1
|
Zhao Y, Gong J, Shi R, Wu Z, Liu S, Chen S, Tao Y, Li S, Tian J. Application of proteomics in investigating the responses of plant to abiotic stresses. PLANTA 2025; 261:128. [PMID: 40332605 DOI: 10.1007/s00425-025-04707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION This review summarizes the application of proteomic techniques in investigating the responses of plant to abiotic stresses. In the natural environment, the plants are exposed to a diverse range of adverse abiotic factors that significantly impact their growth and development. The plants have evolved intricate stress response mechanisms at the genetic, protein, metabolic, and phenotypic levels to mitigate damage caused by unfavorable conditions. Proteomics serves as an effective tool for studying protein changes in plants and provides valuable insights into the physiological mechanisms underlying plant stress resistance. Several proteins involved in abiotic stress responses have been identified in plants, including transcription factors, protein kinases, ATP synthases, heat shock proteins, redox proteins, and enzymes in secondary metabolite pathways. Medicinal plants are a unique category of crops capable of synthesizing secondary metabolites, which play a crucial role in resisting abiotic stress and exhibit changes in content under stress conditions. In this review, we present an overview of proteomic tools employed for investigating the responses of plants to abiotic stresses and summarize alterations observed at the protein level under various abiotic stresses such as signal transduction, oxidative damage, carbohydrate and energy metabolism, protein and amino acid metabolism, cellular homeostasis, and enzyme involvement in secondary metabolism. This work aims to facilitate the application of proteomics techniques in plants research while enhancing our understanding of the response mechanisms exhibited by these plants towards abiotic stresses.
Collapse
Affiliation(s)
- Yu Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Jiahui Gong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Runjie Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Zerong Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shengzhi Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shuxin Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shouxin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| | - Jingkui Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| |
Collapse
|
2
|
Li Z, Li J, Shu Z, Xu M, Zhang Y, Gu J, Chen J, Li X, Wang M. Comparative metabolomic analysis provides insights into the metabolite profiles of wild and cultivated Dendrobium flexicaule. BMC PLANT BIOLOGY 2025; 25:217. [PMID: 39966726 PMCID: PMC11834277 DOI: 10.1186/s12870-025-06054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Dendrobium orchids (Dendrobium spp.) are valuable medicinal and attractive ornamental plants. Due to their limited wild resources, the size of the Dendrobium spp. population required for market demand primarily depends on artificial cultivation. However, the nutritional and therapeutic value of natural products may differ as growth conditions change. In this study, we profiled metabolites from wild and cultivated Dendrobium flexicaule (D. flexicaule) to explore the variations and interrelationships among bioactive components. RESULTS A total of 840 annotated metabolites were discovered, 231 of which differed significantly between wild and cultivated D. flexicaule. A comparative investigation found that the types and amounts of metabolites, particularly flavonoids, lipids, amino acids and their derivatives, varied between wild and cultivated D. flexicaule. Using metabolite correlation analysis, a series of differentially abundant metabolites were found to be significantly correlated with phytohormones such as abscisic acid (ABA), salicylic acid (SA), and zeatins, indicating that plant hormones play a role in the accumulation of specific metabolites. Furthermore, many distinct metabolites were identified as key active ingredients of traditional Chinese medicines. Additionally, 78 components were discovered to be active pharmaceutical substances against various diseases, probably contributing to the diverse medical values of wild and cultivated D. flexicaule. CONCLUSIONS Overall, comprehensively analyzed the metabolic profiles of wild and cultivated D. flexicaule in this study, serving as a theoretical and material foundation for quality control, health efficacy, and industrial development.
Collapse
Affiliation(s)
- Zhiyong Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Zufei Shu
- Guangdong Che Bai Ling National Reserve, Shaoguan, China
| | - Min Xu
- Agro-Technology Popularization center, Chongming District, Shanghai, China
| | - Yingming Zhang
- Guangdong Che Bai Ling National Reserve, Shaoguan, China
| | - Jingyu Gu
- Agro-Technology Popularization center, Chongming District, Shanghai, China
| | - Jianbing Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Xiaowen Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Lugo MA, Negritto MA, Crespo EM, Iriarte HJ, Núñez S, Espinosa LF, Pagano MC. Arbuscular Mycorrhizal Fungi as a Salt Bioaccumulation Mechanism for the Establishment of a Neotropical Halophytic Fern in Saline Soils. Microorganisms 2024; 12:2587. [PMID: 39770790 PMCID: PMC11677415 DOI: 10.3390/microorganisms12122587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Acrostichum aureum is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide. Furthermore, AMF/AM are well known for their capacity to bioaccumulate toxic elements and to alleviate biotic and abiotic stress (e.g., salinity stress) in their hosts. However, the mechanisms underlying AMF involvement in the halophytism of A. aureum and the structures where NaCl accumulates remain unknown. This study shows that A. aureum forms AM in margins of natural thermal ponds in Neotropical wetlands. All mature sporophytes were colonised by AMF, with high percentages for root length (ca. 57%), arbuscules (23), and hyphae (25) and low values for vesicles (2%). In A. aureum-AMF symbiosis, NaCl accumulated in AMF vesicles, and CaSO4 precipitated in colonised roots. Therefore, AM can contribute to the halophytic nature of this fern, allowing it to thrive in saline and thermal environments by capturing NaCl from fern tissues, compartmentalising it inside its vesicles, and precipitating CaSO4.
