1
|
Du K, Yang M, Ma W, Liu T, Sun H, Huang T, Li J, Chang Y. Advanced Bionic Technology Combining Online Electrochemistry-Mass Spectrometry and Offline Electrochemistry-Liquid Chromatography-Mass Spectrometry for Simulating and Characterizing Metabolic Processes of Bioactive phenolic acids in Natural Products. J Sep Sci 2024; 47:e70006. [PMID: 39520080 DOI: 10.1002/jssc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The metabolism research of bioactive phenolic acids widely found in natural products is of great significance for elucidating pharmacologic mechanisms and screening lead compounds. However, it is time-consuming and vulnerable to interference to conduct the traditional metabolism approach by applying organisms or biomaterials. Herein, a bionic technology was established by combining online electrochemistry-mass spectrometry (EC-MS) with offline electrochemistry-liquid chromatography-mass spectrometry (EC-LC-MS) to investigate the oxidative transformation and metabolic processes of the active phenolic acids (including salvianolic acid A, caffeic acid, 3, 5-O-dicaffeoylquinic acid, ferulic acid, salvianic acid A, and protocatechuic acid). Phase I metabolism of the phenolic acids were simulated by applying a three-electrode controlled potential electrochemical reactor with a boron-doped diamond electrode, with glutathione mixed into the oxidative products simultaneously for obtaining the phase II metabolites. Finally, structural characterization of the simulated metabolites of the phenolic acids was achieved successfully, including hydroxylation, methylation, demethylation, decarboxylation, etc. It was revealed that the simulated metabolism process based on an electrochemical system was effective in yielding a wide variety of metabolites for these compounds, which was also compared with the metabolism results applying rat liver microsomes. Consequently, this bionic technology is expected to be a powerful tool to investigate the material basis for the efficacy of active ingredients of natural products.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentao Ma
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianyu Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huihui Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tengteng Huang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Chang M, Lei Y, Zhang J, Xu J, Wu H, Tang S, Yang H. Effect of Naoxintong Capsule on Microglia and Proteomics of Cortex After Myocardial Infarction in Rats. Mol Neurobiol 2024; 61:2904-2920. [PMID: 37948003 DOI: 10.1007/s12035-023-03724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Neuroinflammation caused by microglia in the central nervous system (CNS) is observed after myocardial infarction (MI). However, the inflammatory response mechanism remains unclear. BuChang Naoxintong capsule (NXT) is a Chinese medicine for treating ischemic cardio-cerebrovascular diseases, requiring more studies to understand the pharmacodynamic mechanism. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in rats. Additionally, histopathological staining in the left ventricular (LV) and immunofluorescence within the brain cortex after 1 d and 7 d of MI were performed to determine the NXT pharmacodynamic action and best administration dosage. Proteomics helped obtain the essential proteins related to neuroinflammation and MI in the heart and brain tissue after 7 d of MI. Based on TTC, HE, Masson, and immunofluorescence staining results of CD206 and IBA-1, NXT demonstrated a better pharmacodynamic action towards myocardial injury and neuroinflammation after 7 d of MI. Moreover, the human equivalent dosage of NXT (220 mg/kg) became the best administration dose. The proteome bioinformatics analysis in the LV and brain cortex was performed. Thus, the elongation of very long-chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) became critical proteins related to MI and neuroinflammation. The western blotting results indicated that ABCG4 expression possessed the same trend as the proteomics results. The auto-dock results revealed that ABCG4 had a good binding ability with Ferulic acid, Paeoniflorin, and Tanshinone II A, the key ingredients of NXT. The cellular thermal shift assay results demonstrated that ABCG4 showed better thermal stability post-NXT treatment. NXT can improve myocardial injury, such as heart infarct size, pathological injury, myocardial fibrosis, and inflammatory cell infiltration. Additionally, brain neuroinflammation induced by microglia after MI affects the expression and structure of ABCG4. Thus, ABCG4 could be the key protein associated with MI and neuroinflammation.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Du K, Liu T, Ma W, Guo J, Chen S, Wen J, Zhou R, Cui Y, Wang S, Li L, Li J, Chang Y. A global profiling strategy for identification of the total constituents in Chinese herbal medicine based on online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with intelligentized chemical classification guidance. J Chromatogr A 2023; 1710:464387. [PMID: 37757527 DOI: 10.1016/j.chroma.2023.464387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
