1
|
Nikravesh N, Rippl A, Hoch T, Eitner S, Barton Alston A, Digigow R, Chortarea S, Diener L, Ayala-Nunez V, Wick P. Go with the flow: An in vitro model of a mature endothelium for the study of the bioresponse of IV injectable nanomedicines. Toxicol In Vitro 2024; 101:105953. [PMID: 39401704 DOI: 10.1016/j.tiv.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The first exposure of intravenously (IV) administered nanomedicines in vivo is to endothelial cells (ECs) lining blood vessels. While it is known that in vitro endothelium models to assess responses to circulating nanoparticles require shear stress, there is no consensus on when and how to include it in the experimental design. Our experimental workflow integrates shear stress by featuring a flow-induced mature endothelium (14 days) and a flow-mediated nanoparticle treatment. The mature endothelium model exhibited distinct features that indicated a structurally stable and quiescent monolayer. Upon treatment with iron sucrose under dynamic conditions, there was a lower nanoparticle uptake, lower cytotoxicity, and decreased expression of activation markers compared to the static control. This response was attributed to glycocalyx expression, predominantly observed on the mature endothelium. In conclusion, our proposed in vitro endothelium model can be leveraged to understand the dynamics of IV injectable nanomedicines at the initial nano-bio interface in veins immediately post-injection.
Collapse
Affiliation(s)
- Niusha Nikravesh
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Present address: Mosa Meat B.V., Maastricht, the Netherlands
| | - Alexandra Rippl
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Tobias Hoch
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Stephanie Eitner
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | | | | | - Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Liliane Diener
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Vanesa Ayala-Nunez
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| |
Collapse
|
2
|
Digigow R, Burgert M, Luechinger M, Sologubenko A, Rzepiela AJ, Handschin S, Alston AEB, Flühmann B, Philipp E. Nano-scale characterization of iron-carbohydrate complexes by cryogenic scanning transmission electron microscopy: Building the bridge to biorelevant characterization. Heliyon 2024; 10:e36749. [PMID: 39281449 PMCID: PMC11401109 DOI: 10.1016/j.heliyon.2024.e36749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Iron deficiency and iron deficiency anemia pose significant health challenges worldwide. Iron carbohydrate nanoparticles administered intravenously are a mainstay of treatment to deliver elemental iron safely and effectively. However, despite decades of clinical use, a complete understanding of their physical structure and the significance for their behavior, particularly at the nano-bio interface, is still lacking, underscoring the need to employ more sophisticated characterization methods. Our study used cryogenic Scanning Transmission Electron Microscopy (cryo-STEM) to examine iron carbohydrate nanoparticle morphology. This method builds upon previous research, where direct visualization of the iron cores in these complexes was achieved using cryogenic Transmission Electron Microscopy (cryo-TEM). Our study confirms that the average size of the iron cores within these nanoparticles is approximately 2 nm across all iron-based products studied. Furthermore, our investigation revealed the existence of discernible cluster-like morphologies, not only for ferumoxytol, as previously reported, but also within all the examined iron-carbohydrate products. The application of cryo-STEM for the analyses of product morphologies provides high-contrast and high-resolution images of the nanoparticles, and facilitates the characterization at liquid nitrogen temperature, thereby preserving the structural integrity of these complex samples. The findings from this study offer valuable insights into the physical structure of iron-carbohydrate nanoparticles, a crucial step towards unraveling the intricate relationship between the structure and function of this widely used drug class in treating iron deficiency. Additionally, we developed and utilized the self-supervised machine learning workflow for the image analysis of iron-carbohydrate complexes, which might be further expanded into a useful characterization tool for comparability studies.
