1
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 PMCID: PMC11976421 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
2
|
Wang H, Zhao Y, Liu H, Zhang X, Lv S, Zhou T, Cui H, Zhao J, Li X. Untargeted metabolomics revealed the mechanism of aucubin on glucocorticoid-induced osteoporosis in mice through modulating arachidonic acid metabolism. J Pharm Biomed Anal 2024; 248:116273. [PMID: 38878451 DOI: 10.1016/j.jpba.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) represents the most prevalent form of secondary osteoporosis. Aucubin (AU), a principal active component found in traditional herbal medicines such as Eucommia ulmoides, has been demonstrated to enhance osteoblast differentiation. Nonetheless, the precise therapeutic effects of AU on GIOP and the complex underlying regulatory mechanisms warrant further investigation. We first established a GIOP model in female mice and then assessed the therapeutic effects of AU using micro-CT analysis, biomechanical testing, measurements of serum calcium (Ca) and phosphorus (P) levels, and histological analyses using Hematoxylin and Eosin (HE) and Masson staining. Subsequently, non-targeted metabolomics was employed in order to study the effects of AU on serum metabolites in GIOP mice. The levels of the factors related to these metabolites were quantified using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot analyses. Finally, the effects of AU on osteoblastic and osteoclastic differentiation were examined. We found that AU significantly ameliorated bone microarchitecture and strength in GIOP mice. It mitigated pathological damages such as impairment of trabecular bone structure and reduction in collagen fibers, while concurrently elevating serum levels of Ca and P. Non-targeted metabolomics revealed that Arachidonic acid (AA) metabolism serves as a common pathway between the control and GIOP groups, as well as between the high-dose AU (AUH) and GIOP groups. AU notably upregulates prostaglandin-endoperoxide synthase 2 (PTGS2) and microsomal prostaglandin-E synthase 1 (PTGES) expression and downregulates prostaglandin-H2 D-isomerase (PTGDS) expression. Furthermore, AU treatment increased the expression of runt-related transcription factor 2 (Runx2) and transcription factor Sp7 (Osterix), enhanced serum alkaline phosphatase (ALP) activity, and reduced osteoclast expression. These results indicate that AU is a potential drug for treating GIOP, and its mechanism is related to regulating AA metabolism and promoting osteoblast differentiation. However, the key targets of AU in treating GIOP still need further exploration.
Collapse
Affiliation(s)
- Hengjun Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Yunchao Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Huan Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Xuelei Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Shuquan Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Osteoarthrosis Research, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China; Department of Diabetes, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Tingting Zhou
- Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China; Department of Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Osteoarthrosis Research, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China; Department of Hebei Province Integrated Traditional Chinese and Western Medicine 3D Printing Technology Innovation Center, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan Province 650500, China
| | - Jianyong Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050091, China; Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China.
| | - Xiaoming Li
- Department of Orthopedics, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China; Department of Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Osteoarthrosis Research, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China; Department of Hebei Province Integrated Traditional Chinese and Western Medicine 3D Printing Technology Innovation Center, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, Hebei Province 061013, China.
| |
Collapse
|
3
|
Xu W, Jiang T, Ding L, Jiang Y, Zhang L, Xia T, Xin H. Bajitianwan formula extract ameliorates bone loss induced by iron overload via activating RAGE/PI3K/AKT pathway based on network pharmacology and transcriptomic analysis. J Nat Med 2024; 78:488-504. [PMID: 38530577 DOI: 10.1007/s11418-024-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 03/28/2024]
Abstract
Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Weifan Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Tao Jiang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Luying Ding
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Hailiang Xin
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Li T, Hu X, Fan L, Yang Y, He K. Myricanol improves metabolic profiles in dexamethasone induced lipid and protein metabolism disorders in mice. Biomed Pharmacother 2024; 174:116557. [PMID: 38583337 DOI: 10.1016/j.biopha.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lingyang Fan
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Yang
- chool of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
5
|
Vimalraj S, Govindarajan D, Sudhakar S, Suresh R, Palanivel P, Sekaran S. Chitosan derived chito-oligosaccharides promote osteoblast differentiation and offer anti-osteoporotic potential: Molecular and morphological evidence from a zebrafish model. Int J Biol Macromol 2024; 259:129250. [PMID: 38199551 DOI: 10.1016/j.ijbiomac.2024.129250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level. Moreover, COS induces the upregulation of molecular markers, including Runx2, Type I collagen, ALP, osteocalcin, and osteonectin in mouse MSCs. Zebrafish studies further demonstrate COS's anti-osteoporotic effects, showcasing its ability to expedite fin fracture repair, vertebral mineralization, and bone mineralization in dexamethasone-induced osteoporosis models. The scale regenerative study reveals that COS mitigates the detrimental effects of dexamethasone induced osteoclastic activity, reducing TRAP and hydroxyproline levels while elevating the expression of Runx2a MASNA isoform, collagen2α, OC, and ON mRNAs. Additionally, COS enhances calcium and phosphorus levels in regenerated scales, impacting the bone-healthy calcium-to‑phosphorus ratio. The study also suggests that COS modulates the MMP3-Osteopontin-MAPK signaling pathway. Overall, this comprehensive investigation underscores the potential of COS to prevent and treat osteoporosis. Its multifaceted cellular and molecular effects, combined with in vivo bone regeneration and repair, propose that COS may be effective in addressing osteoporosis and related bone disorders. Nonetheless, further research is imperative to unravel underlying mechanisms and optimize clinical applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Dharunya Govindarajan