A comprehensive strategy for effective identification of total constituents in Chinese patent medicine has been advanced applying full scan-preferred parent ions capture-static and active exclusion (FS-PIC-SAE) acquisition coupled with intelligent deep-learning supported mass defect filter (MDF) process, with Naoxintong capsule (NXT) as a case. Online comprehensive two-dimensional liquid chromatography (2DLC) coupled with Q-TOF-MS/MS system was established for obtaining the excellent separation and detection performance of total components, which could exhibit excellent peak capacity with 1052 and orthogonality with 0.69. In addition, a total of 901 unknown compounds could be classified into nine chemical classes rapidly and effectively, based on the intelligent deep-learning algorithm supported MDF model with 96.4% accuracy. Consequently, 276 compounds were successfully identified from NXT, especially including 44 flavonoids, 27 phenolic acids, 25 fatty acids, 17 saponins, 21 phthalocyanines, 20 triterpenes, 10 monoterpenes, 13 diterpenoid ketones, 14 amino acids, and others. It is concluded that the proposed program is an effective and practical strategy enabling the in-depth chemical profiling of complex herbal and biological samples.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiading Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Hu L, Luo J, Wen G, Sun L, Liu W, Hu H, Li J, Wang L, Su W, Lin L. Identification of the active compounds in the Yi-Fei-San-Jie formula using a comprehensive strategy based on cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology techniques. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154843. [PMID: 37149966 DOI: 10.1016/j.phymed.2023.154843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFβ pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFβ pathway. CONCLUSION Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.
Collapse
Affiliation(s)
- Leihao Hu
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jiamin Luo
- School of the First Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guiqing Wen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lingling Sun
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Wei Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hao Hu
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China
| | - Jing Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410000, China
| | - Lisheng Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510402, China.
| |
Collapse
|
6
|
Ye X, Zhang T, Han H. Metabolite Profiling of Swertia cincta Extract in Rats and Pharmacokinetics Study of Three Bioactive Compounds Using UHPLC-MS/MS. PLANTA MEDICA 2023; 89:333-346. [PMID: 36100253 DOI: 10.1055/a-1942-5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Swertia cincta, a plant of the genus Swertia in Gentianceae, has "heat-clearing" and detoxifying effects that normalize the gallbladder function in the treatment of jaundice. Although numerous studies on Swertia cincta have been performed, the absorption and pharmacokinetic behaviors remain unclear. In this study, the compounds of Swertia cincta in serum, bile, feces, and urine of rats were analyzed using a ultra-high-performance liquid chromatography-tandem mass spectrometry. A total of 9 prototype components and 48 metabolites were detected in biological samples. Furthermore, we determined the main components absorbed in the blood of Swertia cincta and established a method for simultaneously determining these components (sweroside, swertiamarin, and gentiopicroside) in positive ionization mode within 6 min. The quantitative method was successfully applied for the multiple-component pharmacokinetic study of Swertia cincta.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
He Y, Zhou Z, Li W, Zhang Y, Shi R, Li T, Jin L, Yao H, Lin N, Wu H. Metabolic profiling and pharmacokinetic studies of Baihu-Guizhi decoction in rats by UFLC-Q-TOF-MS/MS and UHPLC-Q-TRAP-MS/MS. Chin Med 2022; 17:117. [PMID: 36195951 PMCID: PMC9531372 DOI: 10.1186/s13020-022-00665-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Baihu-Guizhi decoction (BHGZD) is a well-documented traditional Chinese Medicine (TCM) prescription that has been extensively applied to treating rheumatoid arthritis. Despite of its beneficial outcomes, the chemical constituents of BHGZD have not been fully portrayed and the in vivo absorption, distribution, metabolism, and excretion (ADME) patterns of absorbed components have never been described. Methods Characterization of absorbed components and in vivo biotransformation profiling of these feature compounds were based on the ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS). Furthermore, the ultra-high-performance liquid chromatography tandem ion trap quadrupole mass spectrometry (UHPLC-Q-TRAP-MS/MS) system were performed to investigate the pharmacokinetics of active ingredients from BHGZD. Results In this study, we have identified and tentatively characterized 18 feature absorbed prototype and 15 metabolites of BHGZD in rat serum and the in vivo transformation pathways of these absorbed constituents were proposed. Besides, we have established novel quantitative methodology of five crucial components of BHGZD and have monitored the pharmacokinetic behaviors of these constituents spontaneously in rat serum after BHGZD gavage. After rats received two ways of BHGZD gavage, the pharmacokinetic behaviors of each compound exhibited relatively similar behaviors, as evidenced by similar curve track as well as relatively close time to reach maximum concentration (Tmax) and half washout time (T1/2). Whereas the maximum plasma concentration (Cmax) and area under the plasma concentration–time curve (AUC) values of five analytes with multiple dosage were a bit higher than single dosage. Conclusion This study added knowledge into the material basis and bio-transformation patterns of BHGZD in vivo, which would be of great value for exploring pharmacological effects and mechanism of BHGZD. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00665-w.
Collapse
Affiliation(s)
- Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China
| | - Zhenkun Zhou
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijin, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijin, China
| | - Ruoyao Shi
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China
| | - Tao Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China
| | - Linlin Jin
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijin, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingangxi Street, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
8
|
Cheng L, Maboh RN, Wang H, Mao GW, Wu XY, Chen H. Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension. J Cardiovasc Pharmacol 2022; 80:158-170. [PMID: 35500215 DOI: 10.1097/fjc.0000000000001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.
Collapse
Affiliation(s)
- Lan Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Rene Nfornah Maboh
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Gao-Wei Mao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Xiao-Ying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and.,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
9
|
Li W, Wang K, Liu Y, Wu H, He Y, Li C, Wang Q, Su X, Yan S, Su W, Zhang Y, Lin N. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Front Immunol 2022; 13:912933. [PMID: 35799788 PMCID: PMC9253268 DOI: 10.3389/fimmu.2022.912933] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we verified its immunomodulatory and anti-inflammatory activities. However, bioactive compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein, an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance, microscale thermophoresis, and pharmacological experiments was carried out to identify the putative targets of BHGZD and underlying BACs. After that, both in vitro and in vivo experiments were performed to determine the drug effects and pharmacological mechanisms. As a result, the calculation and functional modularization based on the interaction network of the “RA-related gene–BHGZD effective gene” screened the TLR4/PI3K/AKT/NFκB/NLRP3 signaling-mediated pyroptosis to be one of the candidate effective targets of BHGZD for reversing the imbalance network of “immune-inflammation” during RA progression. In addition, both mangiferin (MG) and cinnamic acid (CA) were identified as representative BACs acting on that target, for the strong binding affinities between compounds and target proteins, good pharmacokinetic features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the two-BAC combination of MG and CA effectively alleviated the disease severity of the adjuvant-induced arthritis-modified rat model, including elevating pain thresholds, relieving joint inflammation and bone erosion via inhibiting NF-κB via TLR4/PI3K/AKT signaling to suppress the activation of the NLRP3 inflammasome, leading to the downregulation of downstream caspase-1, the reduced release of IL-1β and IL-18, and the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP. In conclusion, these findings offer an evidence that the MG and CA combination identified from BHGZD may interact with TLR4/PI3K/AKT/NFκB signaling to inhibit NLRP3 inflammasome activation and modulate pyroptosis, which provides the novel representative BACs and pharmacological mechanisms of BHGZD against active RA. Our data may shed new light on the mechanisms of the TCM formulas and promote the modernization development of TCM and drug discovery.
