1
|
Németi G, Berkecz R, Ozsvár D, Szakonyi Z, Lindner W, Misicka A, Tymecka D, Tóth G, Péter A, Ilisz I. High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids. Int J Mol Sci 2025; 26:4004. [PMID: 40362243 PMCID: PMC12072104 DOI: 10.3390/ijms26094004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Novel peptides based on common amino acid building blocks may serve as possible drug candidates; however, their flexible structures may require stabilization via the incorporation of conformational constraints. The insertion of unusual amino acids is a feasible option that may provide improved pharmacokinetic and pharmacodynamic properties of such peptide-type drugs. The stereochemical purity of these kinds of building blocks must be verified by an efficient separation technique, such as high-performance liquid chromatography. Here, we present and discuss the results of the stereoselective separation mechanism of ß-methylated phenylalanine (ß-MePhe), tyrosine (ß-MeTyr), 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (ß-MeTic), and cyclohexylalanine (ß-MeCha) together with non-methylated Phe, Tyr, Tic, and Cha applying Cinchona alkaloid-based chiral stationary phases (CSPs). The studied zwitterionic CSPs acting as ion exchangers provided optimal performance in the polar ionic mode when methanol or a mixture of methanol and acetonitrile was utilized as the mobile phase together with organic acid and base additives. It was found that the basicity of small amines applied as mobile phase additives did not directly influence the chromatographic ion exchange concept. However, the size of the amines and their concentration led to a reduced retention time following the principles of ion exchange chromatography. On the basis of a systematic study of the effects of the eluent composition on the chromatographic behavior, important structure-retention and enantioselectivity relationships could be revealed. Through a temperature study, it has become evident that the composition of the eluent and the structure of analytes markedly affect the thermodynamic properties.
Collapse
Affiliation(s)
- Gábor Németi
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary (R.B.); (A.P.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary (R.B.); (A.P.)
| | - Dániel Ozsvár
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary (R.B.); (A.P.)
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria;
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (A.M.); (D.T.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (A.M.); (D.T.)
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, H-6725 Szeged, Hungary;
| | - Antal Péter
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary (R.B.); (A.P.)
| | - István Ilisz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary (R.B.); (A.P.)
| |
Collapse
|
2
|
Zhang Y, Liu X, Wu J, Quan P, Liu C, Liu J, Liu M, Fang L. Dual modules-molecularly imprinted patch-enabled enantioselectively controlled release of racemic drugs for transdermal delivery. Int J Pharm 2024; 665:124707. [PMID: 39284425 DOI: 10.1016/j.ijpharm.2024.124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
Over 90 % of chiral drugs applied in transdermal drug delivery system (TDDS) are racemates, significantly increasing risks of side effects. Herein, we designed a chiral molecularly imprinted patch (CMIP) that achieved enantioselectively controlled release of S-enantiomers (eutomers) and inhibited the release of R-enantiomers (distomers) for transdermal drug delivery. It is composed of chiral pressure sensitive adhesive (PSA) and molecularly imprinted polymers (MIP), showing better transdermal delivery of S-enantiomers than that of R-enantiomers in vitro (1.86-fold) and in vivo (3.74-fold), significantly decreasing the intake of distomers. Additionally, synthesized fluorescent probe enantiomers visualized enantioselective process of CMIP. Furthermore, investigations of molecular mechanism indicated that dependence on spatial conformation was dominant. On one hand, imprinted cavity of MIP with D-isomer and stronger chiral interaction with R-enantiomers led to more specific adsorption. On the other hand, L-isomer of PSA controlled the release of S-enantiomers by multiple interaction including chiral H-bond, π-π interaction and Van der Waals force. Tthus, the innovatively designed transdermal patch with enantioselective ability released eutomers of racemate and simultaneously inhibited release of distomers, significantly improving therapeutical efficiency and avoiding overdose.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaowen Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxu Wu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Mingzhe Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Fuxová H, Labíková M, Ivanovská A, Eliášová P, Kubů M, Hovorka Š, Přibyl M, Čížek J, Bartůněk V, Kohout M, Izák P. Zeolite-based chiral ion-exchangers for chromatographic enantioseparations and potential applications in membrane separation processes. Talanta 2024; 278:126419. [PMID: 38908136 DOI: 10.1016/j.talanta.2024.126419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Chiral resolution of racemic compounds represents an important task in research and development and, most importantly, in the large-scale production of pharmaceuticals. Zeolites, which are already frequently utilized for their unique properties, represent materials that can be used for the development of new chiral stationary phases for liquid chromatography, simulated moving bed or enantioselective membranes. The aim of this study was to modify a series of MWW zeolites by a chiral anion-exchange type selector thereby creating a chiral stationary phase for enantiomeric resolution of acidic compounds. To evaluate the applicability of the prepared chiral stationary phase in liquid chromatography, we used N-protected amino acids as model analytes. First, we tested the new sorbents preferential sorption using N-(3,5-dinitrobenzoyl)leucine. We observed outstanding sorption properties of a zeolite-based sorbent (MCM-36), which were comparable to spherical chromatographic silica. This particular material was subsequently packed into a chromatographic column, which was tested under polar organic mode HPLC conditions facilitating baseline resolution of 5 out of 8 N-protected amino acids. Although the chromatographic performance shows several drawbacks (high backpressure, low column efficiency), it clearly documents the potential of the novel materials in chiral separation. To the best of our knowledge, this is the first example of the preparation of the chiral stationary phase based on MWW zeolites ever.
