1
|
Ke L, Liu J, Feng G, Li X, Zhang Y, Zhang S, Ma X, Di Q. Effects of acute PM 2.5 purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137214. [PMID: 39823879 DOI: 10.1016/j.jhazmat.2025.137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
The relationship between fine particulate matter (PM2.5) and cognition has been extensively investigated. However, the causal impact of acute PM2.5 purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM2.5 purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis. A total of 93 participants experienced a two-hour exposure to either reduced and normal PM2.5 levels. We measured the cognition of healthy young adults, collected peripheral blood before and after intervention, and performed multi-omics analysis including transcriptomics, metabolomics, and proteomics. Results indicated that reducing PM2.5 by 1 μg/m3 was associated with a 0.10 % (95 % CI: [0.18 %, 0.01 %]; p = 0.031) improvement in executive function. Notably, we identified 96 AS events without concurrent transcriptional amount alterations. Multi-layered omics analyses revealed disrupted pathways in hypoxia, mitochondrial function and energy metabolism, and immune responses, validated by ELISA and biochemical assay. These findings demonstrated short-term improvements of cognition following PM2.5 purification and provide mechanistic understandings of PM2.5-induced cognition alterations. This study underscores the significance of incorporating AS in the molecular framework of multi-omics research by exploring variable exon splicing, which could enrich multi-omics analysis methodologies and expose to broader audience.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianxiu Liu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Guoqing Feng
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xingtian Li
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Soochow College, Soochow University, Suzhou 215006, China.
| | - Shiqi Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Zhou W, Zhou Y, Zhang S, Li B, Li Z, Bai Z, Sun D, Huangfu C, Wang N, Xia T, Huang C, Guan L, Yang X, Hu Y, Zhang P, Shen P, Wang R, Ni Z, Gao Y. Gut microbiota's role in high-altitude cognitive impairment: the therapeutic potential of Clostridium sp. supplementation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1132-1148. [PMID: 39704932 DOI: 10.1007/s11427-024-2779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Prolonged exposure to high-altitude environments may increase the risk of cognitive decline in young migrants. Recent studies suggest that hypobaric hypoxia-induced alterations in gut microbial composition could partly contribute to this risk. However, the absence of direct evidence from cohort studies and an unclear mechanism hinder intervention development based on this hypothesis. This study recruited 109 young male migrants living in Xizang to investigate the microbial mechanisms underlying cognitive impairment associated with high-altitude migration. Multi-omic analysis revealed distinct microbiome and metabolome features in migrants with cognitive decline, notably a reduced abundance of Clostridium species and disrupted fecal absorption of L-valine. Mechanistic studies showed that hypobaric hypoxia significantly damaged the intestinal barrier, leading to lipopolysaccharide (LPS) leakage and an influx of inflammatory factors into the peripheral blood, which activated microglia and caused neuronal injury in the hippocampus of mice. Additionally, compromised L-valine absorption due to intestinal barrier damage correlated with lower hippocampal glutamate levels and neurotrophic factors. Intervention with Clostridium sp. effectively restored the intestinal barrier and enhanced L-valine absorption, which mitigated hypobaric hypoxia-induced inflammation and hippocampal neural damage in mice. In conclusion, cognitive impairment among young migrants at high altitude may be attributed to hypobaric hypoxia-induced gut microbiota disruption and subsequent intestinal barrier dysfunction. This study may provide a promising approach for preventing and treating high-altitude-associated cognitive impairment.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yongqiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shikun Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Bin Li
- Mountain Sickness Research Institute, No.950 Hospital, Yecheng, 844900, China
| | - Zhong Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dezhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tiantian Xia
- Medical School of Qinghai University, Xining, 810016, China
| | - Congshu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lina Guan
- General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Xi Yang
- General Hospital of Xinjiang Military Command, Urumqi, 830000, China
| | - Yangyi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Pengfei Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui Wang
- General Hospital of Xinjiang Military Command, Urumqi, 830000, China.