Collapse
Affiliation(s)
- Mónica A. Lugo
- Laboratorio de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, Bloque I, 2do Piso, Box 4, San Luis 5700, Argentina; (E.M.C.); (H.J.I.)
- Instituto de Investigaciones Biológicas (IMIBIO-CCT SL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis 5700, Argentina
| | - María A. Negritto
- Grupo de Investigación en Manejo y Conservación de Fauna, Flora y Ecosistemas Estratégicos Neotropicales MIKU, Universidad del Magdalena, Calle 29H3 No. 22-01, Sector San Pedro Alejandrino, Santa Marta 470004, Colombia; (M.A.N.); (S.N.)
| | - Esteban M. Crespo
- Laboratorio de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, Bloque I, 2do Piso, Box 4, San Luis 5700, Argentina; (E.M.C.); (H.J.I.)
- Laboratorio de Microscopía Electrónica de Barrido y Microanálisis (LABMEM), Bloque I, PB, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Hebe J. Iriarte
- Laboratorio de Micología, Diversidad e Interacciones Fúngicas (MICODIF), Área Ecología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, Bloque I, 2do Piso, Box 4, San Luis 5700, Argentina; (E.M.C.); (H.J.I.)
- Instituto de Investigaciones Biológicas (IMIBIO-CCT SL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis 5700, Argentina
| | - Samuel Núñez
- Grupo de Investigación en Manejo y Conservación de Fauna, Flora y Ecosistemas Estratégicos Neotropicales MIKU, Universidad del Magdalena, Calle 29H3 No. 22-01, Sector San Pedro Alejandrino, Santa Marta 470004, Colombia; (M.A.N.); (S.N.)
| | - Luisa F. Espinosa
- Laboratorio de Calidad Ambiental Marina (LABCAM) del Instituto de Investigaciones Marinas y Costeras (INVEMAR), Santa Marta 470006, Colombia;
| | - Marcela C. Pagano
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Esmaeili H, Mirjalili MH, Karami A, Nejad Ebrahimi S. Introducing the glycyrrhizic acid and glabridin rich genotypes from the cultivated Iranian licorice (Glycyrrhiza glabra L.) populations to exploit in production systems. Sci Rep 2024; 14:11034. [PMID: 38744977 PMCID: PMC11094143 DOI: 10.1038/s41598-024-61711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Currently, the stable, uniform, and highly efficient production of raw materials for pharmaceutical companies has received special attention. To meet these criteria and reduce harvesting pressure on the natural habitats of licorice (Glycyrrhiza glabra L.), cultivation of this valuable plant is inevitable. In the present study, to introduce the glycyrrhizic acid (GA)- and glabridin-rich genotypes from cultivated Iranian licorice, forty genotypes from eight high-potential wild populations were cultivated and evaluated under the same environmental conditions. The GA content varied from 5.00 ± 0.04 mg/g DW (TF2 genotype) to 23.13 ± 0.02 mg/g DW (I5 genotype). The highest and lowest glabridin content were found in the K2 (0.72 ± 0.021 mg/g DW) and M5 (0.02 ± 0.002 mg/g DW) genotypes, respectively. The rutin content in the leaves of the studied genotypes varied from 1.27 ± 0.02 mg/g DW in E4 to 3.24 ± 0.02 mg/g DW in BO5 genotypes. The genotypes from the Ilam population were characterized by higher vegetative growth and yield traits in the aerial parts and roots. The average root dry yield was 2.44 tons per hectare (t/ha) among the studied genotypes and a genotype from Ilam (I5) yielded the maximum value (3.08 ± 0.034 t/ha). The highest coefficient of variation among the genotypes was observed for leaf width (CV = 34.9%). The GA and glabridin-rich genotypes introduced in this study can be used in the future breeding programs to release new bred licorice cultivars.
Collapse
Affiliation(s)
- Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
5
|
Zhang Y, Lu J, Chang T, Tang X, Wang Q, Pan D, Wang J, Nan H, Zhang W, Liu L, Qi B. A bibliometric review of Glycyrrhizae Radix et Rhizoma (licorice) research: Insights and future directions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117409. [PMID: 37972909 DOI: 10.1016/j.jep.2023.117409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhizae Radix et Rhizoma, a Chinese herb known as licorice, is frequently incorporated in traditional Chinese medicine (TCM) formulations, due to its significant medicinal value and sweet taste. Despite licorice's merits, no systematic scientometric study has yet been conducted to analyze licorice research trends over the past 25 years. AIM OF THE STUDY We conducted this study with the aim to provide researchers with a comprehensive overview of research advances in the application of licorice as a TCM ingredient and to offer valuable insights to guide future endeavors in this research field. METHODS We selected licorice-related research papers published between 1997 and 2021 from the Web of Science Core Collection then conducted a scientometric analysis using VOSviewer and CiteSpace software tools. RESULTS A total of 4883 licorice-related publications, including 4511 research papers, 372 review papers, and their cited references, were included in the analysis. Most of these articles were authored by researchers in China (36.8%), including major contributors Wang Ying, Ye Min, and Zhang Yu. The Journal of Ethnopharmacology (impact factor = 5.4) hosted the greatest number of papers (145 articles). Keyword cluster analysis revealed three keyword categories indicating that current licorice research is focused on licorice quality control and identification of licorice active ingredients and associated pharmacological mechanisms. CONCLUSION This study provides a comprehensive overview of licorice-related research trends over the past 25 years as based on quantitative and qualitative analyses of published licorice-related articles. The results of this multi-level analysis of licorice research related to TCM formulations, chemical compositions, and pharmacological effects should provide valuable reference data and insights to guide future research endeavors in this field.