Collapse
Affiliation(s)
- Hana Fuxová
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Magdaléna Labíková
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Anna Ivanovská
- Faculty of Technology and Metallurgy, University of SS. Cyril and Methodius, Skopje, Macedonia
| | - Pavla Eliášová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Martin Kubů
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Štěpán Hovorka
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Přibyl
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Čížek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 00, Prague 6, Czech Republic
| | - Vilém Bartůněk
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 00, Prague 6, Czech Republic.
| |
Collapse
|
4
|
Varfaj I, Labikova M, Sardella R, Hettegger H, Lindner W, Kohout M, Carotti A. A journey in unraveling the enantiorecognition mechanism of 3,5-dinitrobenzoyl-amino acids with two Cinchona alkaloid-based chiral stationary phases: The power of molecular dynamic simulations. Anal Chim Acta 2024; 1314:342791. [PMID: 38876520 DOI: 10.1016/j.aca.2024.342791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Innovations in computer hardware and software capabilities have paved the way for advances in molecular modelling techniques and methods, leading to an unprecedented expansion of their potential applications. In contrast to the docking technique, which usually identifies the most stable selector-selectand (SO-SA) complex for each enantiomer, the molecular dynamics (MD) technique enables the consideration of a distribution of the SO-SA complexes based on their energy profile. This approach provides a more truthful representation of the processes occurring within the column. However, benchmark procedures and focused guidelines for computational treatment of enantioselectivity at the molecular level are still missing. RESULTS Twenty-eight molecular dynamics simulations were performed to study the enantiorecognition mechanisms of seven N-3,5-dinitrobenzoylated α- and β-amino acids (DNB-AAs), occurring with the two quinine- and quinidine-based (QN-AX and QD-AX) chiral stationary phases (CSPs), under polar-ionic conditions. The MD protocol was optimized in terms of box size, simulation run time, and frame recording frequency. Subsequently, all the trajectories were analyzed by calculating both the type and amount of the interactions engaged by the selectands (SAs) with the two chiral selectors (SOs), as well as the conformational and interaction energy profiles of the formed SA-SO associates. All the MDs were in strict agreement with the experimental enantiomeric elution order and allowed to establish (i) that salt-bridge and H-bond interactions play a pivotal role in the enantiorecognition mechanisms, and (ii) that the π-cation and π-π interactions are the discriminant chemical features between the two SOs in ruling the chiral recognition mechanism. SIGNIFICANCE The results of this work clearly demonstrate the high contribution given by MD simulations in the comprehension of the enantiorecognition mechanism with Cinchona alkaloid-based CSPs. However, from this research endeavor it clearly emerged that the MD protocol optimization is crucial for the quality of the produced results.
Collapse
Affiliation(s)
- Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123, Perugia, Italy
| | - Magdalena Labikova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123, Perugia, Italy
| | - Hubert Hettegger
- Institute of Chemistry of Renewable Resources, Department of Chemistry, BOKU University, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria; Christian Doppler Laboratory for Cellulose High-Tech Materials, BOKU University, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic.
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123, Perugia, Italy.
| |
Collapse
|
5
|
Varfaj I, Abualzulof GWA, Moretti S, Migni A, Uda I, Goracci L, Ianni F, Carotti A, Sardella R. Development of an easy-to-set-up multiple heart-cutting achiral-chiral LC-LC method for the analysis of branched-chain amino acids in commercial tablets. Electrophoresis 2024; 45:1041-1053. [PMID: 38477690 DOI: 10.1002/elps.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
In this paper, the development and application of a multiple heart-cutting achiral-chiral LC-LC method (mLC-LC) for the analysis of dansylated (Dns) branched-chain amino acids in commercial tablets are described. In the first dimension, a Waters Xbridge RP C18 achiral column was used under gradient conditions with buffered aqueous solution and acetonitrile. The elution order Dns-valine (Dns-Val) < Dns-isoleucine (Dns-Ile) < Dns-leucine (Dns-Leu) turned out with full resolution between adjacent peaks: 7.25 and 1.50 for the Val/Ile and the Ile/Leu pairs, respectively. A "research" validation study was performed, revealing high accuracy (Recovery%) and precision (RSD%) using two external set solutions, respectively, in the range 93.7%-104.1% and 0.4%-3.2%. The C18 column was connected via a two-position six-port switching valve to the quinidine-based Chiralpak quinidine-anion-exchange chiral column. A water/acetonitrile, 30/70 (v/v) with 50 mM ammonium acetate (apparent pH of 5.5) eluent allowed getting the three enantiomers' pairs resolved: RS equal to 4.3 for Dns-Val and Dns-Ile, and 1.7 for Dns-Leu. The application of the mLC-LC method confirmed that the content of Val, Ile, and Leu in the tablets was compliant with that labeled by the producer. Only l-enantiomers were found in the food supplement, as confirmed by LC-MS/MS analysis.
Collapse
Affiliation(s)
- Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Irene Uda
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Karongo R, Horak J, Lämmerhofer M. Comprehensive reversed-phase×chiral two-dimensional liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with post-first dimension flow splitting for untargeted enantioselective amino acid analysis. J Sep Sci 2023; 46:e2300351. [PMID: 37464972 DOI: 10.1002/jssc.202300351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
This work describes a comprehensive achiral × chiral two-dimensional liquid chromatography separation for enantioselective amino acid analysis coupled to electrospray ionization-tandem mass spectrometry detection using data-independent acquisition. Flow splitting after the first and second dimension separation was utilized for volumetric flow reduction and for enabling a multi-detector approach (with ultraviolet, fluorescence, charged aerosol, and MS detection), respectively. Derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate provided a chromophore, a fluorophore, and an efficient mass tag for efficient ionization in positive electrospray ionization-mass spectrometry. Chiral columns often have limitations in terms of their chemoselectivity, which may be a problem when complex sample mixtures with structurally related compounds need to be separated. It can be alleviated by a reversed-phase×chiral two-dimensional-liquid chromatography setup, in which the first dimension provides the chemoselectivity and a chiral tandem column constituted of quinine-carbamate derived weak anion-exchanger and zwitterionic ion-exchanger in the second dimension separation of D- and L-amino acid enantiomers. The method was used to control the stereointegrity of the therapeutic peptide octreotide. After hydrolysis, all amino acid constituents were detected with the correct configuration and composition. Some options for flow splitting and integration of destructive detectors in the first dimension separation are outlined.