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Gong X, Fan J, Huang H, Xu F, Hu K, Liu J, Tan Y, Chen F. Plasma Metabolic Profiles of Chronic and Recurrent Uveitis Treated by Artesunate in Lewis Rats. Biomedicines 2025; 13:821. [PMID: 40299394 PMCID: PMC12025074 DOI: 10.3390/biomedicines13040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the plasma metabolic profile of recurrent autoimmune uveitis remains unclear. This study aims to explore the effect of ART on the plasma metabolic features of recurrent experimental autoimmune uveitis (EAU) in a Lewis rat. Methods: Rats were clinically and pathologically evaluated for the development of recurrent EAU induced by inter-photoreceptor retinoid-binding protein (IRBP) R16 peptide-specific T-cells (tEAU). The disruptive effects of ART on tEAU were investigated to evaluate the potential role of rat recurrent EAU. Differentially expressed metabolites were identified in the plasma of rats by untargeted metabolomics analysis after ART treatment. The differential metabolites were applied to subsequent pathway analysis and biomarker analysis by MetaboAnalyst. Results: ART can significantly alleviate the severity of clinical signs and pathological injuries of eyeballs with tEAU. Both non-supervised principal component analysis and orthogonal partial least-squares discriminant analysis showed 84 differential metabolites enriched in 16 metabolic pathways in the tEAU group compared with heathy controls and 51 differential metabolites enriched in 17 metabolic pathways, including arginine and proline metabolism, alanine metabolism, and aminoacyl-tRNA biosynthesis, in the ART-treated group compared with the tEAU group. Particularly, upregulated L-alanine levels in both alanine metabolism and aminoacyl-tRNA biosynthesis were associated with T-cell activation, while elevated spermidine and N-acetyl putrescine levels in arginine and proline metabolism related to T-cell differentiation proved to be valuable biomarkers for ART treatment. Conclusions: Our study demonstrates that ART treatment can alleviate recurrent uveitis by altering the plasma metabolic characteristics associated with T-cell activation and differentiation, which might provide novel insights for potential therapeutic treatments.
Collapse
Affiliation(s)
- Xinyi Gong
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jingchuan Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China;
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Fei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China;
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| |
Collapse
|
4
|
Titkare N, Chaturvedi S, Borah S, Sharma N. Advances in mass spectrometry for metabolomics: Strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr 2024; 38:e6019. [PMID: 39370857 DOI: 10.1002/bmc.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Mass spectrometry (MS) plays a crucial role in metabolomics, especially in the discovery of disease biomarkers. This review outlines strategies for identifying metabolites, emphasizing precise and detailed use of MS techniques. It explores various methods for quantification, discusses challenges encountered, and examines recent breakthroughs in biomarker discovery. In the field of diagnostics, MS has revolutionized approaches by enabling a deeper understanding of tissue-specific metabolic changes associated with disease. The reliability of results is ensured through robust experimental design and stringent system suitability criteria. In the past, data quality, standardization, and reproducibility were often overlooked despite their significant impact on MS-based metabolomics. Progress in this field heavily depends on continuous training and education. The review also highlights the emergence of innovative MS technologies and methodologies. MS has the potential to transform our understanding of metabolic landscapes, which is crucial for disease biomarker discovery. This article serves as an invaluable resource for researchers in metabolomics, presenting fresh perspectives and advancements that propels the field forward.