Collapse
Affiliation(s)
- Yushan Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tianying Chang
- EBM Office, The Affiliated Hospital to Changchun University of Chinese Medicine, China.
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Qing Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jian Wang
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hongmei Nan
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wei Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Gu J, Yao S, Ma M. Maternal Effects of Habitats Induce Stronger Salt Tolerance in Early-Stage Offspring of Glycyrrhiza uralensis from Salinized Habitats Compared with Those from Non-Salinized Habitats. BIOLOGY 2024; 13:52. [PMID: 38275728 PMCID: PMC10813447 DOI: 10.3390/biology13010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
(1) Wild Glycyrrhiza uralensis Fisch (licorice) seeds from different habitats are often mixed for cultivation. However, differences in the responses of seeds from different habitats to salt at the early-stage offspring stage are unclear. (2) Our objective was to evaluate the salt tolerance of G. uralensis germplasms by comparing differences in seed germination and seedling vigor in salinized (abandoned farmland and meadow) and non-salinized (corn farmland edge) soil habitats under different sodium chloride (NaCl) concentrations. (3) The germination rates and germination indexes of seeds from the two salinized habitats with 0-320 mmol·L-1 NaCl were higher and their germination initiation times were earlier. Only seeds from salinized habitats were able to elongate their germs at 240 mmol·L-1 NaCl. Seedlings from salinized habitats had higher fresh weights and relative water contents, while they exhibited lower accumulation of malondialdehyde and less cell electrolyte leakages. Under NaCl treatment, seedlings from the salinized habitats displayed higher superoxide dismutase, catalase, and peroxidase (SOD, CAT, and POD) activities and lower superoxide anion and hydrogen peroxide (O2- and H2O2) contents. Their comprehensive scores showed that the vigor of licorice seeds from salinized habitats was higher. (4) The salt tolerances of different wild G. uralensis seeds were different, and the offspring of licorice from salinized habitats had stronger early-stage salt tolerances.
Collapse
Affiliation(s)
| | | | - Miao Ma
- Key Laboratory of Xinjiang Plant Medicinal Resources Utilization, Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (J.G.); (S.Y.)
| |
Collapse
|
7
|
Yuan ML, Zhang MH, Shi ZY, Yang S, Zhang MG, Wang Z, Wu SW, Gao JK. Arbuscular mycorrhizal fungi enhance active ingredients of medicinal plants: a quantitative analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1276918. [PMID: 37929165 PMCID: PMC10623335 DOI: 10.3389/fpls.2023.1276918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are invaluable resources for mankind and play a crucial role in combating diseases. Arbuscular mycorrhizal fungi (AMF) are widely recognized for enhancing the production of medicinal active ingredients in medicinal plants. However, there is still a lack of comprehensive understanding regarding the quantitative effects of AMF on the accumulation of medicinal active ingredients. Here we conducted a comprehensive global analysis using 233 paired observations to investigate the impact of AMF inoculation on the accumulation of medicinal active ingredients. This study revealed that AMF inoculation significantly increased the contents of medicinal active ingredients by 27%, with a particularly notable enhancement observed in flavonoids (68%) and terpenoids (53%). Furthermore, the response of medicinal active ingredients in belowground organs (32%) to AMF was more pronounced than that in aboveground organs (18%). Notably, the AMF genus Rhizophagus exhibited the strongest effect in improving the contents of medicinal active ingredients, resulting in an increase of over 50% in both aboveground and belowground organs. Additionally, the promotion of medicinal active ingredients by AMF was attributed to improvements in physiological factors, such as chlorophyll, stomatal conductance and net photosynthetic rate. Collectively, this research substantially advanced our comprehension of the pivotal role of AMF in improving the medicinal active ingredients of plants and provided valuable insights into the potential mechanisms driving these enhancements.
Collapse
Affiliation(s)
- Ming-Li Yuan
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- School of Agriculture and Animal Husbandry Engineering, Zhoukou Vocational and Technical College, Henan, China
| | - Meng-Han Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhao-Yong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Meng-Ge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Zhen Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Shan-Wei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| | - Jia-Kai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, Henan, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan, China
| |
Collapse
|
8
|
Liu Z, Ma Y, Lv X, Li N, Li X, Xing J, Li C, Hu B. Abiotic factors and endophytes co-regulate flavone and terpenoid glycoside metabolism in Glycyrrhiza uralensis. Appl Microbiol Biotechnol 2023; 107:2671-2688. [PMID: 36864204 PMCID: PMC10033487 DOI: 10.1007/s00253-023-12441-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Recently, endorhizospheric microbiota is realized to be able to promote the secondary metabolism in medicinal plants, but the detailed metabolic regulation metabolisms and whether the promotion is influenced by environmental factors are unclear yet. Here, the major flavonoids and endophytic bacterial communities in various Glycyrrhiza uralensis Fisch. roots collected from seven distinct places in northwest China, as well as the edaphic conditions, were characterized and analyzed. It was found that the soil moisture and temperature might modulate the secondary metabolism in G. uralensis roots partially through some endophytes. One rationally isolated endophyte Rhizobium rhizolycopersici GUH21 was proved to promote the accumulation of isoliquiritin and glycyrrhizic acid significantly in roots of the potted G. uralensis under the relatively high-level watering and low temperature. Furthermore, we did the comparative transcriptome analysis of G. uralensis seedling roots in different treatments to investigate the detailed mechanisms of the environment-endophyte-plant interactions and found that the low temperature went hand in hand with the high-level watering to activate the aglycone biosynthesis in G. uralensis, while GUH21 and the high-level watering cooperatively promoted the in planta glucosyl unit production. Our study is of significance for the development of methods to rationally promote the medicinal plant quality. KEY POINTS: • Soil temperature and moisture related to isoliquiritin contents in Glycyrrhiza uralensis Fisch. • Soil temperature and moisture related to the hosts' endophytic bacterial community structures. • The causal relation among abiotic factors-endophytes-host was proved through the pot experiment.
