1
|
De Brito Oliveira DC, Costa FHM, Beraldo RM, da Silva JAF, Diniz JA. Integrating an Extended-Gate Field-Effect Transistor in Microfluidic Chips for Potentiometric Detection of Creatinine in Urine. SENSORS (BASEL, SWITZERLAND) 2025; 25:779. [PMID: 39943418 PMCID: PMC11820648 DOI: 10.3390/s25030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Monitoring creatinine levels in urine helps to recognize kidney dysfunction. In this research, we developed a photocurable membrane for the detection of serum creatinine. Using a system based on field-effect transistors, we carried out creatinine quantification in synthetic urine. The device was able to cover values between 3 and 27 mmol L-1. The current sensitivity was 0.8529 (mA)1/2 mmol-1 L with 91.8% linearity, with the LOD and LOQ being 5.3 and 17.5 mmol L-1, respectively. The voltage sensitivity was 0.71 mV mmol-1 L with a linearity of 96.2%, with the LOD and LOQ being 4.2 and 14.0 mmol L-1, respectively. These data were obtained under flow conditions. The system performed very well during the measurements, with a hysteresis of about 1.1%. Up to 90 days after manufacture, the sensor still maintained more than 70% of its initial response. Even when used periodically during the first week and then stored unused at -18 °C, it was able to maintain 96.7% of its initial response. The device used in the flow setup only had a useful life of three days due to membrane saturation, which was not reversible. In the interference test, the membrane was also shown to respond to the urea molecule, but in a different response window, which allowed us to discriminate urea in synthetic urine. EGFETs can be used to identify variations in the creatinine concentration in urine and can help in therapeutic decision-making.
Collapse
|
2
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2025; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
3
|
Sun J, Cheng K, Xie Y. Urinary Tract Infections Detection with Molecular Biomarkers. Biomolecules 2024; 14:1540. [PMID: 39766247 PMCID: PMC11673847 DOI: 10.3390/biom14121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Urinary tract infection (UTI) is the most prevalent kind of pathogenic bacteria infection, and the midstream urine culture is regarded as the gold standard in UTI diagnosis. Recently, even with modern media and techniques such as polymerase chain reaction (PCR), urinary cultures still create a considerable workload for hospital laboratories. Other UTI-detecting methods, such as flow cytometry and lateral flow immunoassay, suffer from various drawbacks like long time consumption and low sensitivity. Therefore, looking for reliable biomarkers in UTI is urgently needed. In this review, the current definitions of UTI can be basically divided into two main categories: uncomplicated UTI and complicated UTI. In light of anatomical sites, it can be classified as either lower UTI or upper UTI. We take the classification of UTI as a clue and review the reported extensive literature to classify the existing studied markers into the following three categories: Biomarkers used clinically; Promising biomarkers; and Controversial biomarkers. Particularly, the nucleic acid-associated, metabolomic, and lipidomic biomarkers are highlighted. At the end, we discuss the challenges and prospects of biomarkers in UTI, hoping to further inspire the diagnosis of UTI.
Collapse
Affiliation(s)
- Jiayi Sun
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Kai Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Atta S, Vo-Dinh T. Improved solution-based SERS detection of creatinine by inducing hydrogen-bonding interaction for effective analyte capture. Talanta 2024; 278:126373. [PMID: 38901075 DOI: 10.1016/j.talanta.2024.126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Recently, solution-based surface-enhanced Raman scattering (SERS) detection technique has been widely recognized due to its cost-effectiveness, simplicity, and ease of use. However, solution-based SERS is limited for practical applications mainly because of the weak adsorption affinity of the target biomolecules to the surface of plasmonic nanoparticles. Herein, we developed a highly sensitive solution-based SERS sensing platform based on mercaptopropionic acid (MPA)-capped silver-coated gold nanostars (SGNS@MPA), which allows efficient enrichment on the nanostars surface for improved detection of an analyte: creatinine, a potential biomarker of chronic kidney disease (CKD). The SGNS@MPA exhibited high enrichment ability towards creatinine molecules in alkaline medium (pH-9) through multiple hydrogen bonding interaction, which causes aggregation of the nanoparticles and enhances the SERS signal of creatinine. The detection limit for creatinine was achieved at 0.1 nM, with a limit of detection (LOD) value of 14.6 pM. As a proof-of-concept demonstration, we conducted the first quantitative detection of creatinine in noninvasive human fluids, such as saliva and sweat, under separation-free conditions. We achieved a detection limit of up to 1 nM for both saliva and sweat, with LOD values as low as 0.136 nM for saliva and 0.266 nM for sweat. Overall, our molecular enrichment strategy offers a new way to improve the solution-based SERS detection technique for real-world practical applications in point-of-care settings and low-resource settings.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
Oliveira NS, Oliveira AF, Neves AA, Queiroz MELR. Development of a non-titration potentiometric method for the determination of acidity in vinegar. Talanta 2023; 256:124261. [PMID: 36641995 DOI: 10.1016/j.talanta.2023.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The acidity of a solution is associated with the concentration of Brønsted acids. This work proposes a new non-titrimetric potentiometric method using citrate buffer for the determination of vinegar acidity. The difference between the pH values before and after the addition of a diluted vinegar sample to 10 mmol L-1 citrate buffer (pH 5.5) was related to the acetic acid concentration. The dynamic range of the quadratic analytical curve was from 3.5 to 20 mmol L-1 (R2 = 0.998). The repeatability was 0.8% for acetic acid at 0.01 mol L-1. Comparison with the conventional titration method showed an error between 0.7% and 4.64% (n = 9) for analysis of commercial vinegar samples The behaviour of the system could be explained using the buffering function.