Collapse
Affiliation(s)
- Nikhil Titkare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Zhang F, Rakhimbekova A, Lashley T, Madl T. Brain regions show different metabolic and protein arginine methylation phenotypes in frontotemporal dementias and Alzheimer's disease. Prog Neurobiol 2023; 221:102400. [PMID: 36581185 DOI: 10.1016/j.pneurobio.2022.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disease with multiple histopathological subtypes. FTD patients share similar symptoms with Alzheimer's disease (AD). Hence, FTD patients are commonly misdiagnosed as AD, despite the consensus clinical diagnostic criteria. It is therefore of great clinical need to identify a biomarker that can distinguish FTD from AD and control individuals, and potentially further differentiate between FTD pathological subtypes. We conducted a metabolomic analysis on post-mortem human brain tissue from three regions: cerebellum, frontal cortex and occipital cortex from control, FTLD-TDP type A, type A-C9, type C and AD. Our results indicate that the brain subdivisions responsible for different functions show different metabolic patterns. We further explored the region-specific metabolic characteristics of different FTD subtypes and AD patients. Different FTD subtypes and AD share similar metabolic phenotypes in the cerebellum, but AD exhibited distinct metabolic patterns in the frontal and occipital regions compared to FTD. The identified brain region-specific metabolite biomarkers could provide a tool for distinguishing different FTD subtypes and AD and provide the first insights into the metabolic changes of FTLD-TDP type A, type A-C9, type C and AD in different regions of the brain. The importance of protein arginine methylation in neurodegenerative disease has come to light, so we investigated whether the arginine methylation level contributes to disease pathogenesis. Our findings provide new insights into the relationship between arginine methylation and metabolic changes in FTD subtypes and AD that could be further explored, to study the molecular mechanism of pathogenesis.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Anastasia Rakhimbekova
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
Zhang L, Wong LR, Wong P, Shen W, Yang S, Huang L, Lim YA, Ho PCL. Chronic treatment with baicalein alleviates behavioural disorders and improves cerebral blood flow via reverting metabolic abnormalities in a J20 transgenic mouse model of Alzheimer's disease. Brain Behav Immun Health 2023; 28:100599. [PMID: 36817510 PMCID: PMC9931920 DOI: 10.1016/j.bbih.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Baicalein (BE) has both antioxidant and anti-inflammatory effects. It has also been reported able to improve cerebral blood circulation in brain ischemic injury. However, its chronic efficacy and metabolomics in Alzheimer's disease (AD) remain unknown. In this study, BE at 80 mg/kg was administrated through the oral route in J20 AD transgenic mice aged from aged 4 months to aged 10 months. Metabolic- and neurobehavioural phenotyping was done before and after 6 months' treatment to evaluate the drug efficacy and the relevant mechanisms. Meanwhile, molecular docking was used to study the binding affinity of BE and poly (ADP-ribose) polymerase-1 (PARP-1) which is related to neuronal injury. The open field test showed that BE could suppress hyperactivity in J20 mice and increase the frequency of the target quadrant crossing in the Morris Water Maze test. More importantly, BE restored cerebral blood flow back to the normal level after the chronic treatment. A 1H NMR-based metabolomics study showed that BE treatment could restore the tricarboxylic acid cycle in plasma. And such a treatment could suppress oxidative stress, inhibit neuroinflammation, alleviate mitochondrial dysfunction, improve neurotransmission, and restore amino homeostasis via starch and sucrose metabolism and glycolipid metabolism in the cortex and hippocampus, which could affect the behavioural and cerebral blood flow. These findings showed that BE is a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Li Zhang
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 117583, Singapore,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ling Rong Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Peiyan Wong
- Neuroscience Phenotyping Core, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Wanxiang Shen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yun-An Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Paul Chi-Lui Ho
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 117583, Singapore,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore,Monash University Malaysia, School of Pharmacy, Subang Jaya, 47500, Selangor, Malaysia,Corresponding author. Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
7
|
The associations of serum valine with mild cognitive impairment and Alzheimer's disease. Aging Clin Exp Res 2022; 34:1807-1817. [PMID: 35362856 DOI: 10.1007/s40520-022-02120-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The introduction of metabolomics makes it possible to study the characteristic changes of peripheral metabolism in Alzheimer's disease (AD). Recent studies have found that the levels of valine are related to mild cognitive impairment (MCI) and AD. AIMS This study aimed to further clarify the characteristics of valine levels in MCI and AD. METHODS A total of 786 participants from the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) cohort were selected to evaluate the relationships between serum valine and cerebrospinal fluid (CSF) biomarkers, brain structure (magnetic resonance imaging, MRI), cerebral glucose metabolism (18F-fluorodeoxyglucose-positron emission tomography, FDG-PET), and cognitive declines, through different cognitive subgroups. RESULTS Serum valine was decreased in patients with AD compared with cognitive normal (CN) and stable MCI (sMCI), and in progressive MCI (pMCI) compared with CN. Serum valine was negatively correlated with CSF total tau (t-tau) and phosphorylated tau (p-tau) in pMCI. Serum valine significantly predicted conversion from MCI to AD. In addition, serum valine was related to the rate of change of cerebral glucose metabolism during the follow-up period in pMCI. CONCLUSIONS Serum valine may be a peripheral biomarker of pMCI and AD, and its level predicts the progression of MCI to AD. Our study may help to reveal the metabolic changes during AD disease trajectory and its relationship to clinical phenotype.