Collapse
Affiliation(s)
- Zidi Liu
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Yunyang Ma
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Xuelian Lv
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, People's Republic of China
| | - Nannan Li
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Xiaohan Li
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Bing Hu
- Institute of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, People's Republic of China.
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology of China, Beijing, 102401, People's Republic of China.
| |
Collapse
|
9
|
Shang Z, Liu C, Qiao X, Ye M. Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): An update review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115686. [PMID: 36067839 DOI: 10.1016/j.jep.2022.115686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, called Gan-Cao in China, is one of the most popular traditional herbal medicines. It is derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. Licorice is recorded in the pharmacopoeias of China, Japan, US, and Europe. AIM This review updates research progress of licorice from the perspectives of chemical analysis, quality evaluation, drug metabolism, and pharmacokinetic studies from 2009 to April 2022. MATERIALS AND METHODS Both English and Chinese literatures were collected from databases including PubMed, Elsevier, Web of Science, and CNKI (Chinese). Licorice, extraction, structural characterization/identification, quality control, metabolism, and pharmacokinetics were used as keywords. RESULTS Newly developed analytical methods, including LC/UV, 2DLC, LC/MS, GC/MS, and mass spectrometry imaging (MSI) for chemical analysis of licorice were summarized. CONCLUSION This review provides a comprehensive summary on chemical analysis of licorice.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
10
|
Luo Z, Chen Z, Liu M, Yang L, Zhao Z, Yang D, Ding P. Phenotypic, chemical component and molecular assessment of genetic diversity and population structure of Morinda officinalis germplasm. BMC Genomics 2022; 23:605. [PMID: 35986256 PMCID: PMC9392303 DOI: 10.1186/s12864-022-08817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Morinda officinalis How (MO) is a perennial herb distributed in tropical and subtropical regions, which known as one of the “Four Southern Herbal Medicines”. The extent of genetic variability and the population structure of MO are presently little understood. Here, nine morphological traits, six chemical components and Single nucleotide polymorphism (SNP) markers were used in integrative research of MO germplasm variation among 88 individuals collected from ten populations across four geographical provinces of China. Results Both phenotype and chemical composition have significant genetic variation, and there is a certain correlation between them such as root diameter and the nystose content, as well as geographical distribution. The principal component analysis (PCA) showed the leaf length, leaf width, nystose, 1F-furanosaccharide nystose, and the section color were the major contributors to diversity. The cluster analysis based on phenotypic and oligosaccharide data distinguished three significant groups, which was consistent with the result of a corresponding analysis with 228,615 SNP markers, and importantly, they all showed a significant correlation with geographical origin. However, there was little similarity between two cluster results. The Shannon’s information index (I) varied from 0.17 to 0.53 with a mean of 0.37, suggesting a high level of genetic diversity in MO populations, which mainly existed among individuals within populations, accounting for 99.66% of the total according to the analysis of molecular variance (AMOVA) results. Each population also maintains the connection because of certain gene communication, so that the genetic differentiation between populations was not very significant. The STRUCTURE software was used to analyse the population structure and the result showed that 88 accessions were clustered into three groups, and 67% of them were pure type, which was also confirmed through PCA. Conclusions The comprehensive study of phenotypic, chemical and molecular markers will provide valuable information for future breeding plans and understanding the phylogenetic relationship of MO population. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08817-w.
Collapse
|
11
|
Lu Y, Yao G, Wang X, Zhang Y, Zhao J, Yu YJ, Wang H. Chemometric discrimination of the geographical origin of licorice in China by untargeted metabolomics. Food Chem 2022; 380:132235. [DOI: 10.1016/j.foodchem.2022.132235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
|
12
|
Chen J, Cheng XL, Li LF, Dai SY, Wang YD, Li MH, Guo XH, Wei F, Ma SC. A general procedure for establishing composite quality evaluation indices based on key quality attributes of traditional Chinese medicine. J Pharm Biomed Anal 2022; 207:114415. [PMID: 34655988 DOI: 10.1016/j.jpba.2021.114415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Licorice, a medicinal herb and food flavor ingredient, has been widely used in traditional Chinese medicine (TCM) for the past 4000 years. In this study, we propose a new quality evaluation approach for licorice quality control based on the key quality attributes commonly used in TCM. The high quality of TCM formulations is ensured by verifying the genuine origin and implementing good agricultural and collection practices for each medicinal herb. In our study, the genuine production area, the harvest season, and the number of growth years were considered the key quality attributes of TCM. To ensure the representativeness of our analysis, we obtained a total of 158 licorice sample batches that differed in the number of growth years, the location of the production areas, and the season for harvesting. Initially, the 158 sample batches were subjected to ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). A preliminary screen identified 11 licorice compounds related to the three key quality attributes of TCM . An analysis by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-TQ-MS/MS) verified the presence of 34 compounds in all licorice samples. These 34 compounds included the 11 compounds related to the three key quality attributes of the samples, along with other bioactive components identified in previous studies. After using UHPLC-TQ-MS/MS to assess the signal peak intensities of the 34 compounds, we selected 17 licorice compounds to establish sample content evaluation indices, which were determined by high-performance liquid chromatography at four different wavelengths in all 158 licorice sample batches. Finally, the screen identified nine compounds that were closely associated with the quality attributes of licorice based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Our results suggested that liquiritin and eight other compounds could be used as quality control indicators of licorice, which provided a foundation to establish the TCM quality composite evaluation index (TCM QCEI). In summary, this research concept can serve as a reference for research on quality markers and the evaluation of TCM.
