1
|
Mádi L, Kučera J, Káňa Š, Bržezická T, Táborský P. Reducing the water quenching processes using heavy water in capillary electrophoresis with fluorescence detection. J Chromatogr A 2024; 1736:465411. [PMID: 39368194 DOI: 10.1016/j.chroma.2024.465411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Water, ubiquitous in analytical methods, is renowned for its fluorescence quenching properties, influencing techniques like fluorescence spectrophotometry or techniques with fluorescence detection. This study explores the impact of water (H₂O) substitution for heavy water (D₂O) on the fluorescence behavior of anthraquinones and anthracyclines. Anthraquinones and anthracyclines play crucial roles in pharmacy, serving as essential components in various therapeutic formulations, particularly in cancer treatment and other pharmacological interventions. Capillary electrophoresis (CE) with heavy water as the background electrolyte (BGE) solvent offers superior sensitivity to the separation and detection of these analytes. Experimental results demonstrate the improved detection limits and separation efficiency of selected anthraquinones rhein (RH), aloe-emodin (AE), and anthracyclines doxorubicin (DOX), epirubicin (EPI) and daunorubicine (DAU) in heavy water-based buffers, highlighting the potential of heavy water in advancing analytical chemistry.
Collapse
Affiliation(s)
- Lenka Mádi
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Josef Kučera
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Štěpán Káňa
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Petr Táborský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
2
|
Zafar R, Bukhari SAB, Nasir H. Fabrication of Mn-TPP/RGO Tailored Glassy Carbon Electrode for Doxorubicin Sensing. ACS OMEGA 2024; 9:25694-25703. [PMID: 38911732 PMCID: PMC11191129 DOI: 10.1021/acsomega.3c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
Cancer is a long-standing disease, and the use of anticancer drugs can cause many different harmful side effects. Therefore, the quantitative analysis of anticancer drugs is crucial. Among all the analytical techniques that have been utilized for the detection of doxorubicin, electrochemical sensors have drawn exceptional consideration because they are simple, affordable, and highly sensitive. Manganese tetraphenylporphyrin decorated reduced graphene oxide (Mn-TPP/RGO), tetraphenylporphyrin decorated reduced graphene oxide (TPP/RGO), and reduced graphene oxide (RGO) nanostructure based glassy carbon electrodes (GCEs) were fabricated for the detection of doxorubicin (DOX). The synthesized materials were characterized by FTIR, scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV/vis), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Doxorubicin detection was performed using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Among the prepared electrodes, Mn-TPP/RGO modified GCE gave an optimum peak current at pH 3. The Mn-TPP/RGO modified electrode showed significant linear response range (0.1-0.6 mM); effective sensitivity (112.09 μA mM-1 cm-2); low detection limit (63.5 μM); and excellent stability, selectivity, repeatability, and reproducibility toward doxorubicin. With differential pulse voltammetry, LoD and sensitivity were 27 μM and 0.174 μA μM-1 cm-2, respectively. Real sample analysis was also performed in human serum, and it depicted reasonable recovery results for spiked doxorubicin.
Collapse
Affiliation(s)
- Rafia Zafar
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Aqsa Batool Bukhari
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Habib Nasir
- School of Natural Sciences
(SNS), National University of Sciences and
Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Zhao Y, Hao Y, Cui M, Li N, Sun B, Wang Y, Zhao H, Zhang C. An electrochemical biosensor based on DNA tetrahedron nanoprobe for sensitive and selective detection of doxorubicin. Bioelectrochemistry 2024; 157:108652. [PMID: 38271768 DOI: 10.1016/j.bioelechem.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Doxorubicin (DOX) is a clinical chemotherapeutic drug and patients usually suffer from dose-dependent cytotoxic and side effects during chemotherapy process with DOX. Therefore, developing a reliable strategy for DOX analysis in biological samples for dosage guidance during chemotherapy process is of great significance. Herein, a sensitive and selective electrochemical biosensor for DOX detection was designed based on gold nanoparticles (AuNPs) and DNA tetrahedron (TDN) nanoprobe bifunctional glassy carbon electrode that could detect DOX in human serum and cell lysate samples. AuNPs not only could enhance electron transfer efficiency and detection sensitivity, but also could improve the biocompatibility of electrode. TDN nanoprobes were employed as specific DOX bind sites that could bind abundant DOX through intercalative characteristics to contribute to sensitive and selective detection. Under the optimal conditions, the proposed TDN nanoprobes-based DOX biosensor exhibited a wide linear range that ranged from 1.0 nM to 50 μM and a low detection limit that was 0.3 nM. Moreover, the proposed DOX biosensor displayed nice selectivity, reproducibility and stability, and was successfully applied for DOX detection in human serum and cell lysate samples. These promising results maybe pave a way for DOX dosage guidance and therapeutic efficacy optimization in clinic.