Collapse
Affiliation(s)
- Ryan Karongo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Jeannie Horak
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Munich, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Tensi L, Dall’Anese A, Annunziata A, Mearini S, Nofrini V, Menendez Rodriguez G, Carotti A, Sardella R, Ruffo F, Macchioni A. Synthesis and Characterization of Chiral Iridium Complexes Bearing Carbohydrate Functionalized Pyridincarboxamide Ligands and Their Application as Catalysts in the Asymmetric Transfer Hydrogenation of α-Ketoacids in Water. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Anna Dall’Anese
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alfonso Annunziata
- Department of Chemical Sciences and CIRCC, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France
| | - Simone Mearini
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Vittorio Nofrini
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy
| | - Francesco Ruffo
- Department of Chemical Sciences and CIRCC, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
8
|
Karongo R, Horak J, Lämmerhofer M. Comprehensive Online Reversed-Phase × Chiral Two-Dimensional Liquid Chromatography-Mass Spectrometry with Data-Independent Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra-Acquisition for Untargeted Enantioselective Amino Acid Analysis. Anal Chem 2022; 94:17063-17072. [PMID: 36442145 DOI: 10.1021/acs.analchem.2c03042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents an advanced analytical platform for untargeted enantioselective amino acid analysis (eAAA) by comprehensive achiral × chiral 2D-LC hyphenated to ESI-QTOF-MS/MS utilizing data-independent SWATH (sequential window acquisition of all theoretical fragment-ion spectra) technology. The methodology involves N-terminal pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ) as retention, selectivity, and MS tag, supporting retention and UV detection in RPLC (1D), chiral recognition, and thus enantioselectivity by the core-shell tandem column composed of a quinine carbamate weak anion exchanger (QN-AX) and a zwitterionic chiral ion-exchanger (ZWIX(+)) (2D) as well as the ionization efficiency during positive electrospray ionization due to a high proton affinity of the AQC label. Furthermore, the urea-type MS tag gives rise to the generation of AQC-tag characteristic signature fragments in MS2. The latter allows the chemoselective mass spectrometric filtering of targeted and untargeted N-derivatized amino acids or related labeled species. The chiral core-shell tandem column provides a complete enantioselective amino acid profile of all proteinogenic amino acids within 1 min, with full baseline separation of all enantiomers, but without resolution of isomeric Ile/allo-Ile (aIle)/Leu, which can be resolved by RPLC. The entire LC × LC separation occurs within a total run time of 60 min (1D), with the chiral 2D operated in gradient elution mode and a cycle time of 60 s. A strategy to mine the 2D-LC-SWATH data is presented and demonstrated for the qualitative eAAA of two peptide hydrolysate samples of therapeutic peptides containing common and uncommon as well as primary and secondary amino acids. Absolute configuration assignment of amino acids using template matching for all proteinogenic amino acids was made feasible due to method robustness and the inclusion of an isotopically labeled L-[U-13C15N]-AA standard. The quantification performance of this LC × LC-MS/MS assay was also evaluated. Accuracies were acceptable for the majority of AAs enabling AA composition determination in peptide hydrolysates simultaneously with configuration assignment, as exemplified by oxytocin. This methodology represents a step toward truly untargeted 2D enantioselective amino acid analysis and metabolomics.
Collapse
Affiliation(s)
- Ryan Karongo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337 Munich, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
10
|
Asnin L, Herciková J, Lindner W, Klimova Y, Ziganshina D, Reshetova E, Kohout M. Chiral separation of dipeptides on Cinchona-based zwitterionic chiral stationary phases under buffer-free reversed-phase conditions. Chirality 2022; 34:1065-1077. [PMID: 35596543 DOI: 10.1002/chir.23471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Chiral zwitterion ion exchangers represent efficient chiral stationary phases for stereoselective resolution of various analytes including chiral acids, bases, and zwitterions. In this contribution, we have focused on utilization of chiral zwitterionic sorbents, denoted as ZWIX (+A) and ZWIX (-A). These are analogical chiral systems to commercially available columns, Chiralpak ZWIX (+) and Chiralpak ZWIX (-), which are usually operated with buffered mobile phases. In this contribution, we have studied the enantiorecognition power of the ZWIX (+A) and ZWIX (-A) columns on a series of dipeptides operated under buffer-free reversed-phase conditions. Retention characteristics of zwitterionic dipeptides are discussed using an electrostatically driven adsorption model, which provides a good fit with both monotonous and U-shaped curves.