Collapse
Affiliation(s)
- Jia Chen
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Sheng-Yun Dai
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Ya-Dan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Ming-Hua Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Xiao-Han Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
13
|
Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules 2021; 26:molecules26247490. [PMID: 34946568 PMCID: PMC8703938 DOI: 10.3390/molecules26247490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Taxilli Herba (TAXH) is an important traditional Chinese medicine with a long history, dating from the Eastern Han Dynasty to the present times. However, the active constituents in it that parasitize different hosts vary, affecting its clinical efficacy. Given the complexity of the host origins, evaluating the quality of TAXH is critical to ensure the safety and effectiveness of clinical medication. In the present study, a quantitative method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established, which simultaneously determined the content of 33 active constituents, including 12 flavonoids, 4 organic acids, 12 amino acids, and 5 nucleosides in 45 samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to classify and distinguish between TAXH and its adulterants, Tolypanthi Herba (TOLH). A hierarchical clustering analysis (HCA) was conducted combined with a heatmap to visually observe the distribution regularity of 33 constituents in each sample. Furthermore, gray relational analysis (GRA) was applied to evaluate the quality of samples to get the optimal host. The results demonstrated that TAXH excelled TOLH in quality as a whole. The quality of TAXH parasitizing Morus alba was also better, while those that were parasitic on Cinnamomum camphora and Glyptostrobus pensilis had relatively poor quality. This study may provide comprehensive information that is necessary for quality control and supply a scientific basis for further exploring the quality formation mechanism of TAXH.
Collapse
|
14
|
Yao C, Qi L, Zhong F, Li N, Ma Y. An integrated chemical characterization based on FT-NIR, GC-MS and LC-MS for the comparative metabolite profiling of wild and cultivated agarwood. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123056. [PMID: 34871920 DOI: 10.1016/j.jchromb.2021.123056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/29/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Agarwood is a well-known and precious traditional Chinese medicine, has been widely applied as drugs and spices for century. The large demand for this material has deeply stimulated the emergence of numerous cultivated products. However, it is difficult to distinguish wild agarwood from cultivated agarwood, and the chemical composition difference between them is not clear. In this study, an integrated method of Fourier transform near-infrared (FT-NIR), gas chromatography-mass spectrometry (GC-MS) and ultraperformance liquid chromatography Quadrupole-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS) was developed to explore chemical variation between wild and cultivated agarwood in combination with multivariate statistical analysis. Twenty-four wild and cultivated agarwood samples were collected from different regions. FT-NIR profiles were used to obtain the holistic metabolic characterization in combination with principal component analysis (PCA). A total of seventy-six and seventy-nine metabolites, including volatile components and 2-(2-phenethyl) chromones derivatives, were successfully identified by GC-MS and UHPLC-Q-Exactive Orbitrap/MS, respectively. Thereafter, the orthogonal-partial least square method-discriminant analysis (OPLS-DA) and variable importance in the projection (VIP) were used to screen potential characteristic chemical components (VIP > 1) in wild and cultivated agarwood, respectively. Finally, eight key chemical markers were putatively identified by two techniques to distinguish agarwood from different origins, which can be found that sesquiterpenes, aromatics, terpenoids, 2-(2-phenylethyl) chromones of the flidersia type (FTPECs) and tetrahydro-2-(2-phenylethyl) chromones (THPECs) are the most important metabolites. Summary, this research presented a comprehensive metabolomic variation between wild and cultivated agarwood on the basis of a multi-technology platform, which laid a foundation for distinguishing the two ecotypes of agarwood and was conducive to the quality control of this resource.
Collapse
Affiliation(s)
- Cheng Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Furong Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Na Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions. Arch Microbiol 2021; 203:3657-3665. [PMID: 33993326 DOI: 10.1007/s00203-021-02370-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Glycyrrhiza uralensis Fisch is a widely cultivated traditional Chinese medicine plant. In the present study, culture-independent microbial diversity analysis and functional prediction of rhizosphere microbes associated with wild and cultivated G. uralensis Fisch plant (collected from two locations) were carried. Soil physicochemical parameters were tested to assess their impact on microbial communities. A total of 4428 OTUs belonging to 41 bacterial phyla were identified. In general, cultivated sample sites were dominated by Actinobacteria whereas wild sample sites were dominated by Proteobacteria. The alpha diversity analysis showed the observed species number was higher in cultivated soil samples when compared with wild soil samples. In beta diversity analysis, it was noticed that the weighted-unifrac distance of two cultivated samples was closer although the samples were collected from different regions. Functional annotation based on PICRUST and FAPROTAX showed that the nitrogen metabolism pathway such as nitrate reduction, nitrogen fixation, nitrite ammonification, and nitrite respiration were more abundant in rhizosphere microorganisms of wild G. uralensis Fisch. These results also correlate in redundancy analysis results which show correlation between NO3--N and wild samples, which indicated that nitrogen nutrition conditions might be related to the quality of G. uralensis Fisch.
