and tactile allodynia, and the role of γ-aminobutyric acid (GABA) signaling during burst or tonic SCS in a rat model of cervical radiculopathy. METHODS The effects of burst and tonic SCS were compared by recording neuronal firing before and after each mode of stimulation at day 7 following a painful cervical nerve root compression. Neuronal firing was also recorded before and after burst and tonic SCS in the presence of the GABAB receptor antagonist, CGP35348. RESULTS Burst and tonic SCS both reduce neuronal firing. The effect of tonic SCS, but not burst SCS, is blocked by CGP35348. In a separate study, spinal cord stimulators were implanted to deliver burst or tonic SCS beginning on day 4 after painful nerve root compression; allodynia and serum GABA concentration were measured through day 14. Burst and tonic SCS both reduce allodynia. Tonic SCS attenuates injury-induced decreases in serum GABA, but GABA remains decreased from baseline during burst SCS. CONCLUSION AND SIGNIFICANCE Together, these studies suggest that burst SCS does not act via spinal GABAergic mechanisms, despite its attenuation of spinal hyperexcitability and allodynia similar to that of tonic SCS; understanding other potential spinal inhibitory mechanisms may lead to enhanced analgesia during burst stimulation.
Collapse
|
11
|
Crosby ND, Zaucke F, Kras JV, Dong L, Luo ZD, Winkelstein BA. Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury. Exp Neurol 2014; 264:111-20. [PMID: 25483397 DOI: 10.1016/j.expneurol.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 02/08/2023]
Abstract
Facet joint injury induces persistent pain that may be maintained by structural plasticity in the spinal cord. Astrocyte-derived thrombospondins, especially thrombospondin-4 (TSP4), have been implicated in synaptogenesis and spinal sensitization in neuropathic pain, but the TSP4 response and its relationship to synaptic changes in the spinal cord have not been investigated for painful joint injury. This study investigates the role of TSP4 in the development and maintenance of persistent pain following injurious facet joint distraction in rats and tests the hypothesis that excitatory synaptogenesis contributes to such pain. Painful facet joint loading induces dorsal horn excitatory synaptogenesis along with decreased TSP4 in the DRG and increased astrocytic release of TSP4 in the spinal cord, all of which parallel the time course of sustained tactile allodynia. Blocking injury-induced spinal TSP4 expression with antisense oligonucleotides or reducing TSP4 activity at its neuronal receptor in the spinal cord with gabapentin treatment both attenuate the allodynia and dorsal horn synaptogenesis that develop after painful facet joint loading. Increased spinal TSP4 also facilitates the development of allodynia and spinal hyperexcitability, even after non-painful physiological loading of the facet joint. These results suggest that spinal TSP4 plays an important role in the development and maintenance of persistent joint-mediated pain by inducing excitatory synaptogenesis and facilitating the transduction of mechanical loading of the facet joint that leads to spinal hyperexcitability.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California Irvine Medical Center, Irvine, CA 92868, United States; Department of Pharmacology, University of California Irvine Medical Center, Irvine, CA 92868, United States
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
12
|
Sustained neuronal hyperexcitability is evident in the thalamus after a transient cervical radicular injury. Spine (Phila Pa 1976) 2014; 39:E870-7. [PMID: 24827526 DOI: 10.1097/brs.0000000000000392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used extracellular electrophysiology to examine neuronal hyperexcitability in the ventroposterolateral nucleus (VPL) of the thalamus in a rat model of painful radiculopathy. OBJECTIVE The goal of this study was to quantify evoked neuronal excitability in the VPL at day 14 after a cervical nerve root compression to determine thalamic processing of persistent radicular pain. SUMMARY OF BACKGROUND DATA Nerve root compression often leads to radicular pain. Chronic pain is thought to induce structural and biochemical changes in the brain affecting supraspinal signaling. In particular, the VPL of the thalamus has been implicated in chronic pain states. METHODS Rats underwent a painful transient C7 nerve root compression or sham procedure. Ipsilateral forepaw mechanical allodynia was assessed on days 1, 3, 5, 7, 10, and 14 and evoked thalamic neuronal recordings were collected at day 14 from the contralateral VPL, whereas the injured forepaw was stimulated using a range of non-noxious and noxious mechanical stimuli. Neurons were classified on the basis of their response to stimulation. RESULTS Behavioral sensitivity was elevated after nerve root compression starting at day 3 and persisted until day 14 (P < 0.049). Thalamic recordings at day 14 demonstrated increased neuronal hyperexcitability after injury for all mechanical stimuli (P < 0.024). In particular, wide dynamic range neurons demonstrated significantly more firing after injury compared with sham in response to von Frey stimulation (P < 0.0001). Firing in low threshold mechanoreceptive neurons was not different between groups. CONCLUSION These data demonstrate that persistent radicular pain is associated with sustained neuronal hyperexcitability in the contralateral VPL of the thalamus. These findings suggest that thalamic processing is altered during radiculopathy and these changes in neuronal firing are associated with behavioral sensitivity. LEVEL OF EVIDENCE N/A.
Collapse
|
13
|
Weisshaar CL, Winkelstein BA. Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat. THE JOURNAL OF PAIN 2014; 15:378-86. [PMID: 24389017 DOI: 10.1016/j.jpain.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/20/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
Abstract
UNLABELLED The facet joint is a common source of pain, especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain is not understood. This study used the neurotoxin [Sar(9),Met(O2)(11)]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity was assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and interleukin 1αα (IL1α) expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and interleukin 1α (IL1α) expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. PERSPECTIVE Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain, spinal neuroplasticity, and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|