- Department of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600 036, Tamil Nadu, India
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Renugaa Suresh
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | | | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
6
|
Zhao S, Guo L, Cui W, Zhao Y, Wang J, Sun K, Zhang H, Sun Y, Zhao D, Hu X, Huang Z, Lu S, Wang Y, Liu X, Zhang W, Shu B. Monotropein Protects Mesenchymal Stem Cells from Lipopolysaccharide-Induced Impairments and Promotes Fracture Healing in an Ovariectomized Mouse Model. Calcif Tissue Int 2023; 113:558-570. [PMID: 37747519 DOI: 10.1007/s00223-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023]
Abstract
Monotropein is one of the active ingredients in Morinda Officinalis, which has been used for the treatment in multiple bone and joint diseases. This study aimed to observe the in vitro effects of Monotropein on osteogenic differentiation of lipopolysaccharide treated bone marrow mesenchymal stem cells (bMSCs), and the in vivo effects of local application of Monotropein on bone fracture healing in ovariectomized mice. Lipopolysaccharide was used to set up the inflammatory model in bMSCs, which were treated by Monotropein. Molecular docking analysis was performed to evaluate the potential interaction between Monotropein and p65. Transverse fractures of middle tibias were established in ovariectomized mice, and Monotropein was locally applied to the fracture site using injectable hydrogel. Monotropein enhanced the ability of primary bMSCs in chondro-osteogenic differentiation. Furthermore, Monotropein rescued lipopolysaccharide-induced osteogenic differentiation impairment and inhibited lipopolysaccharide-induced p65 phosphorylation in primary bMSCs. Docking analysis showed that the binding activity of Monotropein and p65/14-3-3 complex is stronger than the selective inhibitor of NF-κB (p65), DP-005. Local application of Monotropein partially rescued the decreased bone mass and biomechanical properties of callus or healed tibias in ovariectomized mice. The expressions of Runx2, Osterix and Collagen I in the 2-week callus were partially restored in Monotropein-treated ovariectomized mice. Taking together, local application of Monotropein promoted fracture healing in ovariectomized mice. Inhibition of p65 phosphorylation and enhancement in osteogenesis of mesenchymal stem cells could be partial of the effective mechanisms.
Collapse
Affiliation(s)
- Shitian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Liqiang Guo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Wei Cui
- Caolu Community Health Service Center, Shanghai, 200120, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
7
|
Huang H, Chen J, Lin Z, Lin X. Rubiadin Regulates Bone Metabolism in Ovariectomized Rat Model by Inhibition of osteoclast formation and differentiation. ChemistrySelect 2023. [DOI: 10.1002/slct.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hui Huang
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Jian Chen
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Zhengkun Lin
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| | - Xiaomei Lin
- Department of Rehabilitation Zhongshan Hospital Xiamen University Xiamen 361004 China
| |
Collapse
|
8
|
Chen S, He W. Metabolome-Wide Mendelian Randomization Assessing the Causal Relationship Between Blood Metabolites and Bone Mineral Density. Calcif Tissue Int 2023; 112:543-562. [PMID: 36877247 DOI: 10.1007/s00223-023-01069-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
Mounting evidence has supported osteoporosis (OP) as a metabolic disorder. Recent metabolomics studies have discovered numerous metabolites related to bone mineral density (BMD). However, the causal effects of metabolites on BMD at distinct sites remained underexplored. Leveraging genome-wide association datasets, we conducted two-sample Mendelian randomization (MR) analyses to investigate the causal relationship between 486 blood metabolites and bone mineral density at five skeletal sites including heel (H), total body (TB), lumbar spine (LS), femoral neck (FN), and ultra-distal forearm (FA). Sensitivity analyses were performed to test the presence of the heterogeneity and the pleiotropy. To exclude the influences of reverse causation, genetic correlation, and linkage disequilibrium (LD), we further performed reverse MR, linkage disequilibrium regression score (LDSC), and colocalization analyses. In the primary MR analyses, 22, 10, 3, 7, and 2 metabolite associations were established respectively for H-BMD, TB-BMD, LS-BMD, FN-BMD, and FA-BMD at the nominal significance level (IVW, P < 0.05) and passing sensitivity analyses. Among these, one metabolite, androsterone sulfate showed a strong effect on four out of five BMD phenotypes (Odds ratio [OR] for H-BMD = 1.045 [1.020, 1.071]; Odds ratio [OR] for TB-BMD = 1.061 [1.017, 1.107]; Odds ratio [OR] for LS-BMD = 1.088 [1.023, 1.159]; Odds ratio [OR] for FN-BMD = 1.114 [1.054, 1.177]). Reverse MR analysis provided no evidence for the causal effects of BMD measurements on these metabolites. Colocalization analysis have found that several metabolite associations might be driven by shared genetic variants such as mannose for TB-BMD. This study identified some metabolites causally related to BMD at distinct sites and several key metabolic pathways, which shed light on predictive biomarkers and drug targets for OP.