Collapse
Affiliation(s)
- N S Oliveira
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, 37560-000, Brazil
| | - A F Oliveira
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, 37560-000, Brazil.
| | - A A Neves
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, 37560-000, Brazil
| | - M E L R Queiroz
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG, 37560-000, Brazil
| |
Collapse
|
6
|
Ram R, Kumar D, Sarkar A. A smartphone-integrated portable rotating platform for estimation of concentration level of plasma-creatinine using whole human blood. Talanta 2023; 253:123960. [PMID: 36195027 DOI: 10.1016/j.talanta.2022.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
The measurement of creatinine concentration is performed to monitor the renal health. The devices available in modern clinical laboratories for measuring creatinine concentration are accurate and provide results rapidly but may be prohibitively expensive for resource-poor settings. Therefore, developing an inexpensive yet accurate device for measuring creatinine concentration is needed. Consequently, we developed a simple, affordable, and portable spinning disc for measuring plasma-creatinine concentration with 10 μL of whole human blood. 5 μL of the alkaline picrate solution is loaded into the device and rotated at 1000 rpm to transport this solution to the periphery of the microchannel. Further, 10 μL whole blood is loaded in the same channel and spun at 1300 rpm for 10 min. The creatinine in plasma reacts with alkaline picrate (Jaffe reaction), and the color of the mixture changes to yellow-orange color. The resulting color is captured with a smartphone, and creatinine concentration is estimated using an in-house developed app (CREA-SESE). The value of creatinine measured with the present device and the gold standard device are highly correlated (R2 = 0.998). The bias and standard deviation of the difference between the two measurements are 0.134 mg/dL and 0.143 mg/dL. This study demonstrates the feasibility of a simple, inexpensive, and portable rotating device for measuring creatinine concentration using 10 μL of whole human blood, which can easily be deployed to the underserved population in resource-constrained settings to monitor renal diseases.
Collapse
Affiliation(s)
- Rishi Ram
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dharmendra Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Arnab Sarkar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
7
|
Tůma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review. Anal Chim Acta 2022; 1225:340161. [DOI: 10.1016/j.aca.2022.340161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
|
8
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
9
|
Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular-based methods. ANALYTICAL SCIENCE ADVANCES 2021; 2:308-325. [PMID: 38716155 PMCID: PMC10989614 DOI: 10.1002/ansa.202000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/07/2023]
Abstract
Renal failure (RF) disease is ranked as one of the most prevalent diseases with severe morbidity and mortality. Early diagnosis of RF leads to subsequent control of disease to reduce the poor prognosis. The level of sera creatinine is considered as a significant biomarker for kidney biofunction, which is routinely detected by the Jaffe reaction. The normal range for creatinine in the blood may be 0.84-1.21 mg/dL. Low accuracy, insufficient sensitivity, explosive and toxicity of picric acid, and pseudo-interaction with nonspecific elements such as ammonium ions in the Jaffe method lead to the development of various techniques for precise detection of creatinine such as spectroscopic, electrochemical, and chromatography approaches and sensors based on enzymes, molecular imprinted polymer and nanoparticles, etc. Based on previously established results, they are trying to construct sensors with high accuracy, optimum sensitivity, acceptable linear/calibration range, and limit of detection, which are small in size and applicable by the patient him/herself (point-of-care testing). By comparing the results of research, a molecularly imprinted electrochemiluminescence-based sensor with linear/calibration range of 5-1 mMconcentration of creatinine and the detection limit of 0.5 nM has the best detectable resolution with 2 million measurable points. In this paper, we will review the recently developed methods for measuring creatinine concentration and renal biofunction.