Collapse
Affiliation(s)
| | - Michael Burgert
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| | | | - Alla Sologubenko
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrzej J Rzepiela
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| | - Erik Philipp
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| |
Collapse
|
3
|
Chavarría-Fernández SM, Jiménez-Alvarado R, Santos-López EM, Hernández-Hernandez AA, Cariño-Cortés R. Iron nanoparticles as food additives and food supplements, regulatory and legislative perspectives. Food Sci Biotechnol 2024; 33:1295-1305. [PMID: 38585565 PMCID: PMC10992046 DOI: 10.1007/s10068-024-01518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, the use of nanotechnology in food has gained great interest. Iron nanoparticles with unique chemical, physical and structural properties allow their potential use mainly as iron fortifiers, colorants and antimicrobial agents. However, in the market we can find only supplements and food colorants based on iron nanoparticles. Their use in food fortification has so far been focused only on in vitro and in vivo experimental studies, since the toxicological evaluation of these studies has so far been the basis for the proposals of laws and regulations, which are still in an early stage of development. Therefore, the aim of this work was to summarize the use of the different forms of iron nanoparticles (oxides, oxyhydroxides, phosphates, pyrophosphates and sulfates) as food additives and supplements and to resume the perspectives of legislation regarding the use of these types of nanoparticles in the food industry.
Collapse
Affiliation(s)
- Sara Madai Chavarría-Fernández
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Eva María Santos-López
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5 Colonia Carboneras, 42184 Mineral de la Reforma, Hidalgo México
| | - Aldahir Alberto Hernández-Hernandez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Raquel Cariño-Cortés
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| |
Collapse
|
4
|
Patel V, Aggarwal P, Sarvaiya J, Maity P, Ravichandiran V, Kaity S. Exploring novel and fast stability or sameness evaluation tool for different categories of injectable formulations. Eur J Pharm Sci 2023; 190:106551. [PMID: 37562551 DOI: 10.1016/j.ejps.2023.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/19/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
The establishment of drug product stability and sameness is the heart of generic formulation development. For regulatory filing, various instrumental methods are used on a case basis to establish the generic and innovator product sameness in multiple aspects. Here in the present study, we explored the applicability of the Time-correlated single photon counting (TCS-PC) technique as a fast, reliable, and nondestructive method for establishing the sameness of three different categories of injectable formulations, namely, Amphotericin B liposome for injection, enoxaparin injection, and iron sucrose injection. All three category formulations were evaluated in their native and artificially induced post degradation state to identify the discrimination power of the used instrumental techniques. The degradation of materials were confirmed by high performance liquid chromatography (HPLC). Based on the product category, pre and post-degradation samples were evaluated by selective instrumental methods like differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), fluorescence spectroscopy, particle size analysis by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), Raman spectroscopy, inductively coupled plasma optical-emission spectrometry (ICP-OES) and circular dichroism study. All pre and post-degradation samples were further analyzed by TCS-PC. We observed that, TCS-PC can identify the differences between the initial and post degradation samples in very less time with promising discrimination power across the different injectable formulation types. Thus TCS-PC can be used as a fast and promising stability or sameness evaluation tool for different injectable drug products.
Collapse
Affiliation(s)
- Vaibhavi Patel
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Punita Aggarwal
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, Gujarat, India; National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Jayrajsinh Sarvaiya
- Center of Excellence FTF, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Prasenjit Maity
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Santanu Kaity
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, Wick P, Neels A. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci 2023; 188:106521. [PMID: 37423578 DOI: 10.1016/j.ejps.2023.106521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).