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Congchong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| |
Collapse
|
10
|
Gao H, Zhou HM, Yue SJ, Feng LM, Guo DY, Li JJ, Zhao Q, Huang L, Tang YP. Oral Bioavailability-Enhancing and Anti-obesity Effects of Hydroxysafflor Yellow A in Natural Deep Eutectic Solvent. ACS OMEGA 2022; 7:19225-19234. [PMID: 35721932 PMCID: PMC9202288 DOI: 10.1021/acsomega.2c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/26/2022] [Indexed: 05/11/2023]
Abstract
Hydroxysafflor yellow A (HSYA), a primary active component in Carthami Flos, has been extensively applied in the treatment of cardiometabolic diseases. In this study, a natural deep eutectic solvent composed of glucose and choline chloride with 10% (v/v) of water (90% GCH) was evaluated to enhance the oral absorption of HSYA. Compared with HSYA in water, the relative oral bioavailability of HSYA in 90% GCH was increased to 326.08%. Furthermore, 90% GCH was demonstrated to decrease the mucus viscosity and increase the absorption rate constant of HSYA in the jejunum by 2.95 times. A pharmacodynamic study revealed that HSYA in 90% GCH was more effective in reducing body weight and correcting steatohepatitis and dyslipidemia in high-fat diet-induced obese rats. Serum metabolomics results showed that the correction of serum aromatic amino acid disorder may contribute to the anti-obesity effect of HSYA in 90% GCH. In conclusion, 90% GCH could be a delivery carrier for HSYA against obesity.
Collapse
Affiliation(s)
- Huan Gao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Li-Mei Feng
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Dong-Yan Guo
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Jia-Jia Li
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Qi Zhao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Lu Huang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
- State
Key Laboratory of Research & Development of Characteristic Qin
Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation
Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, China
| |
Collapse
|
11
|
Mi Y, Hu W, Li W, Wan S, Xu X, Liu M, Wang H, Mei Q, Chen Q, Yang Y, Chen B, Jiang M, Li X, Yang W, Guo D. Systematic Qualitative and Quantitative Analyses of Wenxin Granule via Ultra-High Performance Liquid Chromatography Coupled with Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry and Triple Quadrupole-Linear Ion Trap Mass Spectrometry. Molecules 2022; 27:3647. [PMID: 35684583 PMCID: PMC9181919 DOI: 10.3390/molecules27113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.
Collapse
Affiliation(s)
- Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wandi Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Weiwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Shiyu Wan
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Quanxi Mei
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Boxue Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
12
|
Zheng T, Zhao Y, Li R, Huang M, Zhou A, Li Z, Wu H. Delineating the dynamic metabolic profile of Qi-Yu-San-Long decoction in rat urine using UPLC-QTOF-MSE coupled with a post-targeted screening strategy. J Pharm Anal 2022; 12:755-765. [PMID: 36320602 PMCID: PMC9615542 DOI: 10.1016/j.jpha.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Qi-Yu-San-Long decoction (QYSLD) is a traditional Chinese medicine that has been clinically used in the treatment of non-small-cell lung cancer (NSCLC) for more than 20 years. However, to date, metabolic-related studies on QYSLD have not been performed. In this study, a post-targeted screening strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry (UPLC-QTOF-MSE) was developed to identify QYSLD-related xenobiotics in rat urine. The chemical compound database of QYSLD constituents was established from previous research, and metabolites related to these compounds were predicted in combination with their possible metabolic pathways. The metabolites were identified by extracted ion chromatograms using predicted m/z values as well as retention time, excimer ions, and fragmentation behavior. Overall, 85 QYSLD-related xenobiotics (20 prototype compounds and 65 metabolites) were characterized from rat urine. The main metabolic reactions and elimination features of QYSLD included oxidation, reduction, decarboxylation, hydrolysis, demethylation, glucuronidation, sulfation, methylation, deglycosylation, acetylation, and associated combination reactions. Of the identified molecules, 14 prototype compounds and 58 metabolites were slowly eliminated, thus accumulating in vivo over an extended period, while five prototypes and two metabolites were present in vivo for a short duration. Furthermore, one prototype and five metabolites underwent the process of “appearing-disappearing-reappearing” in vivo. Overall, the metabolic profile and characteristics of QYSLD in rat urine were determined, which is useful in elucidating the active components of the decoction in vivo, thus providing the basis for studying its mechanism of action. A post-targeted screening strategy based on UPLC-QTOF-MSE was developed. Twenty prototype compounds and 65 metabolites of QYSLD were identified in rat urine. The main metabolic reactions and elimination features of QYSLD were determined in vivo. Dynamic metabolic profiles of QYSLD-related xenobiotics at multiple time intervals were delineated.