Collapse
Affiliation(s)
- Yunzhi Zhao
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ying Hao
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Min Cui
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Na Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bao Sun
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yu Wang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Haiyan Zhao
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Cong Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Li X, Singh R, Zhang B, Kumar S, Li G. Development of a biophotonic fiber sensor using direct-taper and anti-taper techniques with seven-core and four-core fiber for the detection of doxorubicin in cancer treatment. OPTICS EXPRESS 2024; 32:17239-17254. [PMID: 38858913 DOI: 10.1364/oe.525125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Doxorubicin (DOX) is an important drug for cancer treatment, but its clinical application is limited due to its toxicity and side effects. Therefore, detecting the concentration of DOX during treatment is crucial for enhancing efficacy and reducing side effects. In this study, the authors developed a biophotonic fiber sensor based on localized surface plasmon resonance (LSPR) with the multimode fiber (MMF)-four core fiber (FCF)-seven core fiber (SCF)-MMF-based direct-taper and anti-taper structures for the specific detection of DOX. Compared to other detection methods, it has the advantages of high sensitivity, low cost, and strong anti-interference ability. In this experiment, multi-walled carbon nanotubes (MWCNTs), cerium-oxide nanorods (CeO2-NRs), and gold nanoparticles (AuNPs) were immobilized on the probe surface to enhance the sensor's biocompatibility. MWCNTs and CeO2-NRs provided more binding sites for the fixation of AuNPs. By immobilizing AuNPs on the surface, the LSPR was stimulated by the evanescent field to detect DOX. The sensor surface was functionalized with DOX aptamers for specific detection, enhancing its specificity. The experiments demonstrated that within a linear detection range of 0-10 µM, the sensitivity of the sensor is 0.77 nm/µM, and the limit of detection (LoD) is 0.42 µM. Additionally, the probe's repeatability, reproducibility, stability, and selectivity were evaluated, indicating that the probe has high potential for detecting DOX during cancer treatment.
Collapse
|
5
|
Skok A, Bazel Y, Vishnikin A, Toth J. Direct immersion single-drop microextraction combined with fluorescence detection using an optical probe. Application for highly sensitive determination of rhodamine 6G. Talanta 2024; 269:125511. [PMID: 38056415 DOI: 10.1016/j.talanta.2023.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
The use of an optical probe for fluorescence detection combined with direct immersion single-drop microextraction has been demonstrated as an innovative approach. The optical probe served both as a drop holder for extractant and as a measuring device which made it possible to eliminate the use of cuvettes. A laser and a light emitting diode (LED) were tested as possible light sources. Both of them showed comparable results. However, given the much smaller half-band width of the laser radiation, its use has proven to be preferable since background correction can be eliminated. Direct immersion single-drop microextraction of an ionic association complex of rhodamine 6G with picric acid with subsequent fluorescent detection (λex was 532 nm and 525 nm for laser and LED, respectively; λem was 560 nm for both laser and LED) was used a model system to evaluate the new approach. The extractant phase was a 55 μL amyl acetate microdrop fixed in the optical part of the probe. LOD, LOQ and linear calibration range were found as 0.14, 0.48 and 0.5-10 nmol L-1, and 0.15, 0.50 and 0.5-5 nmol L-1 for laser and LED light sources, respectively. The accuracy of the method was assessed by analyzing real water samples.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Gagarin Av. 72, 49010, Dnipro, Ukraine
| | - Ján Toth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Prešov, Slovak Republic
| |
Collapse
|
6
|
Ou D, Yan H, Chen Z. An impedance labeling free electrochemical aptamer sensor based on tetrahedral DNA nanostructures for doxorubicin determination. Mikrochim Acta 2024; 191:94. [PMID: 38217713 DOI: 10.1007/s00604-024-06176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Based on the electrochemical impedance method, a marker-free biosensor with aptamer as a biometric element was developed for the determination of doxorubicin (DOX). By combining aptamer with rigid tetrahedral DNA nanostructures (TDNs) and fixing them on the surface of gold electrode (GE) as biometric elements, the density and directivity of surface nanoprobes improved, and DOX was captured with high sensitivity and specificity. DOX was captured by immobilized aptamers on the