Collapse
Affiliation(s)
- Leonard Krupnik
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, Glattbrug 8152, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Farkas N, Kramar JA. Dynamic Light Scattering Distributions by Any Means. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:10.1007/s11051-021-05220-6. [PMID: 39381776 PMCID: PMC11459661 DOI: 10.1007/s11051-021-05220-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2021] [Indexed: 10/10/2024]
Abstract
Dynamic light scattering (DLS) is an essential technique for nanoparticle size analysis and has been employed extensively for decades, but despite its long history and popularity, the choice of weighting and mean of the size distribution often appears to be picked ad-hoc to bring the results into agreement with other methods and expectations by any means necessary. Here, we critically discuss the application of DLS for nanoparticle characterization and provide much-needed clarification for ambiguities in the mean-value practice of commercial DLS software and documentary standards. We address the misleading way DLS size distributions are often presented, that is, as a logarithmically-scaled histogram of measured relative quantities. Central values obtained incautiously from this representation often lead to significant interpretation errors. Through the measurement of monomodal nanoparticle samples having an extensive range of sizes (5 nm to 250 nm) and polydispersity, we similarly demonstrate that the default outputs of a frequently-used DLS inversion method are ill chosen, as they are regularizer-dependent and significantly deviate from the cumulant z-average size. The resulting discrepancies are typically larger than 15 % depending on the polydispersity index of the samples. We explicitly identify and validate the harmonic mean as the central value of the intensity-weighted DLS size distribution that expresses the inversion results consistently with the cumulant results. We also investigate the extent to which the DLS polydispersity descriptors are representative of the distributional quality and find them to be unreliable and misleading, both for monodisperse reference materials and broad-distribution biomedical nanoparticles. These results overall are intended to bring essential improvements and to stimulate reexamination of the metrological capabilities and role of DLS in nanoparticle characterization.
Collapse
Affiliation(s)
- Natalia Farkas
- Theiss Research, 7411 Eads Ave, La Jolla, CA 92037
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - John A. Kramar
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
8
|
Karwasra R, Singh S, Raza K, Sharma N, Varma S. A brief overview on current status of nanomedicines for treatment of pancytopenia: Focusing on chemotherapeutic regime. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Demetzos C, Kavatzikidou P, Pippa N, Stratakis E. Nanomedicines and Nanosimilars: Looking for a New and Dynamic Regulatory "Astrolabe" Inspired System. AAPS PharmSciTech 2020; 21:65. [PMID: 31933006 DOI: 10.1208/s12249-019-1573-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The application of the nanotechnology in medicine and pharmaceutics opens new horizons in therapeutics. Several nanomedicines are in the market and an increasing number is in clinical trials. But which is the advantage of the medicines in nanoscale? The scientists and the regulatory authorities agree that the size and consequently the physiochemical/biological properties of nanomaterials play a key role in their safety and effectiveness. Additionally, all of them agree that a new scientific-based regulatory landscape is required for the establishment of nanomedicines in the market. The aim of this review is to investigate the parameters that the scientists and the regulatory authorities should take into account in order to build up a dynamic regulatory landscape for nanomedicines. For this reason, we propose an "astrolabe-like system" as the guide for establishing the regulatory approval process. Its function is based on the different physicochemical/biological properties in comparison to low molecular weight drugs.
Collapse
|
10
|
Development andIn-VitroEvaluation of pH Responsive Polymeric Nano Hydrogel Carrier System for Gastro-Protective Delivery of Naproxen Sodium. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/6090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current research work was carried out for gastro-protective delivery of naproxen sodium. Polyethylene glycol-g-poly (methacrylic acid) nanogels was developed through free radical polymerization technique. Formulation was characterized for swelling behaviour, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), and Thermal Gravimetric Analysis (TGA), Powder X-ray diffraction (PXRD), Zeta size distribution, and Zeta potential measurements, andin-vitrodrug release. pH dependent swelling was observed with maximum drug release at higher pH. PXRD studies confirmed the conversion of loaded drug from crystalline to amorphous form while Zeta size measurement showed size reduction. On the basis of these results it was concluded that prepared nanogels proved an effective tool for gastro-protective delivery of naproxen sodium.
Collapse
|
11
|
Nanomedicines in clinical practice: Are colloidal iron sucrose ready-to-use intravenous solutions interchangeable? Eur J Pharm Sci 2019; 131:69-74. [DOI: 10.1016/j.ejps.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
|
12
|
Capillary dynamic light scattering: Continuous hydrodynamic particle size from the nano to the micro-scale. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|