Collapse
Affiliation(s)
- Leonid Asnin
- Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, Perm, Russia
| | - Jana Herciková
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Wolfgang Lindner
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Yana Klimova
- Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, Perm, Russia
| | - Daria Ziganshina
- Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, Perm, Russia
| | - Elena Reshetova
- Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Németi G, Berkecz R, Shahmohammadi S, Forró E, Lindner W, Péter A, Ilisz I. Enantioselective high-performance liquid chromatographic separation of fluorinated ß- phenylalanine derivatives utilizing Cinchona alkaloid-based ion-exchanger chiral stationary phases. J Chromatogr A 2022; 1670:462974. [DOI: 10.1016/j.chroma.2022.462974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
12
|
Qiu X, Liu Y, Zhao T, Zuo L, Ma X, Shan G. Separation of chiral and achiral impurities in paroxetine hydrochloride in a single run using supercritical fluid chromatography with a polysaccharide stationary phase. J Pharm Biomed Anal 2022; 208:114458. [PMID: 34768158 DOI: 10.1016/j.jpba.2021.114458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022]
Abstract
Separating paroxetine hydrochloride and its impurities using conventional reversed-phase liquid chromatography (RPLC) is challenging due to their highly similar structures. In the present study, a rapid, simple, sensitive and environmentally friendly method was developed for the determination of chiral and achiral impurities in raw materials of paroxetine hydrochloride using chiral supercritical fluid chromatography (SFC). The impacts of chiral stationary phases (CSPs), mobile phases, column temperature and back pressure on the retention and separation of analytes were comprehensively evaluated. After method optimization, a satisfying result was obtained on a cellulose tris-(3-chloro-4-methylphenylcarbamate) stationary phase in 4.0 min using 70% CO2 and 20 mM ammonium acetate in 30% methanol as the mobile phase. Molecular docking was further performed to understand the interactions between the analytes and CSP. The results suggested that hydrogen bonding and π-π interactions were the dominant interactions. The affinity given by the software was in good agreement with the elution order and free energy (△G) values obtained from van't Hoff equations. The results of molecular docking also provide insights into the different retentions of N-methylparoxetine at different temperatures. The results of method validation revealed that the method was sensitive with a limit of detection of approximately 0.05 μg·mL-1 (corresponding to approximately 0.005% paroxetine hydrochloride in the sample solution). The relative standard deviations (RSDs) of precision and intra-assay precision were all less than 2.0%, and the recoveries of the method were 93.8~105.3% with RSDs less than 3.0%. The chiral and achiral RPLC methods included in the Chinese pharmacopoeia and the SFC method proposed in this study were simultaneously used to determine the impurity content in the raw materials of paroxetine hydrochloride. The results showed that impurities that cannot be detected by the reference method can be accurately quantified using the SFC method. In addition, the SFC method has advantages in terms of throughput, analysis cost and simplicity. This study can provide a reference for further research of impurities in paroxetine hydrochloride and promote the application of chiral SFC in the rapid separation of structurally similar compounds.
Collapse
Affiliation(s)
- Xiaodan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, 100050 Beijing, PR China
| | - Yitong Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, 100050 Beijing, PR China
| | - Ting Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, 100050 Beijing, PR China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, 100050 Beijing, PR China
| | - Xun Ma
- China National Institutes for Food and Drug Control, No. 2, Tian Tan Xi Li, 100050 Beijing, PR China.
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, 100050 Beijing, PR China.
| |
Collapse
|
13
|
Karongo R, Ge M, Geibel C, Horak J, Lämmerhofer M. Enantioselective multiple heart cutting online two-dimensional liquid chromatography-mass spectrometry of all proteinogenic amino acids with second dimension chiral separations in one-minute time scales on a chiral tandem column. Anal Chim Acta 2021; 1180:338858. [PMID: 34538327 DOI: 10.1016/j.aca.2021.338858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/09/2023]
Abstract
In this work, we present a unique, robust and fully automated analytical platform technology for the enantioselective amino acid analysis using a multiple heart cutting RPLC-enantio/stereoselective HPLC-ESI-QTOF-MS method. This 2D-LC method allows the full enantioselective separation of 20 proteinogenic AAs plus 5 isobaric analogues, namely allo-Threonine (aThr), homoserine (Hse), allo-isoleucine (aIle), tert-Leucine (Tle) and Norleucine (Nle), after pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ). This N-terminal AA-derivatization method introduces on the one hand beneficial chromatographic properties for 1D RP-LC (stronger retention) and 2D chiral separation (better chiral recognition), and on the other hand favorable detection properties with its chromophoric, fluorophoric, and easily ionizable quinoline mass tag. The entire separation occurs within a total 2DLC run time of 45 min, which includes the 1D-RP run and the 68 s 2D chiral separations of 30 heart-cuts (from the 1D-RP-run) on a chiral quinine carbamate (core-shell QNAX/fully porous ZWIX) tandem column. This relatively short overall run time was only possible by utilizing the highly efficient "smart peak parking" algorithm for the heart cuts and the resulting optimized analysis order thereof. 1D retention time precisions of <0.21% RSD were a requirement for the time-based sampling mode and finally led to a robust, fully automated enantioselective amino acid analysis platform. This achiral-chiral 2DLC method was applied for the amino acid stereoconfiguration assignment of three peptides (aureobasidin A, a lipopeptide research sample, and octreotide) using an L-[u-13C15N] labelled internal AA standard mix spiked to each sample. The isotopically labelled L-AA standard allowed an easy and straightforward identification and configuration assignment, as well as the relative quantification of amino acids within the investigated peptides, allowing the direct determination of the number of respective amino acids and their chirality within a peptide.
Collapse
Affiliation(s)
- Ryan Karongo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Min Ge
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Christian Geibel
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Jeannie Horak
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany.
