1
|
Kadry MO, Abd-Ellatef GEF, Ammar NM, Hassan HA, Hussein NS, Kamel NN, Soltan MM, Abdel-Megeed RM, Abdel-Hamid AHZ. Metabolomics integrated genomics approach: Understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin and ABCA1/EGFR/PI3k/PTEN crosstalk. Toxicol Rep 2025; 14:101884. [PMID: 39886047 PMCID: PMC11780168 DOI: 10.1016/j.toxrep.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Resistance of cancer cells, especially breast cancer, to therapeutic medicines represents a major clinical obstacle that impedes the stages of treatment. Carcinoma cells that acquire resistance to therapeutic drugs can reprogram their own metabolic processes as a way to overcome the effectiveness of treatment and continue their reproduction processes. Despite the recent developments in medical research in the field of drug resistance, which showed some explanations for this phenomenon, the real explanation, along with the ability to precisely predict the possibility of its occurrence in breast cancer cells, still necessitates a deep consideration of the dynamics of the tumor's response to treatment. For this purpose the current study, combined both in vitro metabolomics and in vivo genomics analysis as the most advanced omics technologies that can provide a potential en route for inventing novel strategies to perform prospective, prognostic and diagnostic biomarkers for drug resistance phenomena in mammary cancer. Doxorubicin is the currently available breast cancer chemotherapeutic medication nevertheless; it was demonstrated to cause drug resistance, which impairs patient survival and prognosis by prompting proliferation, cell cycle progression, and preventing apoptosis, interactions between signaling pathways triggered drug resistance. In this research, in vitro metabolomics analysis based on GC-MS coupled with multivariable analysis was performed on MCF-7 and DOX resistant cell lines; MCF-7/adr cultured cells in addition to, further in vivo confirmation via inducing mammary cancer in rats via two doses of 7,12-dimethylbenz(a) anthracene (DMBA) (50 mg/kg and 25 mg/kg) proceeded by doxorubicin (5 mg/kg) treatment for one month. The metabolomics in vitro results pointed out that mannitol, myoinositol, glycine, α-linolenic acid, oleic acid and stearic acid have AUC values: 0.14, 0.5, 0.7, 0.1, 0.02, -0.02 (1, 1) respectively. Glycine and myoinositol metabolites provided the best discriminative power in the wild and resistance MCF-7 phenotypes. Meanwhile, in vivo results revealed a significant crosstalk between the alternation in oxidative stress biomarkers as well as Arginase II tumor biomarker and the molecular assessment of ABCA1 and P53 gene expression that displayed a marked reduction in addition to, the obvious elevation in resistance and apoptotic biomarkers EGFR/PI3k/AKT/PTEN signaling pathway upon DMBA administration. Data revealed a significant alternation in signaling pathways related to resistance upon doxorubicin administration that affect lipid metabolism in breast cancer. In conclusion, Metabolomics integrated genomics analysis may be promising in understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin through modulating ABCA1/EGFR/P53/PI3k/PTEN signaling pathway thus metabolic biomarkers in addition to molecular biomarkers elucidate the challenges fronting profitable therapy of mammary cancer and an pioneering approaches that metabolomics compromises to improve recognizing drug resistance in breast carcinoma.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | | - Naglaa M. Ammar
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Heba A. Hassan
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Noha S. Hussein
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Nahla N. Kamel
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Maha M. Soltan
- National Research Center, Biology Unit, Central Laboratory for Pharmaceutical and drug industries Research Institute, Chemistry of Medicinal Plants Department, Al Bohouth Street, Dokki, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | |
Collapse
|
2
|
Du Z, Zhao X, Sun L, Chi B, Ma Z, Tian Z, Liu Y. Untargeted lipidomics-based study reveals the treatment mechanism of Qingxue Bawei tablets on atherosclerotic in ApoE -/- mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123889. [PMID: 37738809 DOI: 10.1016/j.jchromb.2023.123889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Qingxue Bawei (QXBW) tablets, a Mongolian medicine prescription, have proved to possess good lipid-lowering and antihypertensive effects in previous studies. However, the therapeutic effects and potential mechanisms of QXBW tablets on atherosclerosis (AS) have not been well studied yet. This study aimed to investigate the potential liver-protective mechanism of QXBW tablets on AS mice by hepatic lipidomics analysis. After 10 weeks of administration, serum and liver were collected for biochemical, histopathological, and lipid metabolomics analysis to evaluate the efficacy of the QXBW tablets on high-fat diet (HFD) induced mice. The experimental results indicated that QXBW tablets could ameliorate liver injury and inflammatory response in AS mice. Liver lipid data from different groups of mice were collected by UPLC-Q-Orbitrap-MS, and a total of 22 potential biomarkers with significant differences between the model and control groups were identified finally, of which 16 potential biomarkers were back-regulated after the QXBW tablets intervention. These 22 potential differential metabolic markers were mainly involved in glycerolipid metabolism, glycerophospholipid metabolism, and cholesterol ester metabolism pathways. The results of this study showed that serum inflammatory factors, liver function indices, and lipid metabolism disorders were positively alleviated in AS mice after QXBW tablets treatment.