Collapse
|
13
|
Zhang L, Chen L, You X, Li M, Shi H, Sun W, Leng Y, Xue Y, Wang H. Naoxintong capsule limits myocardial infarct expansion by inhibiting platelet activation through the ERK5 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153953. [PMID: 35092875 DOI: 10.1016/j.phymed.2022.153953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the clinic, Naoxintong capsule (NXT) has been applied in two level prevention of ischemic disease. However, its mechanism of action requires further study. PURPOSE This study investigated whether NXT could affect platelet function and activation under ischemic pathological conditions. MATERIALS AND METHODS Wistar rats were divided into six groups, sham, saline, NXT (250, 500, 1000 mg/kg), and aspirin group (10 mg/kg). For the pre-treatment assays, MI model was established after pre-administration of saline, NXT-L, NXT-M, NXT-H, and aspirin respectively for 14 days, and after surgery, there were no continuous treatments. For the post-treatment assay, rats were orally administered for 3 days after MI. FeCl3-induced thrombosis model was applied to determine the thrombus wet weight. Bleeding time was used to assess the ability of the platelets to develop a hemostatic plug. RESULTS NXT decreased infarct size, decreased LDH, CK, and CK-MB values, and improved cardiac function. NXT inhibited platelets activation through reducing CD62P-positive platelets and inhibited infarct expansion by decreasing the number of CD45-positive cells and the amount of MMP9 secreted into the heart tissue. Mechanistically, NXT inhibited platelets activation through decreasing ROS levels, decreasing ERK5 phosphorylation, and increasing RAC1 phosphorylation in MI rats. Pre-treatment with NXT decreased thrombus formation and had normal bleeding times. CONCLUSION NXT showed obviously preventive effects, which was associated with negative control of platelet activation. The above results provide a basis for clinically expanding application of NXT.
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyu You
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, 301617, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
14
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_53_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
A rapid method and mechanism to identify the active compounds in Malus micromalus Makino fruit with spectrum-effect relationship, components knock-out and molecular docking technology. Food Chem Toxicol 2021; 150:112086. [DOI: 10.1016/j.fct.2021.112086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
|
17
|
Zhang WJ, Su WW, Lin QW, He Y, Yan ZH, Wang YG, Li PB, Wu H, Liu H, Yao HL. Protective effects of Naoxintong capsule alone and in combination with ticagrelor and atorvastatin in rats with Qi deficiency and blood stasis syndrome. PHARMACEUTICAL BIOLOGY 2020; 58:1006-1022. [PMID: 32985308 PMCID: PMC7534269 DOI: 10.1080/13880209.2020.1821066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Naoxintong Capsule (NXT), a Chinese medicine, has been widely used for the treatment of coronary heart disease (CHD) in clinics. OBJECTIVE This study evaluated the cardioprotective effects of NXT alone and in combination with ticagrelor (TIC) and atorvastatin (ATO). MATERIALS AND METHODS Qi deficiency and blood stasis rats were established by 8 weeks high fat diet feeding and 16 days exhaustive swimming and randomly divided into seven groups, that is, NXT (250, 500 and 1000 mg/kg/d), TIC (20 mg/kg/d), ATO (8 mg/kg/d), NXT (500 mg/kg/d)+TIC (20 mg/kg/d) and NXT (500 mg/kg/d)+ATO (8 mg/kg/d) group, with oral administration for 12 weeks. The contents of TC, TG, LDL-C, HDL-C, IL-1β, IL-6, IL-8, TNF-α, AST, ALT, SOD, MDA, CK-MB, LDH, TXA2, PGI2, IgA, IgG, IgM and C3 in serum were measured. RESULTS NXT + TIC group was significantly superior to the TIC group in decreasing the levels of TC (4.34 vs. 5.54), TG (3.37 vs. 4.66), LDL-C (1.21 vs. 1.35), LDH (4919.71vs. 5367.19) and elevating SOD level (248.54 vs. 192.04). NXT + ATO group was significantly superior to the ATO group in decreasing the levels of AST (195.931 vs. 241.63), ALT (71.26 vs. 83.16), LDH (4690.05 vs. 5285.82), TXA2 (133.73 vs. 158.67), IgG (8.08 vs. 9.80), C3 (2.03 vs. 2.35) and elevating the levels of HDL-C (1.19 vs. 0.91), SOD (241.91vs. 209.49). CONCLUSIONS The present findings demonstrate that the combined use of NXT with TIC and ATO had better integrated regulating effects than TIC and ATO, respectively. The mechanism of action requires further research.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wei-wei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qing-wei Lin