Collapse
Affiliation(s)
- Shuhong Chen
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China.
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Duan Y, Su YT, Ren J, Zhou Q, Tang M, Li J, Li SX. Kidney tonifying traditional Chinese medicine: Potential implications for the prevention and treatment of osteoporosis. Front Pharmacol 2023; 13:1063899. [PMID: 36699069 PMCID: PMC9868177 DOI: 10.3389/fphar.2022.1063899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The aging global population is increasingly affected by osteoporosis (OP), which is one of the most significant threats to the elderly. Moreover, its prevention and treatment situations have become increasingly severe. Therefore, it is imperative to develop alternatives or complementary drugs for preventing and treating osteoporosis. Kidney tonifying traditional Chinese medicine (KTTCM) has been used for the treatment of osteoporosis for a long time. Pharmacological studies have shown that kidney tonifying traditional Chinese medicine can promote osteoblasts, inhibit osteoclasts, and regulate the level of estrogen and plays vital roles in stimulating osteogenesis, restraining adipogenesis of marrow mesenchymal stem cells (MSCs), regulating the metabolism of calcium and phosphorus, and inhibiting oxidative stress. These effects are mediated by OPG/RANKL/RANK, BMP/Smads, MAPKs, and Wnt/β-catenin systems. To develop a safe, synergistic, effective, and homogenized TCM formula with robust scientific evidence to provide faster and more economical alternatives, the anti-osteoporosis ingredients and pharmacological mechanisms of kidney tonifying traditional Chinese medicine are recapitulated from the perspective of molecular and cell biology, and the safety and toxicity of kidney tonifying traditional Chinese medicine have also been reviewed in this paper.
Collapse
Affiliation(s)
- Yan Duan
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Yu-Ting Su
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Jie Ren
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Qun Zhou
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Min Tang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Juan Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Shun-Xiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China,Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China,*Correspondence: Shun-Xiang Li,
| |
Collapse
|
10
|
Wu P, Jiao F, Huang H, Liu D, Tang W, Liang J, Chen W. Morinda officinalis polysaccharide enable suppression of osteoclastic differentiation by exosomes derived from rat mesenchymal stem cells. PHARMACEUTICAL BIOLOGY 2022; 60:1303-1316. [PMID: 35801991 PMCID: PMC9272931 DOI: 10.1080/13880209.2022.2093385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Morinda officinalis F.C. How. (MO) (Rubiaceae) can strengthen bone function. OBJECTIVE To examine the functional mechanism and effect of MO polysaccharides (MOPs) in rats with glucocorticoid-induced osteoporosis (GIOP). MATERIALS AND METHODS Rats with GIOP were treated with 5, 15 or 45 mL/kg of MOP [n = 15 for each dose, intraperitoneal (i.p.) injection every other day for 8 weeks]. The body weight of rats and histomorphology of bone tissues were examined. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exo) were collected and identified. Bone marrow-derived macrophages (BMMs) were induced to differentiate into osteoclasts and treated with BMSC-Exo for in vitro studies. RESULTS MOP reduced the body weight (5, 15, or 45 mg/kg MOP vs. phosphate-buffered saline: 8%, 15% and 25%, p < 0.01), elevated the bone volume to tissue volume (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular number (Tb.N) and mean connectivity density (Conn.D) (40-86%, p < 0.01), decreased the mean trabecular separation/spacing (Tb.Sp) (22-37%, p < 0.01), increased the cortical bone continuity (35-90%, p < 0.01) and elevated RUNX family transcription factor 2 and RANK levels (5-12%, p < 0.01), but suppressed matrix metallopeptidase 9 and cathepsin K levels (9-20%, p < 0.01) in femur tissues. BMSC-Exo from MOP-treated rats (MOP-Exo) suppressed osteoclastic differentiation and proliferation of BMMs. The downregulation of microRNA-101-3p (miR-101-3p) or the upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) blocked the functions of MOP-Exo. DISCUSSION AND CONCLUSIONS MOP inhibits osteoclastic differentiation and could potentially be used for osteoporosis management. This suppression may be enhanced by the upregulation of miR-101-3p or the inhibition of PTGS2.