Collapse
Affiliation(s)
- Zhen Du
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Zhao
- Pharmacy Department of Boshan District Hospital, Zibo City, Shandong Province, Zibo 255000, China
| | - Luping Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqing Chi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Ma
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuecheng Liu
- Shandong Academy of Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
4
|
Xiu M, Zhao Y, Wang X, Yuan S, Qin B, Sun J, Cui L, Song J. Regulation of SIRT1-TLR2/TLR4 pathway in cell communication from macrophages to hepatic stellate cells contribute to alleviates hepatic fibrosis by Luteoloside. Acta Histochem 2023; 125:151989. [PMID: 36529079 DOI: 10.1016/j.acthis.2022.151989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Regulating macrophage-hepatic stellate cells (HSCs) crosstalk through SIRT1-TLR2/TLR4 has contributed to the essence of new pharmacologic strategies to improve hepatic fibrosis. We investigated how Luteoloside (LUT), one of the flavonoid monomers isolated from Eclipta prostrata (L.) L., modulates macrophage-HSCs crosstalk during hepatic fibrosis. HSC-T6 or rat peritoneal macrophages were activated by TGF-β or LPS/ATP, and then treated with LUT or Sirtinol (SIRT1 inhibitor) for 6 h. Further, HSCs were cultured with the conditioned medium from the LPS/ATP activated peritoneal macrophages. In HSC-T6 or peritoneal macrophages, LUT could decrease the expressions of α-SMA, Collagen-I, the ratio of TIMP-1/MMP-13. LUT also significantly increased the expressions of SIRT1 and ERRα. And LUT significantly suppressed the releases of pro-inflammatory cytokines, including NLRP3, ASC, caspase-1, IL-1β, and regulated signaling TLR2/TLR4-MyD88 activation. The expressions of TLR2, TLR4, NLRP3, caspase-1, IL-1β, α-SMA were increased and the expression of ERRα was decreased by Sirtinol, indicated that LUT might mediate SIRT1 to regulate TLR4 expression and further alleviate inflammation and fibrosis. LUT could regulate SIRT1-mediated TLR4 and ECM in HSCs was reduced, when HSCs were cultured with conditioned medium. Hence, LUT could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines in activated HSCs or macrophages. In conclusion, LUT might be a promising candidate that regulating SIRT1-TLR2/TLR4 signaling in macrophages interacting with HSCs during hepatic fibrosis.
Collapse
Affiliation(s)
- Mengxue Xiu
- College of Pharmacy, Baicheng Medical College, Baicheng 137000, China
| | - Yiming Zhao
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Xuehui Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Siyu Yuan
- Siping Central People's Hospital, Siping City, Jilin Province 136000, China
| | - Bofeng Qin
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Long Cui
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
5
|
Bai F, Wang X, Niu X, Shen G, Ye J. Lipidomic Profiling Reveals the Reducing Lipid Accumulation Effect of Dietary Taurine in Groupers ( Epinephelus coioides). Front Mol Biosci 2022; 8:814318. [PMID: 35004860 PMCID: PMC8740052 DOI: 10.3389/fmolb.2021.814318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
A lipidomic analysis was conducted to provide the first detailed overview of lipid molecule profiles in response to dietary lipid and taurine and associations of liver lipid-lowering effects of dietary taurine with lipid molecular species and the positional distributions of fatty acids in the liver of juvenile orange-spotted groupers (Epinephelus coioides). The results indicated that the liver was more sensitive to varied dietary lipid and taurine contents than the muscle with regard to lipid molecules. A total of 131 differential lipid molecules (DLMs) were observed in the liver of groupers when dietary taurine was increased from 0 to 1% at 15% lipid, among which all the up and down-regulated DLMs are phospholipids (PLs) and triglycerides (TGs), respectively. The liver content of TGs containing 18:2n-6 attached at the sn-2 and sn-3 positions on the glycerol backbone increased with increasing dietary lipid from 10 to 15% but decreased with increasing dietary taurine from 0 to 1%. Therefore, dietary taurine can not only reduce lipid accumulation through decreasing the contents of TGs containing 18:2n-6 at the sn-2 and sn-3 positions but also enhance the anti-inflammatory capacity and health status of groupers. This study will also provide a new insight into the function of taurine in farmed fish.