GE, which inhibited electron transfer between the GE and [Fe(CN)6]3-/4- in solution, resulting in a change in electrochemical impedance. When the DOX concentration was between 10.0 and 100.0 nM, the aptasensor showed a linear relationship with charge transfer resistance, the relative standard deviation (RSD) ranged from 3.6 to 5.9%, and the detection limit (LOD) was 3.0 nM. This technique offered a successful performance for the determination of the target analyte in serum samples with recovery in the range 97.0 to 99.6% and RSD ranged from 4.8 to 6.5%. This method displayed the advantages of fast response speed, good selectivity, and simple sensor structure and showed potential application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Dan Ou
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huixian Yan
- Department of Interventional Radiology, Guangxi Academy of Medical Science, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Mo J, Wang S, Zeng J, Ding X. Aptamer-based Upconversion Fluorescence Sensor for Doxorubicin Detection. J Fluoresc 2023; 33:1897-1905. [PMID: 36877414 DOI: 10.1007/s10895-023-03184-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Doxorubicin is a common chemotherapeutic drug used to treat a variety of cancers. Monitoring the concentration of doxorubicin in human biological fluids is vital for treatment. In this work, we report an aptamer-functionalized, 808 nm-excited core-shell upconversion fluorescence sensor for specific detection of doxorubicin (DOX). Upconversion nanoparticles and DOX are used as energy donors and energy acceptors respectively. Aptamers immobilized on the surface of upconversion nanoparticles act as the molecular recognition element for DOX. The binding of DOX to the immobilized aptamers results in the fluorescence quenching of the upconversion nanoparticles via a fluorescence resonance energy transfer process. The relative fluorescence intensity exhibits a good linear response to DOX concentration in the range of 0.5 μM to 55 μM with a detection limit of 0.5 μM. The aptasensor displays high specificity and anti-interference against other antibiotics, common ions, and biomolecules owing to strong and specific interactions of aptamers towards DOX. The sensor is further applied for the detection of DOX in urine with spike recoveries of nearly 100%.
Collapse
Affiliation(s)
- Jingwen Mo
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Shichang Wang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, and School of Mechanical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiaying Zeng
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Xiong Ding
- School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
8
|
Xi B, Huang S, An Y, Gong X, Yang J, Zeng J, Ge S, Zhang D. Sophisticated and precise: design and implementation of a real-time optical detection system for ultra-fast PCR. RSC Adv 2023; 13:19770-19781. [PMID: 37396828 PMCID: PMC10312126 DOI: 10.1039/d3ra03363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) has become indispensable in the realm of disease nucleic acid screening and diagnostics, owing to its remarkable precision and sensitivity, in which the real-time fluorescence detection system plays an extremely critical role. To solve the problems of long time and slow speed of traditional nucleic acid detection, PCR systems are evolving towards ultra-rapid configurations. Nonetheless, most extant ultra-rapid PCR systems either depend on endpoint detection for qualitative assessments due to inherent structural or heating constraints or circumvent the challenge of adapting optical systems to expeditious amplification systems, resulting in potential shortcomings in assay efficacy, volume, or expense. Consequently, this study proposed a design of a real-time fluorescence detection system for ultra-fast PCR, capable of executing six channels of real-time fluorescence detection. Through the meticulous calculation of the optical pathway within the optical detection module, effective regulation of system dimensions and the cost was accomplished. By devising an optical adaptation module, the signal-to-noise ratio was enhanced by approximately 307% without compromising the PCR temperature alteration rate. Ultimately, by employing a fluorescence model that accounted for the spatial attenuation effect of excitation light, as proposed herein, fluorescent dyes were arranged to evaluate the repeatability, channel interference, gradient linearity, and limit of detection of the system, which proved that the system had good optical detection performance. Finally, the real-time fluorescence detection of human cytomegalovirus (CMV) under 9 min ultra-fast amplification was achieved by a complete ultra-fast amplification experiment, which further validated the potential of the system to be applied to rapid clinical nucleic acid detection.