Collapse
|
8
|
Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2022; 145:1598-1609. [PMID: 35202463 PMCID: PMC9166557 DOI: 10.1093/brain/awac077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.
Collapse
Affiliation(s)
- Jared S Katzeff
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Fiona Bright
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katherine Phan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Jillian J Kril
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| |
Collapse
|
9
|
Feng J, Song G, Wu Y, Chen X, Pang J, Xu Y, Shen Q, Guo S, Zhang M. Plasmalogens improve swimming performance by modulating the expression of genes involved in amino acid and lipid metabolism, oxidative stress, and ferroptosis in an Alzheimer's disease zebrafish model. Food Funct 2021; 12:12087-12097. [PMID: 34783821 DOI: 10.1039/d1fo01471d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmalogens (PLs) are critical to human health. Studies have reported a link between the downregulation of PLs levels and cognitive impairments in patients with Alzheimer's disease (AD). However, the underlying mechanisms remain to be clarified. In the present study, an AlCl3-induced AD zebrafish model was established, and the model was used to elucidate the neuroprotective effects of PLs on AD by analysing the transcriptional profiles of zebrafish in the control, AD model, AD_PL, and PL groups. Chronic AlCl3 exposure caused swimming performance impairments in the zebrafish, yet PLs supplementation could improve the dyskinesia recovery rate in the AD zebrafish model. Through transcriptional profiling, a total of 5413 statistically significant differentially expressed genes (DEGs) were identified among the groups. In addition to the DEGs involved in amino acid metabolism, we found that the genes related to iron homeostasis, lipid peroxidation, and oxidative stress, all of which contribute to ferroptosis, were dramatically altered among different groups. These results suggest that seafood-derived PLs, in addition to their role in eliminating oxidative stress, can improve the swimming performance in AlCl3-exposed zebrafish partly by suppressing neuronal ferroptosis and accelerating synaptic transmission at the transcriptional level. This study provides evidence for PLs to be developed as a functional food supplement to relieve AD symptoms.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Yuanyuan Wu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Xi Chen
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Jie Pang
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Yaxi Xu
- Central Hospital of Haining, Haining 314408, Zhejiang, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Manman Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
11
|
Voluntary wheel running is capable of improving cognitive function only in the young but not the middle-aged male APPSwe/PS1De9 mice. Neurochem Int 2021; 145:105010. [PMID: 33684544 DOI: 10.1016/j.neuint.2021.105010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
To determine whether voluntary wheel running could improve cognitive function from both the young and middle-aged APP/PS1 mice and the underlying mechanisms involved in. Young (9-weeks old) and middle-aged (24-weeks old) APP/PS1 mice were randomly assigned into control and exercise groups, respectively. Mice from exercise group had free and unlimited access to the running wheel for a total of 16 weeks. Voluntary exercise only improved cognitive function from young but not the middle-aged APP/PS1 mice. This might be owing to that in young APP/PS1 mice voluntary exercise reduced tau phosphorylation via inhibiting p-GSK3β activity, as well as reduced neuro-inflammation and elevated key proteins involved in synaptic plasticity. Additionally, exercise also elevated circulating L-Valine, Glucosamine, Formylanthranilic acid, Myristic acid level and improved gut microbiota profiles (i.e. elevated Oscillibacter, EF097061_g, EU454870_g, EU504554_g, EU505046_g and EF096172_g and reduced Alistipes). Improved circulating metabolites and intestinal microbiome might also contribute to improved learning and memory abilities post exercise. For the middle-aged APP/PS1 mice, exercise reduced ADAM10 and GFAP protein expression in hippocampus, with no notable alterations in circulating metabolites; additionally, mice from exercise group had markedly reduced abundance of the phyla Proteobacteria and Tenericutes, genera Bacteroides and Faecalibacterium, and elevated abundance of the genera Allobaculum. It is suggested that voluntary exercise should be initiated at an early adulthood period rather than at late stage in order to prevent cognitive decline or Alzheimer's disease.