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Efficient enantioresolution of aromatic α-hydroxy acids with Cinchona alkaloid-based zwitterionic stationary phases and volatile polar-ionic eluents. Anal Chim Acta 2021; 1180:338928. [PMID: 34538320 DOI: 10.1016/j.aca.2021.338928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022]
Abstract
Single enantiomers of mandelic acid (1), 3-phenyllactic acid (2), and 3-(4-hydroxyphenyl)lactic acid (3) are the subject of many fields of investigation, spanning from the pharmaceutical synthesis to that of biocompatible and biodegradable polymers, while passing from the interest towards their antimicrobial activity to their role as biomarkers of particular pathological conditions or occupational exposures to specific xenobiotics. All above mentioned issues justify the need for accurate analytical methods enabling the correct determination of the individual enantiomers. So far, all the developed liquid chromatography (LC) methods were not or hardly compatible with mass spectrometry (MS) detection. In this paper, a commercially available Cinchona-alkaloid derivative zwitterionic chiral stationary phase [that is, the CHIRALPAK® ZWIX(-)] was successfully used to optimize the enantioresolution of compounds 1-3 under polar-ionic (PI) conditions with a mobile phase consisting of an acetonitrile/methanol 95/5 (v/v) mixture with 80 mM formic acid. With the optimized conditions, enantioseparation and enantioresolution values up to 1.46 and 4.41, respectively, were obtained. In order to assess the applicability of the optimized enantioselective chromatography conditions in real-life scenarios and on MS-based systems, a proof-of-concept application was efficiently carried out by analysing dry urine spot samples spiked with 1 by means of a LC-MS system. The (S)<(R) enantiomer elution order (EEO) was established for compounds 1 and 2 by analysing a pure enantiomeric standard of known configuration. This was not possible for 3 because not commercially available. For this compound, the same EEO was identified applying a procedure based on ab initio time-dependent density-functional theory simulations coupled to electronic circular dichroism analyses. Moreover, a molecular dynamics simulation unveiled the role of the phenolic OH in compound 3 in the retention mechanism.
Collapse
|
15
|
Rosetti A, Ferretti R, Villani C, Pierini M, Cirilli R. Simultaneous enantio- and diastereo-selective high-performance liquid chromatography separation of paroxetine on an immobilized amylose-based chiral stationary phase under green reversed-phase conditions. J Chromatogr A 2021; 1653:462406. [PMID: 34320436 DOI: 10.1016/j.chroma.2021.462406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
A simple and green high-performance liquid chromatography method for the separation of paroxetine from its enantiomeric and diastereomeric impurities has been developed. The simultaneous chromatographic resolution was carried out on the amylose-based Chiralpak IA-3 chiral stationary phase using the mixture ethanol-water-diethylamine 80:20:0.1 (v/v/v) as a mobile phase. The effects of substitution of ethanol with methanol or acetonitrile and changes in column temperature on selectivity have been carefully investigated. The optimized single-run HPLC protocol allows the baseline separation of the enantiomers of paroxetine without suffering from interference from five other chiral and achiral impurities reported in the monograph of the European Pharmacopoeia.
Collapse
Affiliation(s)
- Alessia Rosetti
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy; Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185, Rome, Italy
| | - Rosella Ferretti
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio Villani
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Pierini
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185, Rome, Italy
| | - Roberto Cirilli
- National Centre for the Control and Evaluation of Medicines, Chemical Medicines Unit, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
16
|
Tanács D, Bajtai A, Berkecz R, Forró E, Fülöp F, Lindner W, Péter A, Ilisz I. Cinchona-alkaloid-based zwitterionic chiral stationary phases as potential tools for high-performance liquid chromatographic enantioseparation of cationic compounds of pharmaceutical relevance. J Sep Sci 2021; 44:2735-2743. [PMID: 33999502 DOI: 10.1002/jssc.202100264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Enantiomers of cationic compounds of pharmaceutical relevance, namely tetrahydro-ß-carboline and 1,2,3,4-tetrahydroisoquinoline analogs, were separated by high-performance liquid chromatography. Separations were performed on Cinchona-alkaloid-based zwitterionic ion exchanger type chiral stationary phases applied as cation exchangers using mixtures of methanol and acetonitrile or tetrahydrofuran as bulk solvent components containing triethylammonium acetate or ammonium acetate as organic salt additives. On the zwitterionic ZWIX(+) and ZWIX(-) columns investigated, retention and enantioseparation of the studied basic analytes were influenced by the nature and concentration of the organic components of the mobile phase. The effect of organic salt additives on the retention behavior of the studied analytes can be described by the stoichiometric displacement model related to the counterion concentration. Investigations on the structure-retention relationships were performed applying different mobile phase systems for the two types of cationic analytes. For the thermodynamic characterization, parameters such as changes in standard enthalpy (Δ(ΔH°)), entropy (Δ(ΔS°)), and free energy (Δ(ΔG°)) were calculated on the basis of van't Hoff plots derived from the ln α versus 1/T curves. In most cases, enthalpy-driven enantioseparations were observed, with a consistent dependence of the calculated thermodynamic parameters on the mobile phase composition. Elution sequences of the studied compounds were determined in all cases.