Collapse
Affiliation(s)
- Bangchao Xi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Shaolei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Yiquan An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Xianglian Gong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Jiayu Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Juntian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| | - Dongxu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic (Xiamen University) Xiamen 361102 Fujian China
- National Institute of Diagnostics and Vaccine Development in Infection Diseases (Xiamen University) Xiamen 361102 Fujian China
- School of Public Health, Xiamen University Xiamen 361102 Fujian China
| |
Collapse
|
9
|
Mescheryakova SA, Matlakhov IS, Strokin PD, Drozd DD, Goryacheva IY, Goryacheva OA. Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection. BIOSENSORS 2023; 13:596. [PMID: 37366961 DOI: 10.3390/bios13060596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However, DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX concentrations in biofluids and tissues is important. Most methods for the determination of DOX concentrations are complex and costly, and are designed to determine pure DOX. The purpose of this work is to demonstrate the capabilities of analytical nanosensors based on the quenching of the fluorescence of alloyed CdZnSeS/ZnS quantum dots (QDs) for operative DOX detection. To maximize the nanosensor quenching efficiency, the spectral features of QDs and DOX were carefully studied, and the complex nature of QD fluorescence quenching in the presence of DOX was shown. Using optimized conditions, turn-off fluorescence nanosensors for direct DOX determination in undiluted human plasma were developed. A DOX concentration of 0.5 µM in plasma was reflected in a decrease in the fluorescence intensity of QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, for 5.8 and 4.4 %, respectively. The calculated Limit of Detection values were 0.08 and 0.03 μg/mL using QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, respectively.
Collapse
Affiliation(s)
- Svetlana A Mescheryakova
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Ivan S Matlakhov
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Pavel D Strokin
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Daniil D Drozd
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Olga A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| |
Collapse
|
10
|
Kong F, Luo J, Jing L, Wang Y, Shen H, Yu R, Sun S, Xing Y, Ming T, Liu M, Jin H, Cai X. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1223. [PMID: 37049316 PMCID: PMC10096947 DOI: 10.3390/nano13071223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Doxorubicin (DOX) is the most clinically important antibiotic in cancer treatment, but its severe cardiotoxicity and other side effects limit its clinical use. Therefore, monitoring DOX concentrations during therapy is essential to improve efficacy and reduce adverse effects. Here, we fabricated a sensitive electrochemical aptasensor for DOX detection. The sensor used gold wire as the working electrode and was modified with reduced graphene oxide (rGO)/gold nanoparticles (AuNPs) to improve the sensitivity. An aptamer was used as the recognition element for the DOX. The 5' end of the aptamer was modified with a thiol group, and thus immobilized to the AuNPs, and the 3' end was modified with methylene blue, which acts as the electron mediator. The combination between the aptamer and DOX would produce a binding-induced conformation, which changes the electron transfer rate, yielding a current change that correlates with the concentration of DOX. The aptasensor exhibited good linearity in the DOX concentration range of 0.3 μM to 6 μM, with a detection limit of 0.1 μM. In addition, the aptasensor was used for DOX detection in real samples and results, and showed good recovery. The proposed electrochemical aptasensor will provide a sensitive, fast, simple, and reliable new platform for detecting DOX.