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yan He
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zeng-hao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong-gang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Pei-bo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hong-liang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, P. R. China
| |
Collapse
|
18
|
He Y, Su W, He X, Chen T, Zeng X, Yan Z, Zhang W, Yang W, Guo J, Wu H. Pharmacokinetics and biotransformation investigation in beagle dog of active compounds from naoxintong capsule. Biomed Pharmacother 2020; 133:110940. [PMID: 33227707 DOI: 10.1016/j.biopha.2020.110940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022] Open
Abstract
Naoxintong Capsule (NXTC), a standardized herbal medicine, has been widely applied in treating cardiovascular and cerebrovascular diseases with remarkable efficacy. However, the efficacy contributing components of NXTC are unclear, and the in vivo absorption and metabolism processes of NXTC remain largely obscured. In this study, using beagle dog as model species, we have identified and tentatively characterized 25 prototype and 15 catabolites of NXTC in beagle dog plasma by ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS). We have proposed the in vivo bio-transformation pathways of these absorbed constituents. In addition, for six crucial components, we have developed a quantitative method and conducted plasma pharmacokinetic study of these six components by rapid resolution liquid chromatography tandem triple quadrupole mass spectrometry (RRLC-QQQ-MS/MS). In conclude, our study provided comprehensive insights into the understanding of the plasma absorbed components profiling of NXTC as well as their in vivo transformation behaviors, which would be of great value for identifying efficacy contributing critical components as well as mechanism related investigations of NXTC in the future.
Collapse
Affiliation(s)
- Yan He
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang He
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Taobin Chen
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zenghao Yan
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weijian Zhang
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, Guangdong, PR China
| | - Jianmin Guo
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, Guangdong, PR China
| | - Hao Wu
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Yan Z, Wu H, Zhou H, Chen S, He Y, Zhang W, Chen T, Yao H, Su W. Integrated metabolomics and gut microbiome to the effects and mechanisms of naoxintong capsule on type 2 diabetes in rats. Sci Rep 2020; 10:10829. [PMID: 32616735 PMCID: PMC7331749 DOI: 10.1038/s41598-020-67362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Naoxintong Capsule (NXT) is a Traditional Chinese Medicine formulation which has been widely applied in treating cardiovascular and cerebrovascular diseases. Previous studies also reported the potential effects of NXT against diabetes and certain complications, yet its mechanisms remain largely obscured. Herein, in this study, we investigated the anti-diabetic effects of NXT as well as its potential mechanisms. Type 2 diabetes (T2D) was induced in rats by 10-week high-fat diet in companion with a low-dose streptozotocin injection. NXT was administrated for additional 8 weeks. The results showed that NXT exerted potent efficacy against T2D by alleviating hyperglycemia and hyperlipidemia, ameliorating insulin resistance, mitigating inflammation, relieving hypertension, and reducing myocardial injuries. To investigate its mechanisms, by integrating sequencing of gut microbiota and serum untargeted metabolomics, we showed that NXT could significantly recover the disturbances of gut microbiota and metabolic phenotypes in T2D rats. Several feature pathways, such as arachidonic acid metabolism, fatty acid β-oxidation and glycerophospholipid metabolism, were identified as the potential mechanisms of NXT in vivo. In summary, our study has comprehensively revealed the anti-diabetic effects of NXT which could be considered as a promising strategy for treating metabolic disorders, T2D and diabetic related complications in clinical practice.