Collapse
|
16
|
Cai Z, Wang C, Chen C, Zou L, Chai C, Chen J, Tan M, Liu X. Quality evaluation of Lonicerae Japonicae Flos and Lonicerae Flos based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:129-140. [PMID: 31411767 PMCID: PMC7228296 DOI: 10.1002/pca.2882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) belong to different genera of Caprifoliaceae. They have been historically utilised as herbal medicine to treat various diseases. However, the comprehensive assessment of them still remains a challenge. OBJECTIVE To develop a comprehensive method of ultra-fast liquid chromatography-tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) coupled with multivariate statistical analysis for the quality evaluation and reveal differential components of LJF and LF. METHODOLOGY A validated UFLC-QTRAP-MS/MS method was established for simultaneous determination of 50 constituents, including 12 organic acids, 12 flavonoids, 6 iridoids, 3 saponins, 13 amino acids and 4 nucleosides. The obtained data were employed to multivariate statistical analysis. Principal component anlysis (PCA) and partial least squares determinant analysis (PLS-DA) were performed to classify and reveal differential components of samples; grey relational analysis (GRA) was introduced to assess the samples according to the contents of 50 constituents by calculating the relative correlation degree of each sample. RESULTS Fifty constituents were simultaneously determined of LJF and LF. Based on obtained data, PCA and PLS-DA were easy to distinguish samples and the classification of the samples was related to 11 chemical constituents. GRA implied the quality of LJF was better, and that the flower buds were superior to the flowers. Moreover, organic acids are the main components of samples. CONCLUSION This study not only established a method of simultaneous determination of multiple bioactive constituents in LJF and LF, but provided comprehensive information on the quality control of them. The developed method is conducive to distinguish orthologues or paralogues of them, and supply the support for "heterologous effects".
Collapse
Affiliation(s)
- Zhichen Cai
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Chengcheng Wang
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Cuihua Chen
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Lisi Zou
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Chuan Chai
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Jiali Chen
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Mengxia Tan
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Xunhong Liu
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
17
|
Guan R, Wang M, Guan Z, Jin CY, Lin W, Ji XJ, Wei Y. Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:588255. [PMID: 33330420 PMCID: PMC7710550 DOI: 10.3389/fbioe.2020.588255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Glycyrrhetinic acid (GA) is one of the main bioactive components of licorice, and it is widely used in traditional Chinese medicine due to its hepatoprotective, immunomodulatory, anti-inflammatory and anti-viral functions. Currently, GA is mainly extracted from the roots of cultivated licorice. However, licorice only contains low amounts of GA, and the amount of licorice that can be planted is limited. GA supplies are therefore limited and cannot meet the demands of growing markets. GA has a complex chemical structure, and its chemical synthesis is difficult, therefore, new strategies to produce large amounts of GA are needed. The development of metabolic engineering and emerging synthetic biology provide the opportunity to produce GA using microbial cell factories. In this review, current advances in the metabolic engineering of Saccharomyces cerevisiae for GA biosynthesis and various metabolic engineering strategies that can improve GA production are summarized. Furthermore, the advances and challenges of yeast GA production are also discussed. In summary, GA biosynthesis using metabolically engineered S. cerevisiae serves as one possible strategy for sustainable GA supply and reasonable use of traditional Chinese medical plants.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhonghua Guan
- School of Basic Medical Sciences (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Wang H, Song W, Tao W, Zhang J, Zhang X, Zhao J, Yong J, Gao X, Guo L. Identification wild and cultivated licorice by multidimensional analysis. Food Chem 2020; 339:128111. [PMID: 33152888 DOI: 10.1016/j.foodchem.2020.128111] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Licorice is known as a botanical source in medicine and a sweetening agent in food products. Commercial licorice is from the source of wild and cultivated G. uralensis. It was recognized that the material basis of wild and cultivated licorice is different. This study systematically investigated the difference between them by multidimensional analysis technology. The results showed that the content of starch grain, total dietary fibre (TDF), and 11 secondary metabolite components was significantly different in wild and cultivated licorice. principal component analysis (PCA) and orthogonal partial least square (OPLS-DA) analyses showed that the wild and cultivated licorice samples could be clearly separated based on the acquired data of microscopic, macromolecular substance and secondary metabolite analysis. The main markers were starch grain, isoliquiritin apioside, liquirtin apioside and TDF. Additionally, NIR spectroscpy combined with PLS-DA has demonstrated a suitable, fast and nondestructive methodology for authentication of wild and cultivated licorice.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wen Song
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juanhong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, PR China
| |
Collapse
|
19
|