Collapse
Affiliation(s)
- Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayu Shen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Yu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiting Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Mohammadinejad A, Abnous K, Alinezhad Nameghi M, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122200. [PMID: 36481534 DOI: 10.1016/j.saa.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy drugs of daunorubicin and doxorubicin treat cancers with many side effects. So, detection of them in the biological system for regulation and controlling of usage is essential. In this study, a ratiometric fluorescent method was introduced for detection of daunorubicin and doxorubicin using bell pepper-based carbon dots, as the variable signal, and silica-coated CdTe quantum dots, as the constant signal. The detection was done based on variations of carbon dots intensity in the presence of drugs in comparison with the constant intensity of silica-coated CdTe quantum dots. The proposed ratiometric fluorescent method was successfully used for detection of daunorubicin and doxorubicin range of 54.37-13594.34 nmolL-1 and 86.2-17242 nmolL-1, with a detection limit of 18.53 nmolL-1 and 29 nmolL-1, respectively. Also, this method was used for detection of drugs in serum samples with recovery ranges of 86.14-99.62 (RSD 3-1.47%) and 86.32-97.53 (3.38-1.48%), respectively. Finally, after evaluation of carbon dots toxicity by MTT test, carbon dots was applied for imaging of prostate cancer cell lines (PC-3) and breast cancer cell lines (MCF7). The results demonstrated that despite improvement of the repeatability and interferences reduction by ratiometric method, also carbon dots were successfully applied for imaging of cell lines.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hamrah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Senobari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
13
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
14
|
Application of Optical Methods for Determination of Concentration of Doxorubicin in Blood and Plasma. Pharmaceuticals (Basel) 2022; 15:ph15020112. [PMID: 35215225 PMCID: PMC8880482 DOI: 10.3390/ph15020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of presented research is to develop a simple and quick method of spectrophotometric detection for the determination of doxorubicin hydrochloride in blood and plasma. Anthracycline antibiotics are among the most effective antineoplastic agents. However, despite their high efficacy in the treatment of various types of cancer, their administration is limited primarily because they exhibit myocardial toxicity. This may be a limiting factor in the dosage of medications; nevertheless, drugs exhibiting this mechanism of action constitute a very important group of chemotherapeutics. One of the more widely studied antibiotics from the anthracycline group is doxorubicin. It exhibits the highest antineoplastic activity from among a number of derivative compounds. Because of the adverse effects of doxorubicin, especially cardiotoxicity, it is important to maintain control of its concentration in body fluids. The method in the study consists of extraction doxorubicin from the plasma or blood and measurements of the absorbance of light in the visible light range in a DOX solution with respect to a reference sample. The research used blood and plasma samples spiked with doxorubicin to give concentrations in the range of 0.2–10 µg/mL. Obtained LODs were 1.6 µg/mL and 1.2 µg/mL, respectively.
Collapse
|
15
|
Ehsani M, Soleymani J, Mohammadalizadeh P, Hasanzadeh M, Jouyban A, Khoubnasabjafari M, Vaez-Gharamaleki Y. Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly(chitosan): A new platform in pharmaceutical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yu X, Yu W, Han X, Chen Z, Wang S, Zhai H. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal Bioanal Chem 2020; 413:469-478. [PMID: 33118040 DOI: 10.1007/s00216-020-03017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/01/2022]
Abstract
Doxorubicin has been extensively used to treat cancers, and there are recent findings that the anticancer activities can be enhanced by curcumin. Although the two compounds have native fluorescence, they can hardly be quantified directly simultaneously using the laser-induced fluorescence (LIF) detection method. To avoid complex fluorescence derivatization and introduction of interfering components, a highly sensitive double wavelength excitation source LIF (D-W-Ex-LIF) detector composed of a 445-nm and 488-nm commercial laser diode was constructed to detect them simultaneously. Rhodamine 6G was selected as an internal standard, because its fluorescence can be excited at 445 nm and 488 nm. The native fluorescence of doxorubicin and curcumin and their resolution were enhanced by introducing mixed micelles. The optimal electrophoretic separation buffer was 10 mM borate buffer containing 20 mM Triton X-100, 5 mM sodium dodecyl sulfate, and 30% (v/v) methanol at pH 9.00. Therefore, the developed method was specific, accurate, and easily operable. Its limits of detection for doxorubicin and curcumin in human urine samples were 4.00 × 10-3 and 1.00 × 10-2 μg/mL, respectively, and the limits of quantification were 1.00 × 10-2 and 3.00 × 10-2 μg/mL, respectively. The recoveries were 94.9-109.1%. Graphical abstract.