Collapse
Affiliation(s)
- Zenghao Yan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Haokui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shuo Chen
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Weijian Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Taobin Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangdong, 510260, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
20
|
Pharmacokinetics of T0901317 in mouse serum and tissues using a validated UFLC-IT-TOF/MS method. J Pharm Biomed Anal 2020; 189:113420. [PMID: 32593849 DOI: 10.1016/j.jpba.2020.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023]
Abstract
T0901317, a liver X receptors (LXRs) agonist with high-affinity, is widely used to explore the functions of LXRs in various diseases such as atherosclerosis and Alzheimer's disease. However, there is currently little information available about the pharmacokinetics (PK) behavior of T0901317. Here we established a novel ultrafast liquid chromatography-high resolution mass spectrometry method to quantify the concentration of T0901317 in serum, liver, and brain. The chromatographic separation was attained on a C18 (2.1 × 100 mm, 1.8 μm) column using acetonitrile and 0.1 % of formic acid in water as mobile phase operated in gradient elution mode. The mass detection was carried out using negative ions m/z 479.9809 and 322.0882 for T0901317 and internal standard, respectively. The proposed method was fully validated according to the FDA guidelines, and it generally provides good results in terms of linearity (r2 > 0.99), precision (RSD < 18 % and 12 % for LLOQ and other QC levels, respectively), accuracy (between 92.30 % and 108.16 %), and matrix effect (between 86.56 % and 113.81 %). We then for the first time determined and computed the PK parameters of T0901317 in mouse after intraperitoneal administration of a 20 mg/kg dosage. The peak times (Tmax) in serum, liver, and brain were 1.5, 1.5, and 4 h, respectively, while the half-lives (t1/2) were 4.9, 3.3, and 4.5 h, respectively. Taken together, our results provide a significant choice to study the PK property of T0901317, from which the design of the dosing and sampling protocols of LXRs receptor-antagonist experiments employing T0901317 can also benefit.
Collapse
|
21
|
Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J Proteomics 2020; 222:103795. [PMID: 32335294 DOI: 10.1016/j.jprot.2020.103795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a progressive and irreversible disease. Although urine is an ideal biological sample for proteomics and metabolomics studies, sensitive and specific biomarkers are currently lacking in dogs. This study characterised dog urine proteome and metabolome aiming to identify and possibly quantify putative biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous CKD were selected and urine samples were collected. Urinary proteome was separated by SDS-PAGE and analysed by mass spectrometry, while urinary metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The most abundant proteins in urine samples from healthy dogs were uromodulin, albumin and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the concentrations of uromodulin and albumin were significantly lower and higher, respectively, than in healthy dogs. In addition, these samples were characterised by a more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly different concentrations when comparing healthy and CKD dogs. In particular, carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers of CKD in dogs. SIGNIFICANCE: Urine is an ideal biological sample, however few proteomics and metabolomics studies investigated this fluid in dogs and in the context of CKD (chronic kidney disease). In this research, applying a multi-omics approach, new insights were gained regarding the molecular changes triggered by this disease in canine urinary proteome and metabolome. In particular, the involvement of the tubular component was highlighted, suggesting uromodulin, trigonelline and carnosine as possible biomarkers of CKD in dogs.
Collapse
|