Collapse
Affiliation(s)
- Peiyu Wu
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
- CONTACT Peiyu Wu Wen Chen Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, No. 87, Yingbin Road, Huadu District, Guangzhou510800, Guangdong, PR China
| | - Feng Jiao
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - He Huang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Donghua Liu
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Wang Tang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Jie Liang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Wen Chen
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
- CONTACT Peiyu Wu Wen Chen Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, No. 87, Yingbin Road, Huadu District, Guangzhou510800, Guangdong, PR China
| |
Collapse
|
11
|
Su J, Chen T, Liao D, Wang Y, Su Y, Liu S, Chen X, Ruifang Q, Jiang L, Liu Z. Novel peptides extracted from Muraenesox cinereus bone promote calcium transport, osteoblast differentiation, and calcium absorption. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Monotropein Improves Dexamethasone-Induced Muscle Atrophy via the AKT/mTOR/FOXO3a Signaling Pathways. Nutrients 2022; 14:nu14091859. [PMID: 35565825 PMCID: PMC9103778 DOI: 10.3390/nu14091859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to investigate the effects of monotropein (MON) on improving dexamethasone (DEX)-induced muscle atrophy in mice and C2C12 mouse skeletal muscle cells. The body weights, grip strengths, and muscle weights of mice were assessed. The histological change in the gastrocnemius tissues was also observed through H&E staining. The expression of myosin heavy chain (MyHC), muscle ring finger 1 (MuRF1), and muscle atrophy F-box (Atrogin1) and the phosphorylation of AKT, mTOR, and FOXO3a in the muscle tissues of mice and C2C12 myotubes were analyzed using Western blotting. MON improved muscle atrophy in mice and C2C12 myotubes by regulating catabolic states via the AKT/mTOR/FOXO3a signaling pathways, and enhanced muscle function by the increases of muscle mass and strength in mice. This suggests that MON could be used for the prevention and treatment of muscle atrophy in patients.
Collapse
|
13
|
Zhao Z, Cai Z, Chen A, Cai M, Yang K. Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne) 2022; 13:993253. [PMID: 36452325 PMCID: PMC9702081 DOI: 10.3389/fendo.2022.993253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease characterized by bone metabolism imbalance and bone microstructure destruction, which causes serious social and economic burden. At present, the diagnosis and treatment of OP mainly rely on imaging combined with drugs. However, the existing pathogenic mechanisms, diagnosis and treatment strategies for OP are not clear and effective enough, and the disease progression that cannot reflect OP further restricts its effective treatment. The application of metabolomics has facilitated the study of OP, further exploring the mechanism and behavior of bone cells, prevention, and treatment of the disease from various metabolic perspectives, finally realizing the possibility of a holistic approach. In this review, we focus on the application of metabolomics in OP research, especially the newer systematic application of metabolomics and treatment with herbal medicine and their extracts. In addition, the prospects of clinical transformation in related fields are also discussed. The aim of this study is to highlight the use of metabolomics in OP research, especially in exploring the pathogenesis of OP and the therapeutic mechanisms of natural herbal medicine, for the benefit of interdisciplinary researchers including clinicians, biologists, and materials engineers.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
14
|
Zhu T, Jiang M, Zhang M, Cui L, Yang X, Wang X, Liu G, Ding J, Chen X. Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact Mater 2021; 9:446-460. [PMID: 34820582 PMCID: PMC8586813 DOI: 10.1016/j.bioactmat.2021.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis is a common orthopedic disease in clinic, resulting in joint collapse if no appropriate treatment is performed in time. Core decompression is a general treatment modality for early osteonecrosis. However, effective bone regeneration in the necrotic area is still a significant challenge. This study developed a biofunctionalized composite scaffold (PLGA/nHA30VEGF) for osteonecrosis therapy through potentiation of osteoconduction, angiogenesis, and a favorable metabolic microenvironment. The composite scaffold had a porosity of 87.7% and compressive strength of 8.9 MPa. PLGA/nHA30VEGF had an average pore size of 227.6 μm and a water contact angle of 56.5° with a sustained release profile of vascular endothelial growth factor (VEGF). After the implantation of PLGA/nHA30VEGF, various osteogenic and angiogenic biomarkers were upregulated by 2–9 fold compared with no treatment. Additionally, the metabolomic and lipidomic profiling studies demonstrated that PLGA/nHA30VEGF effectively regulated the multiple metabolites and more than 20 inordinate metabolic pathways in osteonecrosis. The excellent performances reveal that the biofunctionalized composite scaffold provides an advanced adjuvant therapy modality for osteonecrosis. A biofunctionalized organic−inorganic composite scaffold is developed for osteonecrosis therapy. The biofunctionalized composite scaffold potentiates osteoconduction and angiogenesis in osteonecrosis. The biofunctionalized composite scaffold reverses the adverse microenvironments of osteonecrosis. The biofunctionalized composite scaffold provides a promising clinical modality for treatment of early osteonecrosis.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Mengyang Jiang
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Liguo Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xiaoyu Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
15
|
Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, Subramaniyan V, Sathasivam KV, Ravi S, Mat Rani NNI, Lum PT, Vaijanathappa J, Meenakshi DU, Mani S, Fuloria NK. Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development. Drug Des Devel Ther 2021; 15:4527-4549. [PMID: 34764636 PMCID: PMC8576757 DOI: 10.2147/dddt.s338548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones (AQs) are found in a variety of consumer products, including foods, nutritional supplements, drugs, and traditional medicines, and have a wide range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 1981 and has been reported for many biological activities. However, no review has been reported so far to create awareness about this molecule and its role in future drug discovery. Therefore, the present review aimed to provide comprehensive evidence of Rubiadin's phytochemistry, biosynthesis, physicochemical properties, biological properties and therapeutic potential. Relevant literature was gathered from numerous scientific databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as its method of isolation, synthesis, characterisation, physiochemical properties and possible biosynthesis pathways, was extensively covered in this review. Following a rigorous screening and tabulating, a thorough description of Rubiadin's biological properties was gathered, which were based on scientific evidences. Rubiadin fits all five of Lipinski's rule for drug-likeness properties. Then, the in depth physiochemical characteristics of Rubiadin were investigated. The simple technique for Rubiadin's isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, antifungal, and antiviral properties. The mechanism of action for the majority of the pharmacological actions reported, however, is unknown. In addition to this review, an in silico molecular docking study was performed against proteins with PDB IDs: 3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. The toxicity profile, pharmacokinetics and possible structural modifications were also described. Rubiadin was also proven to have the highest binding affinity to the targeted proteins in an in silico study; thus, we believe it may be a potential anticancer molecule. In order to present Rubiadin as a novel candidate for future therapeutic development, advanced studies on preclinical, clinical trials, bioavailability, permeability and administration of safe doses are necessary.