Collapse
Affiliation(s)
- Dániel Tanács
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Attila Bajtai
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Antal Péter
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Tanács D, Orosz T, Ilisz I, Péter A, Lindner W. Unexpected effects of mobile phase solvents and additives on retention and resolution of N-acyl-D,L-leucine applying Cinchonane-based chiral ion exchangers. J Chromatogr A 2021; 1648:462212. [PMID: 33992991 DOI: 10.1016/j.chroma.2021.462212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
Chiral ion exchangers based on quinine (QN) and quinidine (QD), namely Chiralpak QN-AX and QD-AX as anionic and ZWIX(+) and ZWIX(-) as zwitterionic ion exchanger chiral stationary phases (CSPs) have been investigated with respect to their retention and chiral resolution characteristics. For the evaluation of the effects of the composition of the polar organic bulk solvents of the mobile phase (MP) and those of the organic acid and base additives acting as displacers necessary for a liquid chromatographic ion-exchange process, racemic N-(3,5-dinitrobenzoyl)leucine and other related analytes were applied. The main aim was to evaluate the impact of the MP variations on the observed, and thus the apparent enantioselectivity (αapp), and the retention factor. Significant differences were found using either polar protic methanol (MeOH) or polar non-protic acetonitrile (MeCN) solvents in combination with the acid and base additives as counter- and co-ions. It became clear, that the charged sites of both the chiral selectors of the CSPs and the analytes get specifically solvated, accompanied by the adsorption of all MP components on the CSP, thereby building a stagnant "stationary phase layer" with a composition different from the bulk MP. Via a systematic change of the MP composition, trends of resulting αapp and retention factors have been identified and discussed. In a detailed set of experiments, the effect of the concentration of the acid component in the MP containing MeOH or MeCN was specifically investigated, with the acid considered to be a displacer in anion-exchange type chromatographic systems. Surprisingly, all four chiral columns retained and resolved the tested N-acyl-Leu analytes with αapp values up to 21 within a retention factor window of 0.03 and 10 with pure MeOH as eluent. However, using pure MeCN as eluent, an almost infinite-long retention of the acidic analyte was noticed in all cases. We suggest that the rather different thickness of the solvation shells generated by MeOH or MeCN around the charged/chargeable sites of the chiral selector determines eventually the strength of the electrostatic selector-selectand interactions. As a control experiment we included the non-chiral N-acylglycine derivatives as analyte in all cases to support the interpretations with respect to the contribution of the enantioselective and non-enantioselective retention factor increments as a part of the observed αapp.
Collapse
Affiliation(s)
- Dániel Tanács
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - Tímea Orosz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary.
| | - Antal Péter
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Somogyi u. 4, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria.
| |
Collapse
|
18
|
High-performance liquid chromatographic evaluation of strong cation exchanger-based chiral stationary phases focusing on stationary phase characteristics and mobile phase effects employing enantiomers of tetrahydro-ß-carboline and 1,2,3,4-tetrahydroisoquinoline analogs. J Chromatogr A 2021; 1644:462121. [PMID: 33845425 DOI: 10.1016/j.chroma.2021.462121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
In this study, we present results obtained on the enantioseparation of some cationic compounds of pharmaceutical relevance, namely tetrahydro-ß-carboline and 1,2,3,4-tetrahydroisoquinoline analogs. In high-performance liquid chromatography, chiral stationary phases (CSPs) based on strong cation exchanger were employed using mixtures of methanol and acetonitrile or tetrahydrofuran as mobile phase systems with organic salt additives. Through the variation of the applied chromatographic conditions, the focus has been placed on the study of retention and enantioselectivity characteristics as well as elution order. Retention behavior of the studied analytes could be described by the stoichiometric displacement model related to the counter-ion effect of ammonium salts as mobile phase additives. For the thermodynamic characterization parameters, such as changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°), were calculated on the basis of van't Hoff plots derived from the ln α vs. 1/T curves. In all cases, enthalpy-driven enantioseparations were observed with a slight, but consistent dependence of the calculated thermodynamic parameters on the eluent composition. Elution sequences of the studied compounds were determined in all cases. They were found to be opposite on the enantiomeric stationary phases and they were not affected by either the temperature or the eluent composition.
Collapse
|
19
|
Ianni F, Carotti A, Intagliata S, Macchiarulo A, Chankvetadze B, Pittalà V, Sardella R. Laboratory-Scale Semipreparative Enantioresolution of Phenylethanolic-Azole Heme Oxygenase-1 Inhibitors. Chromatographia 2020. [DOI: 10.1007/s10337-020-03972-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Pinto MM, Fernandes C, Tiritan ME. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules 2020; 25:E1931. [PMID: 32326326 PMCID: PMC7221958 DOI: 10.3390/molecules25081931] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Enantiomeric separation is a key step in the development of a new chiral drug. Preparative liquid chromatography (LC) continues to be the technique of choice either during the drug discovery process, to achieve a few milligrams, or to a scale-up during the clinical trial, needing kilograms of material. However, in the last few years, instrumental and technical developments allowed an exponential increase of preparative enantioseparation using other techniques. Besides LC, supercritical fluid chromatography (SFC) and counter-current chromatography (CCC) have aroused interest for preparative chiral separation. This overview will highlight the importance to scale-up chiral separations in Medicinal Chemistry, especially in the early stages of the pipeline of drugs discovery and development. Few examples within different methodologies will be selected, emphasizing the trends in chiral preparative separation. The advantages and drawbacks will be critically discussed.
Collapse
Affiliation(s)
- Madalena M.M. Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Maria E. Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), 4585-116 Gandra PRD, Portugal
| |
Collapse
|
21
|
Sardella R, Ianni F, Cossignani L, Aldini G, Carotti A. Binding modes identification through molecular dynamic simulations: A case study with carnosine enantiomers and the Teicoplanin A2-2-based chiral stationary phase. J Sep Sci 2020; 43:1728-1736. [PMID: 32112671 DOI: 10.1002/jssc.202000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
In the present study, an in silico methodology able to define the binding modes adopted by carnosine enantiomers in the setting of the chiral recognition process is described. The inter- and intramolecular forces involved in the enantioseparation process with the Teicoplanin A2-2 chiral selector and carnosine as model compound are successfully identified. This approach fully rationalizes, at a molecular level, the (S) < (R) enantiomeric elution order obtained under reversed-phase conditions. Consistent explanations were achieved by managing molecular dynamics results with advanced techniques of data analysis. As a result, the time-dependent identification of all the interactions simultaneously occurring in the chiral selector-enantiomeric analyte binding process was obtained. Accordingly, it was found that only (R)-carnosine is able to engage a stabilizing charge-charge interaction through its ionized imidazole ring with the carboxylate counter-part on the chiral selector. Instead, (S)-carnosine establishes intramolecular contacts between its ionized functional groups, that limit its conformational freedom and impair the association with the chiral selector unit.