Collapse
Affiliation(s)
- Ramin Narimani
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Seyed Hossein Rasta
- Medical Bioengineering Department, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Medical Physics, School of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Biomedical Physics, School of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Hamid Tayebi Khosroshahi
- Center for Chronic Kidney DiseaseTabriz University of Medical SciencesTabrizIran
- Department of Internal Medicine, Imam Reza HospitalTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ahmad Mobed
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Pedrozo-Peñafiel MJ, Lópes T, Gutiérrez-Beleño LM, Da Costa MEM, Larrudé DG, Aucelio RQ. Voltammetric determination of creatinine using a gold electrode modified with Nafion mixed with graphene quantum dots-copper. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111010. [DOI: 10.1016/j.msec.2020.111010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
|
12
|
Piestansky J, Galba J, Kovacech B, Parrak V, Kovac A, Mikuš P. Capillary electrophoresis and ultra‐high‐performance liquid chromatography methods in clinical monitoring of creatinine in human urine: A comparative study. Biomed Chromatogr 2020; 34:e4907. [DOI: 10.1002/bmc.4907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Comenius University in Bratislava Bratislava Slovak Republic
- Toxicological and Antidoping Center Comenius University in Bratislava Bratislava Slovak Republic
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Comenius University in Bratislava Bratislava Slovak Republic
- AXON Neuroscience R&D Bratislava Slovak Republic
| | - Branislav Kovacech
- AXON Neuroscience R&D Bratislava Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Science Bratislava Slovak Republic
| | - Vojtech Parrak
- AXON Neuroscience R&D Bratislava Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Science Bratislava Slovak Republic
| | - Andrej Kovac
- AXON Neuroscience R&D Bratislava Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Science Bratislava Slovak Republic
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Comenius University in Bratislava Bratislava Slovak Republic
- Toxicological and Antidoping Center Comenius University in Bratislava Bratislava Slovak Republic
| |
Collapse
|
13
|
Kumar P, Kamboj M, Jaiwal R, Pundir CS. Fabrication of an improved amperometric creatinine biosensor based on enzymes nanoparticles bound to Au electrode. Biomarkers 2019; 24:739-749. [PMID: 31617777 DOI: 10.1080/1354750x.2019.1682045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An improved amperometric creatinine biosensor was fabricated that dependent on covalent immobilisation of nanoparticles of creatininase (CANPs), creatinase (CINPs) and sarcosine oxidase (SOxNPs) onto gold electrode (AuE). The CANPs/CINPs/SOxNPs/AuE was characterised by scanning electron microscopy and cyclic voltammetry at various stages. The working electrode exhibited optimal response within 2 s at a potential of 0.6 V, against Ag/AgCl, pH 6.5 and 30 °C. A linear relationship was observed between creatinine concentration range, 0.1-200μM and biosensor response i.e. current in mA, under optimum conditions. Biosensor offered a low detection limit of 0.1 μM with long storage stability. Analytical recoveries of added creatinine in blood sera at 0.5 mM and at 1.0 mM concentrations, were 92.0% and 79.20% respectively. The precision i.e. within and between-batch coefficients of variation were 2.04% and 3.06% respectively. There was a good correlation (R2 = 0.99) between level of creatinine in sera, as calculated by the colorimetric method and present electrode. The CANPs/CINPs/SOxNPs/Au electrode was reused 200 times during the period of 180 days, with just 10% loss in its initial activity, while being stored at 4 °C, when not in use.HighlightsPrepared and characterised creatininase (CA), creatinase (CI) sarcosine oxidase (SOx) nanoparticles and immobilised them onto gold electrode (AuE) for fabrication of an improved amperometric creatinine biosensor.The biosensor displayed a limit of detection (LOD) of 0.1 μM with a linear working range of 0.1 μM-200 μM.The biosensor was evaluated and applied to measure elevated creatinine levels in sera from whom suffering from kidney and muscular disorders.The working electrode retained 90% of its initial activity, while being stored dry at 4 ˚C for 180 days.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Biochemistry, M.D. University, Rohtak, India
| | - Mohit Kamboj
- Department of Zoology, M.D. University, Rohtak, India
| | | | - C S Pundir
- Department of Biochemistry, M.D. University, Rohtak, India
| |
Collapse
|
14
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Electrophoresis 2018; 40:124-139. [PMID: 30010203 DOI: 10.1002/elps.201800248] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The publications concerning capacitively coupled contactless conductivity detection for the 2-year period from mid-2016 to mid-2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.
Collapse
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Zhou X, Ma X. Development of a Urinary Micro Particle Detection System Based on Spatial Coordinate Tracking Method. INT J PATTERN RECOGN 2017. [DOI: 10.1142/s0218001417500331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to accurately detect various micro particles in patient's urinary samples, a urinary micro particle detection system based on spatial coordinate tracking method was developed. A hierarchical microscopic image analysis method was described and the detailed spatial coordinate tracking algorithm was designed. The architecture and the procedure of proposed system were presented. Moreover, the prototype system was introduced and six patients' urinary samples were analyzed to verify the reliability and simplicity of unattended operation.
Collapse
Affiliation(s)
- Xiaomou Zhou
- School of Mechatronic Engineering, China University of Mining & Technology, Xuzhou, 221116, P. R. China
- School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou, 221116, P. R. China
| | - Xiaoping Ma
- School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou, 221116, P. R. China
| |
Collapse
|