Collapse
Affiliation(s)
- Fakai Bai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingjian Niu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Guiping Shen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
6
|
Wang M, Ma H, Guan S, Luo T, Zhao C, Cai G, Zheng Y, Jia X, Di J, Li R, Cui H. Astaxanthin from Haematococcus pluvialis alleviates obesity by modulating lipid metabolism and gut microbiota in mice fed a high-fat diet. Food Funct 2021; 12:9719-9738. [PMID: 34664590 DOI: 10.1039/d1fo01495a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a global chronic disease epidemic that is attributed to the abnormal accumulation of lipids in adipose tissue. Astaxanthin (AST) from Haematococcus pluvialis, a natural carotenoid, exhibits antioxidant, anti-lipogenic, anti-diabetic and other potent effects. Herein, we evaluated the effect of AST to illuminate its efficacy and mechanisms in high-fat diet-fed mice. AST supplementation not only significantly decreased body weight and lipid droplet accumulation in the liver but also modulated liver function and serum lipid levels. Lipidomic analysis revealed that 13 lipids might be potential biomarkers responsible for the effects of AST in lipid reduction, such as total free fatty acids (FFAs), triacylglycerols (TGs) and cholesterol esters (CEs). The gut microbiota sequencing results indicated that AST alleviated HFD-induced gut microbiota dysbiosis by optimizing the ratio of Firmicutes to Bacteroides and inhibiting the abundance of obesity-related pathogenic microbiota while promoting the abundance of probiotics related to glucose and lipid metabolism. In addition, qRT-PCR demonstrated that AST could regulate the gene expressions of the AMPK/SREBP1c pathway by downregulating lipogenesis correlated-genes and upregulating the lipid oxidant related-gene. The present study revealed the new function of AST in regulating lipid metabolism, which provided a theoretical basis for the development of high-quality AST functional food and the application of diet active substances in obesity, as demonstrated in mice.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Haotian Ma
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Siyu Guan
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tao Luo
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Guiping Cai
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Weifang 261000, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Jianbing Di
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
7
|
Liu H, Chen T, Xie X, Wang X, Luo Y, Xu N, Sa Z, Zhang M, Chen Z, Hu X, Li J. Hepatic Lipidomics Analysis Reveals the Ameliorative Effects of Highland Barley β-Glucan on Western Diet-Induced Nonalcoholic Fatty Liver Disease Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9287-9298. [PMID: 34347479 DOI: 10.1021/acs.jafc.1c03379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by marked imbalances in lipid storage and metabolism. Because the beneficial health effects of cereal β-glucan (BG) include lowering cholesterol and regulating lipid metabolism, BG may alleviate the imbalances in lipid metabolism observed during NAFLD. The aim of our study was to investigate whether BG from highland barley has an effect on western diet-induced NAFLD in mice. Using lipidomics, we investigated the underlying mechanisms of BG intervention, and identified potential lipid biomarkers. The results reveal that BG (300 mg/kg body weight) significantly alleviated liver steatosis. Lipidomics analysis demonstrated that BG also altered lipid metabolic patterns. We were able to identify 13 differentially regulated lipid species that may be useful as lipid biomarkers. Several genes in the hepatic lipid and cholesterol metabolism pathways were also modulated. These findings provide evidence that BG ameliorates NAFLD by altering liver lipid metabolites and regulating lipid metabolism-related genes.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Tao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xiaoqing Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Yiwen Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Nan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Zhen Sa
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
8
|
Bayram HM, Majoo FM, Ozturkcan A. Polyphenols in the prevention and treatment of non-alcoholic fatty liver disease: An update of preclinical and clinical studies. Clin Nutr ESPEN 2021; 44:1-14. [PMID: 34330452 DOI: 10.1016/j.clnesp.2021.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The prevention and treatment of non-alcoholic fatty liver disease (NAFLD) has become one of the most urgent problems to be solved. To date, only a lifestyle modification related to diet and physical activity is considered for these patients. Polyphenols are a group of plant natural products that when regularly consumed has been related to a reduction in the risk of several metabolic disorders associated with NAFLD. In this study, we aimed to present an overview of the relationship between polyphenols and NAFLD with current approaches. METHODS We performed a comprehensive literature search for articles on polyphenols and NAFLD published in English between January 2018 to August 2020. Keywords included in this review: "Phenolic" OR "Polyphenol" AND "Non-Alcoholic Fatty Liver Disease". The editorials, communications and conference abstracts were excluded. RESULTS Different polyphenols decreased the pro-inflammatory cytokines in both serum and liver that contribute to a decrease in fatty liver dysfunction. Additionally, polyphenols may improve the regulation of adipokines and prevent hepatic steatosis. According to human clinical studies, polyphenols are promising for NAFLD patients and associated diseases that lead to NAFLD. CONCLUSION Preclinical and clinical studies suggest that various polyphenols could prevent steatosis and its progression to non-alcoholic steatohepatitis, as well as ameliorate NAFLD. However, more clinical studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Hatice Merve Bayram
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Fuzail Mohammed Majoo
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Arda Ozturkcan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| |
Collapse
|
9
|
Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, Gonzalez FJ. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2020; 10:3-18. [PMID: 31993304 PMCID: PMC6977016 DOI: 10.1016/j.apsb.2019.11.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called “multiple organs-multiple hits” is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| | - Nana Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| |
Collapse
|
10
|
Dong Y, Lu H, Li Q, Qi X, Li Y, Zhang Z, Chen J, Ren J. (5R)-5-hydroxytriptolide ameliorates liver lipid accumulation by suppressing lipid synthesis and promoting lipid oxidation in mice. Life Sci 2019; 232:116644. [DOI: 10.1016/j.lfs.2019.116644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
|