Collapse
Affiliation(s)
- Xiao Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wanxiang Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiufen Han
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Ehsani M, Soleymani J, Hasanzadeh M, Vaez-Gharamaleki Y, Khoubnasabjafari M, Jouyban A. Sensitive monitoring of doxorubicin in plasma of patients, MDA-MB-231 and 4T1 cell lysates using electroanalysis method. J Pharm Biomed Anal 2020; 192:113701. [PMID: 33120307 DOI: 10.1016/j.jpba.2020.113701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
In the present work, an innovative electrochemical sensor was fabricated based on poly toluidine blue modified glassy carbon electrode (PTB-GCE). So, PTB-GCE was used for the detection and determination of doxorubicin hydrochloride (DOX) in cell lysate, and whole human plasma samples. PTB could enhance the rate of electrochemical reaction for the electro oxidation and detection of DOX in real samples. Cyclic voltammetry (CV) technique was used for the electro polymerization of toluidine blue on the surface of GCE with the applied potential ranging from -0.6 to 0.2 V. The sensor construction steps were approved by field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX) and electrochemical methods. Also, CV results indicated that the DOX is oxidized via two electrons and two protons process at the optimum pH of 6.5 using PTB modified GCE. Under optimized conditions, differential pulse voltammetry (DPV) technique response exhibited linear relationship between the oxidative peak current and concentration of DOX in the range of 17 nM - 8.6 μM with low limit of quantification (LLOQ) of 17 nM for untreated and treated human plasma samples. Also, determination of DOX in MDA-MB-231 and 4T1cell lysates were performed based on its direct electrochemical oxidation on PTB-GCE. Finally, analytical validation of DOX in human bio-fluids using FDA guideline were done successfully. Results suggested that the proposed electrochemical sensor can be used to the sensitive and selective determination of DOX in biological samples. The interaction results of DOX with cancer cells indicate the developed probe can easily detect candidate drug in cancer cells with high accuracy. To the best of our knowledge this is the first report of the determination of DOX based on the direct electrochemical oxidation on PTB-GCE and determination in MDA-MB-231 and 4T1 cell lysates. It is anticipated that this research open new horizons on the design of new class of electrochemical sensors for determination drugs, and therapeutic drug monitoring (TDM) in human bio-fluids.
Collapse
Affiliation(s)
- Maryam Ehsani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yosra Vaez-Gharamaleki
- Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Rahmani F, Hosseini MRM, Es-Haghi A, Mollahosseini A. A 96-Monolithic inorganic hollow fiber array as a new geometry for high throughput solid-phase microextraction of doxorubicin in water and human urine samples coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1627:461413. [PMID: 32823111 DOI: 10.1016/j.chroma.2020.461413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Innovations in extraction phases, extraction modes and hyphenated instrument configurations, are the most important issues to address for progress in the solid phase microextraction (SPME) methodology. In this regard, we have embarked on the development of a novel biocompatible 96-monolithic inorganic hollow fiber (96-MIHF) array as a new configuration for high-throughput SPME on a 96-well plate system. An arrangement of highly ordered 96 titania/Hydroxyapatite (TiO2/HAP) nanocomposite hollow fibers and corresponding stainless-steel needles on a Teflon plate holder were used as the extraction module. The inorganic hollow fibers were prepared via a rapid and reproducible template approach (Polypropylene hollow fiber) in combination with a sol-gel method in the presence of polyvinyl alcohol (PVA), as a network maker. The hollow fiber-shape sorbents were obtained with excellent precision by weight (RSD% = 4.98, n = 10) and length (RSD% = 1.08, n = 10) criteria. The proposed design can overcome a number of geometrically dependent drawbacks of conventional high-throughput SPME methods, mainly the ones related to sorbent amount and surface area due to possessing inner/outer surfaces without additional internal supports. The SPME platform, for the first time, was successfully applied for the extraction and preconcentration of doxorubicin from urine and water media without requiring sample preparation and free from significant matrix effect. The extracted analyte was analyzed by liquid chromatography-ion trap tandem mass spectrometry (LC-MS/MS). Highly satisfactory analytical figures of merit were obtained under optimized conditions. The limit of detection (LOD), limit of quantification (LOQ) and linearity of determination were 0.1 ng mL-1, 0.25 ng mL-1 and 0.25 to 4000 ng mL-1, respectively. The interday, intraday and inter sorbent precisions for three concentration levels ranged from 2.01 to 8.09 % (n = 3), 1.02 to 8.65 % (n = 5) and 0.99 to 1.02% (n = 15), respectively. The mean intra-well RSD value for 96 individual wells in 96-MIHF-SPME-LC-MS/MS (n = 3) at the medium concentration level was 7.81%.