Collapse
Affiliation(s)
- Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano, 20133, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| |
Collapse
|
22
|
Bajtai A, Ilisz I, Howan DH, Tóth GK, Scriba GK, Lindner W, Péter A. Enantioselective resolution of biologically active dipeptide analogs by high-performance liquid chromatography applying Cinchona alkaloid-based ion-exchanger chiral stationary phases. J Chromatogr A 2020; 1611:460574. [DOI: 10.1016/j.chroma.2019.460574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
|
23
|
Bajtai A, Ilisz I, Péter A, Lindner W. Liquid chromatographic resolution of natural and racemic Cinchona alkaloid analogues using strong cation- and zwitterion ion-exchange type stationary phases. Qualitative evaluation of stationary phase characteristics and mobile phase effects on stereoselectivity and retention. J Chromatogr A 2020; 1609:460498. [DOI: 10.1016/j.chroma.2019.460498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023]
|
24
|
Sethi S, Bhushan R. Enantioselective
LC
analysis and determination of selective serotonin reuptake inhibitors. Biomed Chromatogr 2019; 34:e4730. [DOI: 10.1002/bmc.4730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Sonika Sethi
- Department of Chemistry, School of Basic & Applied SciencesGD Goenka University Gurgaon India
| | - Ravi Bhushan
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
25
|
Chiral recognition in separation sciences. Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115628] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Mimini V, Ianni F, Marini F, Hettegger H, Sardella R, Lindner W. Electrostatic attraction-repulsion model with Cinchona alkaloid-based zwitterionic chiral stationary phases exemplified for zwitterionic analytes. Anal Chim Acta 2019; 1078:212-220. [PMID: 31358221 DOI: 10.1016/j.aca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022]
Abstract
In the present paper, we demonstrated that Cinchona alkaloid cyclohexyl sulfonic acid-based zwitterionic chiral selectors (SOs) and the respective chiral stationary phases (CSPs) can be successfully employed for the enantioseparation of underivatized thus zwitterionic amino acids (the selectands, SAs) even in the absence of ionic additives in the eluent, generally used as displacer counter-ions in ion exchange chromatography. Therefore, we provided evidence that cooperative "intramolecular and intermolecular counter-ion effects" of the zwitterionic SO moiety and the zwitterionic SAs can be sufficient to modulate alone the retention characteristics without a loss of stereoselectivity. Four fully constrained β-amino acids were used as target compounds for this study. The analyses were carried out with either neat methanol, acetonitrile, water or their binary hydro-organic mixtures. A U-shaped retention profile was observed both with methanol- and acetonitrile-based eluents. Except a few cases, enantioselectivity experienced a remarkable amelioration at the "balanced region" of a buffer free hydroorganic mobile phase composition. At "the bottom" of the U-shaped curve, high α- and resolution values could be reached with most of the screened mobile phases. An electrostatically driven "attraction-repulsion model" was postulated to explain the very favourable characteristic of the two studied zwitterion-type CSPs for the retention and enantiomer separation of zwitterionic analytes.
Collapse
Affiliation(s)
- Vebi Mimini
- University of Vienna, Department of Analytical Chemistry, Währingerstrasse 38, 1090, Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Chemistry, Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430, Tulln, Austria
| | - Federica Ianni
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123, Perugia, Italy
| | - Francesca Marini
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123, Perugia, Italy
| | - Hubert Hettegger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Chemistry, Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430, Tulln, Austria
| | - Roccaldo Sardella
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123, Perugia, Italy.
| | - Wolfgang Lindner
- University of Vienna, Department of Analytical Chemistry, Währingerstrasse 38, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Zhang J, Zhang GH, Wang XC, Bai ZW, Chen W. Synthesis and evaluation of novel chiral stationary phases based on N‑cyclobutylcarbonyl chitosan derivatives. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Peluso P, Dessì A, Dallocchio R, Mamane V, Cossu S. Recent studies of docking and molecular dynamics simulation for liquid-phase enantioseparations. Electrophoresis 2019; 40:1881-1896. [PMID: 30710444 DOI: 10.1002/elps.201800493] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Liquid-phase enantioseparations have been fruitfully applied in several fields of science. Various applications along with technical and theoretical advancements contributed to increase significantly the knowledge in this area. Nowadays, chromatographic techniques, in particular HPLC on chiral stationary phase, are considered as mature technologies. In the last thirty years, CE has been also recognized as one of the most versatile technique for analytical scale separation of enantiomers. Despite the huge number of papers published in these fields, understanding mechanistic details of the stereoselective interaction between selector and selectand is still an open issue, in particular for high-molecular weight chiral selectors like polysaccharide derivatives. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a basic tool in enantioseparation science. In this field, molecular docking and dynamics simulations proved to be extremely adaptable to model and visualize at molecular level the spatial proximity of interacting molecules in order to predict retention, selectivity, enantiomer elution order, and profile noncovalent interaction patterns underlying the recognition process. On this basis, topics and trends in using docking and molecular dynamics as theoretical complement of experimental LC and CE chiral separations are described herein. The basic concepts of these computational strategies and seminal studies performed over time are presented, with a specific focus on literature published between 2015 and November 2018. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, Strasbourg, Alsace, France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Mestre Venezia, Veneto, Italy
| |
Collapse
|
29
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
30
|
Ilisz I, Bajtai A, Péter A, Lindner W. Cinchona Alkaloid-Based Zwitterionic Chiral Stationary Phases Applied for Liquid Chromatographic Enantiomer Separations: An Overview. Methods Mol Biol 2019; 1985:251-277. [PMID: 31069739 DOI: 10.1007/978-1-4939-9438-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For the early 2000s, chromatographic methods applying chiral stationary phases (CSPs) became the most effective techniques for the resolution of chiral compounds on both analytical and preparative scales. High-performance liquid chromatography (HPLC) employing various types of chiral selectors covalently bonded to silica-based supports offers a state-of-the-art methodology for "chiral analysis." Although a large number of CSPs are available nowadays, the design and development of new "chiral columns" are still needed since it is obvious that in practice one needs a good portfolio of different columns to face the challenging task of enantiomeric resolutions. The development of the unique chiral anion, cation, and zwitterion exchangers achieved by Lindner and his partners serves as an expansion of the range of the efficiently applicable CSPs.In this context this overview chapter discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying zwitterionic ion exchangers derived from Cinchona alkaloids. Our aim is to provide comprehensive information on practical solutions with focus on the molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary.