Wang Q, Zuo Z, Huang H, Wang Y. Comparison and quantitative analysis of wild and cultivated Macrohyporia cocos using attenuated total refection-Fourier transform infrared spectroscopy combined with ultra-fast liquid chromatography. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117633. [PMID: 31605966 DOI: 10.1016/j.saa.2019.117633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/08/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Dried sclerotium of Macrohyporia cocos is a well-known and widely-consumed traditional Chinese medicine and is also used as dietary supplement. According to the differential treatment between cultivation and wild habitats in the market, the comparison and quantitative analysis of wild and cultivated M. cocos were performed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and ultra-fast liquid chromatography combined with partial least squares discriminant analysis and partial least squares regression (PLSR). 636 samples were used for the spectral scan and chromatographic analysis. Results indicated that contents of dehydrotumulosic acid, poricoic acid A and dehydrotrametenolic acid in cultivated samples were significantly different from wild samples in two medicinal parts. Differences of dehydropachymic acid and pachymic acid just existed in inner part samples (P < 0.05). Wild M. cocos samples could be discriminated with cultivated samples with >95.14% efficiency using spectral data. ATR-FTIR combined with PLSR provided satisfactory performance for content predictions of poricoic acid A and dehydrotrametenolic acid. This study demonstrated that growth patterns could affect the quality of inner part and epidermis of M. cocos, and ATR-FTIR was a promising technique for the identification of wild and cultivated M. cocos and the rapid determination of triterpene acids contents.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhitian Zuo
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
20
|
Wang C, Chen L, Cai ZC, Chen C, Liu Z, Liu X, Zou L, Chen J, Tan M, Wei L, Mei Y. Comparative Proteomic Analysis Reveals the Molecular Mechanisms Underlying the Accumulation Difference of Bioactive Constituents in Glycyrrhiza uralensis Fisch under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1480-1493. [PMID: 31899641 DOI: 10.1021/acs.jafc.9b04887] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Licorice (Glycyrrhiza uralensis Fisch) possesses a substantial share of the global markets for its unique sweet flavor and diverse pharmacological compounds. Cultivated licorice is widely distributed in northwest regions of China, covered with land with a broad range of salinities. A preliminary study indicated that suitable salt stress significantly increased the content of bioactive constituents in licorice. However, the molecular mechanisms underlying the influence of salinity on the accumulation of these constituents remain unclear, which hinders quality breeding of cultivated licorice. In our study, flavonoid-related structural genes were obtained, and most of them, such as phenylalanine ammonia-lyases, cinnamate 4-hydroxylases, 4-coumarate: CoA ligases, chalcone synthases, chalcone-flavanone isomerase, and flavonol synthase, showed high levels after salt treatment. In the biosynthesis of glycyrrhizin, three key enzymes (bAS, CYP88D6, and CYP72A154) were identified as differentially expressed proteins and remarkably upregulated in the salt-stressed group. Combining these results with the contents of 14 bioactive constituents, we also found that the expression patterns of those structural proteins were logically consistent with changes in bioactive constituent profiles. Thus, we believe that suitable salt stress increased the accumulation of bioactive constituents in licorice by upregulating proteins involved in the related biosynthesis pathways. This work provided valuable proteomic information for unraveling the molecular mechanism of flavonoid and glycyrrhizin metabolism and offered fundamental resources for quality breeding in licorice.
Collapse
Affiliation(s)
- Chengcheng Wang
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lihong Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zhi Chen Cai
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Cuihua Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zixiu Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Xunhong Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing 210023 , China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing 210023 , China
| | - Lisi Zou
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Jiali Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Mengxia Tan
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lifang Wei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yuqi Mei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
21
|
Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules 2020; 25:molecules25020340. [PMID: 31947701 PMCID: PMC7024327 DOI: 10.3390/molecules25020340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Forsythiae Fructus (FF) is a widely used folk medicine in China, Japan, and Korea. The distribution of bioactive constituents throughout the fruit segments has rarely been addressed, although mounting evidence suggests that plant secondary metabolites are synthesized and distributed regularly. The phytochemical profiles of three segments of FF (pericarp, stalk and seed) were firstly revealed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitative analysis of twenty-one bioactive constituents, including three phenylethanoid glycosides, five lignans, eight flavonoids, and five phenolic acids to explore the spatial distribution of bioactive constituents. Furthermore, the hierarchical clustering analysis (HCA) and one-way analysis of variance (one-way ANOVA) were conducted to visualize and verify the distribution regularity of twenty-one analytes among three segments. The results showed that phytochemical profiles of the three segments were similar, i.e., phenylethanoid glycosides covering the most part were the predominant compounds, followed by lignans, flavonoids and phenolic acids. Nevertheless, the abundance of twenty-one bioactive constituents among three segments was different. Specifically, phenylethanoid glycosides were highly expressed in the seed; lignans were primarily enriched in the stalk; flavonoids were largely concentrated in the pericarp, while the contents of phenolic acids showed no much difference among various segments. The research improves our understanding of distribution patterns for bioactive constituents in FF, and also complements some scientific data for further exploring the quality formation mechanism of FF.
Collapse
|
22
|
Dynamic Variations in Multiple Bioactive Constituents under Salt Stress Provide Insight into Quality Formation of Licorice. Molecules 2019; 24:molecules24203670. [PMID: 31614687 PMCID: PMC6832532 DOI: 10.3390/molecules24203670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC–MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions.