Collapse
Affiliation(s)
- Mohd Nasarudin Watroly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, 600116, India
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | - Kathiresan V Sathasivam
- Faculty of Applied Science & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 640 021, India
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Department of Pharmaceutical Chemistry, School of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas, Mauritius
| | | | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
16
|
Meng K, Mei F, Zhu L, Xiang Q, Quan Z, Pan F, Xia G, Shen X, Yun Y, Zhang C, Zhong Q, Chen H. Arecanut (Areca catechu L.) seed polyphenol improves osteoporosis via gut-serotonin mediated Wnt/β-catenin pathway in ovariectomized rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Metabolomics in Bone Research. Metabolites 2021; 11:metabo11070434. [PMID: 34357328 PMCID: PMC8303949 DOI: 10.3390/metabo11070434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying the changes in endogenous metabolites in response to intrinsic and extrinsic factors has excellent potential to obtain an understanding of cells, biofluids, tissues, or organisms' functions and interactions with the environment. The advantages provided by the metabolomics strategy have promoted studies in bone research fields, including an understanding of bone cell behaviors, diagnosis and prognosis of diseases, and the development of treatment methods such as implanted biomaterials. This review article summarizes the metabolism changes during osteogenesis, osteoclastogenesis, and immunoregulation in hard tissue. The second section of this review is dedicated to describing and discussing metabolite changes in the most relevant bone diseases: osteoporosis, bone injuries, rheumatoid arthritis, and osteosarcoma. We consolidated the most recent finding of the metabolites and metabolite pathways affected by various bone disorders. This collection can serve as a basis for future metabolomics-driven bone research studies to select the most relevant metabolites and metabolic pathways. Additionally, we summarize recent metabolic studies on metabolomics for the development of bone disease treatment including biomaterials for bone engineering. With this article, we aim to provide a comprehensive summary of metabolomics in bone research, which can be helpful for interdisciplinary researchers, including material engineers, biologists, and clinicians.
Collapse
|
18
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
19
|
Ye M, Zhang C, Jia W, Shen Q, Qin X, Zhang H, Zhu L. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food Funct 2020; 11:1498-1512. [PMID: 31993619 DOI: 10.1039/c9fo01944h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous work demonstrated that yak bone collagen peptides (YBP) possessed excellent osteogenic activity in vitro. However, associations between YBP and osteoporosis were less established, and the positive effect and underlying mechanism of YBP in the treatment of osteoporotic rats in vivo remained unclear. Herein, ovariectomized rats were intragastrically administered with YBP or 17β-estradiol for 12 weeks. Bone turnover markers, bone biomechanical parameters and bone microarchitecture were investigated to identify the specific changes of potential antagonistic effects of YBP on ovariectomized rats. Then, serum samples were analyzed by UPLC/Q-TOF-MS to identify metabolites. The results showed that YBP treatment remarkably altered the content of serum bone turnover markers and prevented the ovariectomy-induced deterioration of bone mechanical and microarchitecture characteristics. A total of forty-one biomarkers for which levels changed markedly upon treatment have been identified based on non-targeted metabolomics. Among them, twenty-one metabolites displayed a downward expression level, while twenty metabolites showed an upward expression level in the YBP group and finally were selected as potential biomarkers. The levels of these biomarkers displayed significant alterations and a tendency to be restored to normal values in YBP treated osteoporotic rats. A systematic network analysis of their corresponding pathways delineated that the protective or recovery effect of YBP on osteoporosis occurred primarily by regulating the amino acid metabolism and lipid metabolism (especially unsaturated fatty acid). Collectively, these findings highlight that such peptides hold promise in further advancement as a natural alternative for functional and health-promoting foods, which could be potentially used in mediated treatment of osteoporosis.