| | - Attila Bajtai
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Antal Péter
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Bajtai A, Lajkó G, Szatmári I, Fülöp F, Lindner W, Ilisz I, Péter A. Dedicated comparisons of diverse polysaccharide- and zwitterionic Cinchona alkaloid-based chiral stationary phases probed with basic and ampholytic indole analogs in liquid and subcritical fluid chromatography mode. J Chromatogr A 2018; 1563:180-190. [DOI: 10.1016/j.chroma.2018.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
|
32
|
Gao B, Li Y, Chen L. Surface molecularly imprinted material for enantiomeric resolution of ibuprofen: Preparation and study on chiral recognition and resolution property. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1383253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Baojiao Gao
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Yanbin Li
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Lulu Chen
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| |
Collapse
|
33
|
Ilisz I, Bajtai A, Lindner W, Péter A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 2018; 159:127-152. [PMID: 29980014 DOI: 10.1016/j.jpba.2018.06.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
As the understanding of the various biological actions of compounds with different stereochemistry has grown, the necessity to develop methods for the analytical qualification and quantification of chiral products has become particularly important. The last quarter of the century has seen a vast growth of diverse chiral technologies, including stereocontrolled synthesis and enantioselective separation and analysis concepts. By the introduction of covalently bonded silica-based chiral stationary phases (CSPs), the so-called direct liquid chromatographic (LC) methods of enantiomer separation became the state-of-the-art methodology. Although a large number of CSPs is available nowadays, the design and development of new chiral selectors and CSPs are still needed since it is obvious that in practice one needs a good portfolio of different CSPs and focused "chiral columns" to tackle the challenging tasks. This review discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying anionic and zwitterionic ion-exchangers derived from Cinchona alkaloids with emphasis on literature data published in the last 10 years. Our aim is to provide an overview of practical solutions, while focusing on the integration of molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Institute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4, H-6720 Szeged, Hungary.
| | - Attila Bajtai
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 83, 1090 Vienna, Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
34
|
Asnin LD, Stepanova MV. Van't Hoff analysis in chiral chromatography. J Sep Sci 2018; 41:1319-1337. [DOI: 10.1002/jssc.201701264] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid D. Asnin
- Department of Chemistry and Biotechnology; Perm National Research Polytechnic University; Perm Russia
| | - Maria V. Stepanova
- Department of Chemistry and Biotechnology; Perm National Research Polytechnic University; Perm Russia
| |
Collapse
|
35
|
Response surface methodology for the determination of the design space of enantiomeric separations on cinchona-based zwitterionic chiral stationary phases by high performance liquid chromatography. J Chromatogr A 2018; 1534:55-63. [DOI: 10.1016/j.chroma.2017.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/08/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023]
|
36
|
Exploring the enantiorecognition mechanism of Cinchona
alkaloid-based zwitterionic chiral stationary phases and the basic trans
-paroxetine enantiomers. J Sep Sci 2017; 41:1199-1207. [DOI: 10.1002/jssc.201701068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022]
|
37
|
Lajkó G, Orosz T, Ugrai I, Szakonyi Z, Fülöp F, Lindner W, Péter A, Ilisz I. Liquid chromatographic enantioseparation of limonene-based carbocyclic β-amino acids on zwitterionic Cinchona
alkaloid-based chiral stationary phases. J Sep Sci 2017. [DOI: 10.1002/jssc.201700450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gyula Lajkó
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Tímea Orosz
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| | - Imre Ugrai
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| | - István Ilisz
- Department of Inorganic and Analytical Chemistry; University of Szeged; Szeged Hungary
| |
Collapse
|
38
|
Grecsó N, Forró E, Fülöp F, Péter A, Ilisz I, Lindner W. Combinatorial effects of the configuration of the cationic and the anionic chiral subunits of four zwitterionic chiral stationary phases leading to reversal of elution order of cyclic β-amino acid enantiomers as ampholytic model compounds. J Chromatogr A 2016; 1467:178-187. [DOI: 10.1016/j.chroma.2016.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/19/2023]
|
39
|
Scriba GKE. Chiral recognition in separation science - an update. J Chromatogr A 2016; 1467:56-78. [PMID: 27318504 DOI: 10.1016/j.chroma.2016.05.061] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Friedrich Schiller University Jena, Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
40
|
High-performance liquid chromatographic enantioseparation of cyclic β-aminohydroxamic acids on zwitterionic chiral stationary phases based on Cinchona alkaloids. Anal Chim Acta 2016; 921:84-94. [DOI: 10.1016/j.aca.2016.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 11/24/2022]
|