Collapse
|
12
|
Xu J, Su G, Huang X, Chang R, Chen Z, Ye Z, Cao Q, Kijlstra A, Yang P. Metabolomic Analysis of Aqueous Humor Identifies Aberrant Amino Acid and Fatty Acid Metabolism in Vogt-Koyanagi-Harada and Behcet's Disease. Front Immunol 2021; 12:587393. [PMID: 33732231 PMCID: PMC7959366 DOI: 10.3389/fimmu.2021.587393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate aqueous metabolic profiles in Vogt-Koyanagi-Harada (VKH) and Behcet's disease (BD), we applied ultra-high-performance liquid chromatography equipped with quadrupole time-of flight mass spectrometry in aqueous humor samples collected from these patients and controls. Metabolite levels in these three groups were analyzed by univariate logistic regression. The differential metabolites were subjected to subsequent pathway analysis by MetaboAnalyst. The results showed that both partial-least squares discrimination analysis and hierarchical clustering analysis showed specific aqueous metabolite profiles when comparing VKH, BD, and controls. There were 28 differential metabolites in VKH compared to controls and 29 differential metabolites in BD compared to controls. Amino acids and fatty acids were the two most abundant categories of differential metabolites. Furthermore, pathway enrichment analysis identified several perturbed pathways, including pantothenate and CoA biosynthesis when comparing VKH with the control group, and D-arginine and D-ornithine metabolism and phenylalanine metabolism when comparing BD with the control group. Aminoacyl-tRNA biosynthesis was altered in both VKH and BD when compared to controls. Our findings suggest that amino acids metabolism as well as two fatty acids, palmitic acid and oleic acid, may be involved in the pathogenesis of BD and VKH.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhijun Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
13
|
Swift IJ, Sogorb-Esteve A, Heller C, Synofzik M, Otto M, Graff C, Galimberti D, Todd E, Heslegrave AJ, van der Ende EL, Van Swieten JC, Zetterberg H, Rohrer JD. Fluid biomarkers in frontotemporal dementia: past, present and future. J Neurol Neurosurg Psychiatry 2021; 92:204-215. [PMID: 33188134 DOI: 10.1136/jnnp-2020-323520] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
The frontotemporal dementia (FTD) spectrum of neurodegenerative disorders includes a heterogeneous group of conditions. However, following on from a series of important molecular studies in the early 2000s, major advances have now been made in the understanding of the pathological and genetic underpinnings of the disease. In turn, alongside the development of novel methodologies for measuring proteins and other molecules in biological fluids, the last 10 years have seen a huge increase in biomarker studies within FTD. This recent past has focused on attempting to develop markers that will help differentiate FTD from other dementias (particularly Alzheimer's disease (AD)), as well as from non-neurodegenerative conditions such as primary psychiatric disorders. While cerebrospinal fluid, and more recently blood, markers of AD have been successfully developed, specific markers identifying primary tauopathies or TDP-43 proteinopathies are still lacking. More focus at the moment has been on non-specific markers of neurodegeneration, and in particular, multiple studies of neurofilament light chain have highlighted its importance as a diagnostic, prognostic and staging marker of FTD. As clinical trials get under way in specific genetic forms of FTD, measures of progranulin and dipeptide repeat proteins in biofluids have become important potential measures of therapeutic response. However, understanding of whether drugs restore cellular function will also be important, and studies of key pathophysiological processes, including neuroinflammation, lysosomal function and synaptic health, are also now becoming more common. There is much still to learn in the fluid biomarker field in FTD, but the creation of large multinational cohorts is facilitating better powered studies and will pave the way for larger omics studies, including proteomics, metabolomics and lipidomics, as well as investigations of multimodal biomarker combinations across fluids, brain imaging and other domains. Here we provide an overview of the past, present and future of fluid biomarkers within the FTD field.
Collapse
Affiliation(s)
- Imogen Joanna Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Caroline Graff
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Emily Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan Daniel Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|