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang D, Zhang S, Jiang K, Li T, Yan C. Bioassay-guided isolation and evaluation of anti-osteoporotic polysaccharides from Morinda officinalis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113113. [PMID: 32668320 DOI: 10.1016/j.jep.2020.113113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/11/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morinda officinalis is a well-known Chinese tonic herb that has shown clinical efficacy in the treatment of bone disease. However, its anti-osteoporotic potential and the M. officinalis polysaccharides (MOPs) responsible for activity require further investigation. AIM OF THE STUDY This study aimed to investigate the anti-osteoporotic effects of different MOP fractions in ovariectomized (OVX) rats, and to identify the osteoprotective components by bioassay-guided isolation. MATERIALS AND METHODS MOPs were prepared by hot water and alkali extraction, separated into three fractions (MO50, MO70, and MOB) and evaluated in the classic OVX rat model and in MC3T3-E1 cells for anti-osteoporotic activity. RESULTS Administration of MOPs (400 mg/kg/day) provided significant protection against ovariectomy-induced bone loss and biomechanical dysfunction in rats. Treated animals exhibited reduced deterioration of trabecular microarchitecture and lower levels of bone turnover markers. Bioactivity-guided fractionation led to the isolation of two inulin-type fructans from MO50, MOW50-1 and MOP50-2, with potential anti-osteoporotic activities. These consisted of (2 → 1)-linked β-D-fructosyl residues with degrees of polymerization (DP) of 7 and 13, respectively. Furthermore, MOW50-1 promoted osteogenic differentiation of MC3T3-E1 cells by increasing alkaline phosphatase activity. CONCLUSIONS These data suggest very strongly that MOPs, especially MO50 and MOW50-1, may play important roles in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Osteoporosis, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
| | - Shaojie Zhang
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Keming Jiang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianyu Li
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Xu W, Liu X, He X, Jiang Y, Zhang J, Zhang Q, Wang N, Qin L, Xin H. Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112992. [PMID: 32590113 DOI: 10.1016/j.jep.2020.112992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis and Alzheimer's disease (AD) are both senile diseases, which are closely related to oxidative stress. Bajitianwan (BJTW) is a classic Chinese formulation consisting of seven herbal drugs: the root of Morinda officinalis F.C.How., root and rhizome of Acorus tatarinowii Schott, the root bark of Lycium chinense Mill., the sclerotium of Poria cocos (Schw.) Wolf, the root of Polygala tenuifolia Willd., sclerotium with host wood of Poria cocos (Schw.) Wolf and root and rhizome of Panax ginseng C. A. Mey. BJTW has been used for the treatment of osteoporosis and AD for hundreds of years. AIM OF THE STUDY This study aimed to investigate the protective effects of BJTW in the amelioration of memory impairment and bone loss induced by D-galactose and to explore the underlying mechanism. MATERIALS AND METHODS The aging model was established in male Wistar rats by subcutaneous injection of D-galactose (100 mg/kg), and the rats were treated with huperzine-A, alendronate sodium, or the aqueous extract of BJTW for 4 months. Cognitive performance was evaluated with the Morris water maze. Rat femurs were scanned using microcomputed tomography to obtain three-dimensional imagery of bone microstructure. The impact of D-galactose on the expression of Forkhead box O1 and superoxide dismutase 2 in femur tissue was also evaluated. RESULTS For the model group, BJTW treatment significantly reduced the latency time for finding the target platform in the directional swimming test and increased time spent swimming in the target quadrant with the probe test. Additionally, BJTW treatment alleviated D-galactose-induced bone loss through regulation of levels of alkaline phosphatase, osteocalcin, osteoprotegerin, and receptor activator of nuclear factor kappa B ligand. Furthermore, BJTW treatment increased catalase and glutathione peroxidase levels in serum, reduced malondialdehyde content in hippocampus, and upregulated expression of Forkhead O1, which upregulated superoxide dismutase 2 in the femur. CONCLUSIONS BJTW had positive effects on age-related memory impairments and bone loss. It may be a promising antioxidant candidate for treatment of Alzheimer's disease and osteoporosis.