Collapse
Affiliation(s)
- Fereidoon Rahmani
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| | - Mohammad-Reza Milani Hosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran.
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148 Karaj, Iran.
| | - Afsaneh Mollahosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| |
Collapse
|
19
|
Galievsky V, Pawliszyn J. Fluorometer for Screening of Doxorubicin in Perfusate Solution and Tissue with Solid-Phase Microextraction Chemical Biopsy Sampling. Anal Chem 2020; 92:13025-13033. [PMID: 32847350 DOI: 10.1021/acs.analchem.0c01905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of an in vivo solid-phase microextraction (SPME) method capable of analyzing drugs and metabolic products in biofluids and living tissues holds great promise. The standard in vivo SPME protocol based on mass spectrometry is a very powerful analytical approach, but it is not practical for on-site analysis in many cases. In this paper, we present a fluorescence-based SPME method and a prototype of a portable fluorometer that is capable of quickly quantifying concentrations of the anticancer drug, doxorubicin (DOX). The instrument uses thin coated, biocompatible SPME fibers, which we have previously presented as a chemical biopsy tool for use during in vivo lung perfusion (IVLP) procedures within a hospital setting. In this research, we test SPME fibers with C8-SCX, C18, and HLB coatings with our fluorometer. The mixed-mode C8-SCX fibers showed the best sensitivity of the three and were therefore used to examine DOX extraction from perfusate solution and a homogenized lamb lung tissue. The maximum concentration of free active sites in the C8-SCX fiber and the adsorption equilibrium constant were determined to be (9.1 ± 0.3) × 10-7 mol m-2 and 420 ± 30 m3 mol-1, respectively. Finally, the detection limits for DOX extracted from buffer, perfusate, and lung tissue were 40, 100, and 3700 μg L-1, respectively.
Collapse
Affiliation(s)
- Victor Galievsky
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Skalová Š, Langmaier J, Barek J, Vyskočil V, Navrátil T. Doxorubicin determination using two novel voltammetric approaches: A comparative study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Kong FY, Li RF, Yao L, Wang ZX, Lv WX, Wang W. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes. Mikrochim Acta 2019; 186:321. [PMID: 31049702 DOI: 10.1007/s00604-019-3456-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
A glassy carbon electrode (GCE) was modified with a nanocomposite prepared from nitrogen-doped reduced graphene oxide (N-rGO) and single walled carbon nanotubes (SWCNTs), and then loaded with platinum nanoparticles (Pt NPs) to obtain a voltammetric sensor for daunorubicin (DNR). Reductive doping of GO and the crystallization of the Pt NPs were carried out in a one-step hydrothermal process. The modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry. It exhibited high sensitivity compared with unmodified electrode. Some experimental parameters which affected sensor response were optimized. Under optimum conditions and at a working voltage of typically -0.56 V (vs. Ag/AgCl), the sensor has a low detection limit (3 ng mL-1), a wide linear range (0.01-6 μg mL-1) and good long-term stability. The method was successfully applied to the sensitive and rapid determination of DNR in spiked human serum samples. Graphical abstract Platinum nanoparticles were loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes (N-rGO-SWCNTs-Pt) and then used for electrochemical determination of daunorubicin (DNR).