Collapse
|
23
|
Wang C, Cai Z, Shi J, Chen S, Tan M, Chen J, Chen L, Zou L, Chen C, Liu Z, Liu X. Comparative Metabolite Profiling of Wild and Cultivated Licorice Based on Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole-Time of Flight Tandem Mass Spectrometry. Chem Pharm Bull (Tokyo) 2019; 67:1104-1115. [DOI: 10.1248/cpb.c19-00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Zhichen Cai
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine
| |
Collapse
|
24
|
Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019; 24:molecules24101936. [PMID: 31137485 PMCID: PMC6572465 DOI: 10.3390/molecules24101936] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Lonicerae japonicae flos (LJF) and Lonicerae japonicae caulis (LJC) are derived from different parts of Lonicera japonica Thunb. (Caprifoliaceae), and have been used as herbal remedies to treat various diseases for thousands of years with confirmed curative effects. However, little attention has been paid to illustrating the differences in efficacy from the perspective of phytochemistry. In the present study, a simultaneous determination of 47 bioactive constituents, including 12 organic acids, 12 flavonoids, six iridoids, 13 amino acids and four nucleosides in 44 batches of LJF and LJC samples from different habitats and commercial herbs was established based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS). Moreover, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and t-test were then performed to classify and reveal the differential compositions of LJF and LJC according to the content of the tested constituents. The results demonstrated that the types and contents of chemical components (e.g., isochlorogenic acid A, chlorogenic acid, neochlorogenic acid, quinic acid, secologanic acid, luteoloside, loganin, secoxyloganin, morroniside and L-isoleucine) were significantly different, which may lead to the classification and the differences in efficacy of LJF and LJC. Our findings not only provide a basis for the comprehensive evaluation and intrinsic quality control of LJF and LJC, but also pave the way for discovering the material basis contributing to the different properties and efficacies of the two medicinal materials at the phytochemical level.
Collapse
|
25
|
Chen S, Shi J, Zou L, Liu X, Tang R, Ma J, Wang C, Tan M, Chen J. Quality Evaluation of Wild and Cultivated Schisandrae Chinensis Fructus Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules 2019; 24:molecules24071335. [PMID: 30987393 PMCID: PMC6479832 DOI: 10.3390/molecules24071335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Schisandrae Chinensis Fructus, also called wuweizi in China, was a widely used folk medicine in China, Korea, and Russia. Due to the limited natural resources and huge demand of wuweizi, people tend to cultivate wuweizi to protect this species. However, the quality of wild and cultivated herbs of the same species may change. Little attention has been paid to comparing wild and cultivated wuweizi based on simultaneous determination of its active components, such as lignans and organic acids. An analytical method based on UFLC-QTRAP-MS/MS was used for the simultaneous determination of 15 components, including 11 lignans (schisandrin, gomisin D, gomisin J, schisandrol B, angeloylgomisin H, schizantherin B, schisanhenol, deoxyschizandrin, γ-schisandrin, schizandrin C, and schisantherin) and 4 organic acids (quinic acid, d(−)-tartaric acid, l-(−)-malic acid, and protocatechuic acid) in wuweizi under different ecological environments. Principal components analysis (PCA), partial least squares discrimination analysis (PLS-DA), independent sample t-test, and gray relational analysis (GRA) have been applied to classify and evaluate samples from different ecological environments according to the content of 15 components. The results showed that the differential compounds (i.e., quinic acid, l-(−)-malic acid, protocatechuic acid, schisandrol B) were significantly related to the classification of wild and cultivated wuweizi. GRA results demonstrated that the quality of cultivated wuweizi was not as good as wild wuweizi. The protocol not just provided a new method for the comprehensive evaluation and quality control of wild and cultivated wuweizi, but paved the way to differentiate them at the chemistry level.
Collapse
Affiliation(s)
- Shuyu Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jingjing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Renmao Tang
- SZYY Group Pharmaceutical Limited, Taizhou 225500, China.
| | - Jimei Ma
- SZYY Group Pharmaceutical Limited, Taizhou 225500, China.
| | - Chengcheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mengxia Tan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jiali Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
26
|
Discrimination of Two Cultivars of Alpinia Officinarum Hance Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Chemometrics. SENSORS 2019; 19:s19030572. [PMID: 30704021 PMCID: PMC6387208 DOI: 10.3390/s19030572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/26/2022]
Abstract
Background: Alpinia officinarum Hance is both an herbal medicine and a condiment, and generally has different cultivars such as Zhutou galangal and Fengwo galangal. The appearance of these A. officinarum cultivars is similar, but their chemical composition and quality are different. It is therefore important to discriminate between different A. officinarum plants to ensure the consistency of the efficacy of the medicine. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two cultivars for fast and robust discrimination. Methods: Odor and volatile components of all A. officinarum samples were detected by the E-nose and gas chromatography-mass spectrometry (GC-MS), respectively. The E-nose sensors and GC-MS data were analyzed respectively by principal component analysis (PCA), the correlation between E-nose sensors and GC-MS data were analyzed by partial least squares (PLS). Results: It was found that Zhutou galangal and Fengwo galangal can be discriminated by combining the E-nose with PCA, and the E-nose sensors S2, S6, S7, S9 were important sensors for distinguishing different cultivars of A. officinarum. A total of 56 volatile components of A. officinarum were identified by the GC-MS analysis, and the composition and content of the volatile components from the two different A. officinarum cultivars were different, in particular the relative contents of 1,8-cineole and α-farnesene. The classification result by PCA analysis based on GC-MS data was consistent with the E-nose results. The PLS analysis demonstrated that the volatile terpene, alcohol and ester components primarily interacted with the sensors S2 and S7, indicating that particular E-nose sensors were highly correlated with some aroma constituents. Conclusions: Combined with advanced chemometrics, the E-nose detection technology can discriminate two cultivars of A. officinarum, with GC-MS providing support to determine the material basis of the E-nose sensors’ response.
Collapse
|