Collapse
Affiliation(s)
- Wumu Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaoyan Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xuhui He
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Yiping Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jiabao Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qiaoyan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Nani Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Luping Qin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hailiang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Hasanpour M, Iranshahy M, Iranshahi M. The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother 2020; 128:110263. [DOI: 10.1016/j.biopha.2020.110263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
|
23
|
Zhang Q, Zhang JH, He YQ, Zhang QL, Zhu B, Shen Y, Liu MQ, Zhu LL, Xin HL, Qin LP, Zhang QY. Iridoid glycosides from Morinda officinalis How. exert anti-inflammatory and anti-arthritic effects through inactivating MAPK and NF-κB signaling pathways. BMC Complement Med Ther 2020; 20:172. [PMID: 32503513 PMCID: PMC7275542 DOI: 10.1186/s12906-020-02895-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background The root of Morinda officinalis How. (MO, the family of Rubiaceae) has long been used to treat inflammatory diseases in China and other eastern Asian countries, and iridoid glycosides extracted from MO (MOIG) are believed to contribute to this anti-inflammatory effect. However, the mechanism underlying the anti-inflammatory and anti-arthritic activities of MOIG has not been elucidated. The aim of the present study was to determine how MOIG exerted anti-inflammatory and anti-arthritic effects in vivo and in RAW 264.7 macrophages. Methods MOIG were enriched by XDA-1 macroporous resin. The maximum feasible dose method was adopted to evaluate its acute toxicity. The analgesic effect of MOIG was evaluated by acetic acid writhing test and the anti-inflammatory effect was evaluated by cotton-pellet granuloma test in rats and air pouch granuloma test in mice. The anti-arthritic effect was evaluated by establishing an adjuvant arthritis model induced by Complete Freund’s Adjuvant (CFA). The viability of the cultured RAW 264.7 macrophages was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The anti-inflammatory activity was evaluated by measuring NO, IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 cells. The protein level of inflammatory responsive genes was evaluated by Western blot analysis. Results MOIG had no significant toxicity at maximum feasible dose of 22.5 g/kg. MO extracts and MOIG (50,100 and 200 mg/kg) all evoked a significantly inhibitory effects on the frequency of twisting induced by acetic acid in mice compared with the model control group. Administration of MO extracts and MOIG markedly decreased the dry and wet weight of cotton pellet granuloma in rats and air pouch granuloma in mice. MOIG significantly attenuated the paw swelling and decreased the arthritic score, weight loss, spleen index, and the serum level of inflammatory factors IL-1β, IL-6 and IL-17a in CFA-induced arthritic rats. MOIG inhibited the production of inflammatory cytokines in LPS-stimulated RAW264.7 cells, and the expressions of iNOS, COX-2 and proteins related to MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 macrophages. Conclusion MOIG exerted anti-inflammatory and anti-arthritic activities through inactivating MAPK and NF-κB signaling pathways, and this finding may provide a sound experimental basis for the clinical treatment of rheumatoid arthritis with MOIG.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian-Hua Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Qiong He
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Long Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Bo Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meng-Qin Liu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lu-Lin Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Hai-Liang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qiao-Yan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Si Z, Zhou S, Shen Z, Luan F. High-Throughput Metabolomics Discovers Metabolic Biomarkers and Pathways to Evaluating the Efficacy and Exploring Potential Mechanisms of Osthole Against Osteoporosis Based on UPLC/Q-TOF-MS Coupled With Multivariate Data Analysis. Front Pharmacol 2020; 11:741. [PMID: 32670052 PMCID: PMC7326133 DOI: 10.3389/fphar.2020.00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is the most common metabolic bone illness among the elderly especially in postmenopausal women resulting from a reduction in bone mineral density, but there is no effective drug at present. The study was aimed at evaluating efficacy of osthole against osteoporosis using high-throughput metabolomics method. The blood samples for illustrating the pathological mechanism of PMOP and exploring the efficacy of osthole treatment (ST) were collected to perform metabolites and metabolic profiles and pathways analysis using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and pattern recognition methods. In addition, backbone weight, the bone density, and some vital biochemical indexes were also detected. A total of 28 metabolites were identified as biomarkers for ovariectomized-osteoporosis model, and ST could significantly regulate 19 of them including lysine, linoleic acid, 3-hydroxybutyric acid, prostaglandin F2a, taurocholic acid, LysoPC(15:0), l-carnitine, glucose, arginine, citric acid, corticosterone, ornithine, tryptophan, arachidonic acid, Cer(d18:0/18:0), glutamine, uric acid, 8-HETE, estriol, which mainly related with 13 metabolic pathways, such as linoleic acid metabolism, starch, and sucrose metabolism, arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, citrate cycle (TCA cycle), and arginine biosynthesis. The ovariectomized model (OVX) rats display a significant decrease bone density, TGF-β1, NO, and NOS level, and a significant increase bone weight, IL-6, TNF-α, and Ca 2+ level. These parameters in the ST rats were evidently improved as compared to the OVX group. ST effectively mitigated ovariectomy-induced osteoporosis in rats by affecting endogenous metabolite-related metabolic mechanism and showed the natural alternative with potential for the treatment of PMOP.
Collapse
Affiliation(s)
- Zhenxing Si
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shifeng Zhou
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Shen
- Orthopedic Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feiyu Luan
- Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Fu SQ, Wang ZY, Jiang ZM, Bi ZM, Liu EH. Integration of Zebrafish Model and Network Pharmacology to Explore Possible Action Mechanisms of Morinda officinalis for Treating Osteoporosis. Chem Biodivers 2020; 17:e2000056. [PMID: 32190963 DOI: 10.1002/cbdv.202000056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Osteoporosis (OP) is a metabolic bone disease affecting nearly 200 million individuals globally. Morinda officinalis F.C.How (MOH) has long been used as a traditional herbal medicine for the treatment of bone fractures and joint diseases in China. However, it still remains unclear how the compounds in MOH work synergistically for treating OP. In this study, we used prednisolone (PNSL)-induced zebrafish OP model to screen the antiosteoporosis components in MOH. A network pharmacology approach was further proposed to explore the underlying mechanism of MOH on OP. The PNSL-induced zebrafish model validated that two anthraquinones, one iridoid glycoside, and two saccharides exerted antiosteoporotic effect. We constructed the components-targets network and obtained the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 26 candidate compounds of MOH and 257 related targets could probably treat OP through regulating osteoclast differentiation and MAPK signaling pathway. Our work developed a strategy to screen the antiosteoporosis components and explore the underlying mechanism of MOH for treating OP at a network pharmacology level.