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rong-Fang Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Lei Yao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei-Xin Lv
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
22
|
Miniaturized voltammetric cell for cathodic voltammetry making use of an agar membrane. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Roszkowska A, Tascon M, Bojko B, Goryński K, Dos Santos PR, Cypel M, Pawliszyn J. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue. Talanta 2018; 183:304-310. [PMID: 29567180 DOI: 10.1016/j.talanta.2018.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g-1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Pedro Reck Dos Santos
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
24
|
An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 2017; 410:1453-1462. [PMID: 29199352 DOI: 10.1007/s00216-017-0786-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
An aptamer-based biosensor was developed for the detection of doxorubicin using electrochemical impedance spectroscopy. Doxorubicin and its 14-dehydroxylated version daunorubicin are anthracyclines often used in cancer treatment. Due to their mutagenic and cardiotoxic effects, detection in groundwater is desirable. We developed a biosensor using the daunorubicin-binding aptamer as biological recognition element. The aptamer was successfully co-immobilized with mercaptohexanol on gold and a density of 1.3*1013 ± 2.4*1012 aptamer molecules per cm2 was achieved. The binding of doxorubicin to the immobilized aptamer was detected by electrochemical impedance spectroscopy. The principle is based on the inhibition of electron transfer between electrode and ferro-/ferricyanide in solution caused by the binding of doxorubicin to the immobilized aptamer. A linear relationship between the charge transfer resistance (R ct ) and the doxorubicin concentration was obtained over the range of 31 nM to 125 nM doxorubicin, with an apparent binding constant of 64 nM and a detection limit of 28 nM. With the advantages of high sensitivity, selectivity, and simple sensor construction, this method shows a high potential of impedimetric aptasensors in environmental monitoring. Graphical abstract Measurement chamber and immobilization principle for the detection of doxorubicin by electrochemical impedance spectroscopy.
Collapse
|
25
|
Greño M, Castro-Puyana M, García MÁ, Marina ML. Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update. Electrophoresis 2017; 39:235-259. [PMID: 28941242 DOI: 10.1002/elps.201700306] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
Abstract
Natural, synthetic or semisynthetic antibiotics are highly used to prevent or treat diseases in humans and animals, and to promote animal growth. This fact makes that antibiotics residues or their transformation products may be present in food or in the environment after human or animal excretion. For this reason, it is imperative to develop reliable and sensitive analytical methodologies for their analysis. The main aim of this work is to present and discuss the most recent applications of capillary electromigration methods for the analysis of antibiotics, including the developments and applications of their use as chiral selectors in CE. The literature published from June 2015 to June 2017 is included following the previous review by Domínguez-Vega et al. (Electrophoresis, 2016, 37, 189-211). Information about the use of different detection systems, off-line and on-line strategies to improve sensitivity, and microchip devices for the analysis of antibiotics is provided and properly discussed.
Collapse
Affiliation(s)
- Maider Greño
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
26
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Yu J, Jin H, Gui R, Wang Z, Ge F. A general strategy to facilely design ratiometric electrochemical sensors in electrolyte solution by directly using a bare electrode for dual-signal sensing of analytes. Talanta 2017; 162:435-439. [DOI: 10.1016/j.talanta.2016.10.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 01/26/2023]
|
28
|
Amjadi M, Jalili R. Molecularly imprinted polymer-capped nitrogen-doped graphene quantum dots as a novel chemiluminescence sensor for selective and sensitive determination of doxorubicin. RSC Adv 2016. [DOI: 10.1039/c6ra18184h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecularly imprinted polymer-capped nitrogen-doped graphene quantum dots (MIP@NGQDs) were prepared via a simple sol–gel process and used for chemiluminescence detection of doxorubicin.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166616471
- Iran
| | - Roghayeh Jalili
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166616471
- Iran
| |
Collapse
|