Collapse
Affiliation(s)
- Shao-Qi Fu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, P. R. China
| | - Zi-Yuan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, P. R. China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, P. R. China
| | - Zhi-Ming Bi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, P. R. China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, P. R. China
| |
Collapse
|
26
|
Shi J, Ren X, Wang J, Wei X, Liu B, Jia T. Effects of the Salt-Processing Method on the Pharmacokinetics and Tissue Distribution of Orally Administered Morinda officinalis How. Extract. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:5754183. [PMID: 32104608 PMCID: PMC7036132 DOI: 10.1155/2020/5754183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/12/2023]
Abstract
Salt processing, which involves steaming with salt water, directs herbs into the kidney channel. After being salt processed, kidney invigorating effects occur. However, the underlying mechanism of this method remains elusive. The compounds monotropein, rubiadin, and rubiadin 1-methyl ether are the major effective components of Morinda officinalis How. To clarify the pharmacokinetics and tissue distribution of these three compounds, we employed liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to determine the contents of the three components in rat plasma and tissues. Separation was achieved on an Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm, Waters). Formic acid aqueous solution (0.1%; A) and acetonitrile (containing 0.1% formic acid; B) were used as the mobile phase system with a programmed elution of 0∼5 min with 70% A and then 5∼7 min with 60% A. All analytes were measured with optimized multiple reaction monitoring (MRM) in negative ion mode. Geniposide and 1,8-dihydroxyanthraquinone were used as the internal standards (IS). The linear ranges were 1.2∼190, 1.3∼510, and 0.047∼37.5 μg/mL, respectively. Compared with the Morinda officinalis without wood (MO) group, the Cmax and AUC0-t parameters of rubiadin and rubiadin 1-methyl ether elevated remarkably for the salt-processed Morinda officinalis (SMO) groups, which indicates that steaming by salt could increase the bioavailability of rubiadin and rubiadin 1-methyl ether. The T max for monotropein is shorter (0.5 h) in SMO groups than that in MO group, which means that monotropein was quickly absorbed in the SMO extract. Moreover, the contents of three compounds in the small intestine were the highest.
Collapse
Affiliation(s)
- Ji Shi
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xiaohang Ren
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xiaofeng Wei
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Bonan Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tianzhu Jia
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
27
|
Wang M, Wang Q, Yang Q, Yan X, Feng S, Wang Z. Cavernous transformation of the portal vein. Molecules 1988; 25:molecules25010160. [PMID: 31906109 PMCID: PMC6983063 DOI: 10.3390/molecules25010160] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022] Open
Abstract
Roots of Morinda officinalis and Morinda citrifolia have been interchangeably used in traditional Chinese medicine. However, there is no experimental evidence to support this. In this study, a ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS)-based approach and a multivariate statistical analysis (MSA) were adopted to compare the difference in the chemical compounds present in the root extract of M. officinalis and M. citrifolia. There were 26 anthraquinones, 15 triterpenes, and 8 iridoid glycosides identified in the root extracts of M. officinalis, 30 anthraquinones, 1 triterpene, and 8 iridoid glycosides in the root extracts of M. citrifolia. Among these, 25 compounds presented in both plants. In addition, a principal component analysis (PCA) showed that these two herbs could be separated clearly. Furthermore, an orthogonal partial least squares-discriminant analysis (OPLS-DA) found 9 components that could be used as chemical markers to discrimination the root extracts of M. officinalis and M. citrifolia. In addition, the results of a Cell Counting Kit 8 (CCK-8) assay and cell colony formation assay indicated that methanol root extracts of M. officinalis and M. citrifolia showed no cell cytotoxicity to normal cells, even promoted the proliferation of normal liver cells. To our knowledge, this is the first time that the differences between the root extracts of M. officinalis and M. citrifolia (Hainan province) have been observed systematically at the chemistry level.
Collapse
Affiliation(s)
- Maoyuan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Qinglong Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Qing Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Xiaoxia Yan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
| | - Shixiu Feng
- Key Laboratory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
- Correspondence: (S.F.); (Z.W.); Fax: +86-755-25702889 (S.F.); +86-898-233006150 (Z.W.)
| | - Zhunian Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China; (M.W.); (Q.W.); (Q.Y.); (X.Y.)
- Tropical Wild Plant Gene Resource, Ministry of Agriculture, Danzhou 571737, China
- Correspondence: (S.F.); (Z.W.); Fax: +86-755-25702889 (S.F.); +86-898-233006150 (Z.W.)
| |
Collapse
|