1
|
Drygalski K, Higos R, Merabtene F, Mojsak P, Grubczak K, Ciborowski M, Razak H, Clément K, Dugail I. Extracellular matrix hyaluronan modulates fat cell differentiation and primary cilia dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159470. [PMID: 38423452 DOI: 10.1016/j.bbalip.2024.159470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hyaluronan is an important extracellular matrix component, with poorly documented physiological role in the context of lipid-rich adipose tissue. We have investigated the global impact of hyaluronan removal from adipose tissue environment by in vitro exposure to exogenous hyaluronidase (or heat inactivated enzyme). Gene set expression analysis from RNA sequencing revealed downregulated adipogenesis as a main response to hyaluronan removal from human adipose tissue samples, which was confirmed by hyaluronidase-mediated inhibition of adipocyte differentiation in the 3T3L1 adipose cell line. Hyaluronidase exposure starting from the time of induction with the differentiation cocktail reduced lipid accumulation in mature adipocytes, limited the expression of terminal differentiation marker genes, and impaired the early induction of co-regulated Cebpa and Pparg mRNA. Reduction of Cebpa and Pparg expression by exogenous hyaluronidase was also observed in cultured primary preadipocytes from subcutaneous, visceral or brown adipose tissue of mice. Mechanistically, inhibition of adipogenesis by hyaluronan removal was not caused by changes in osmotic pressure or cell inflammatory status, could not be mimicked by exposure to threose, a metabolite generated by hyaluronan degradation, and was not linked to alteration in endogenous Wnt ligands expression. Rather, we observed that hyaluronan removal associated with disrupted primary cilia dynamics, with elongated cilium and higher proportions of preadipocytes that remained ciliated in hyaluronidase-treated conditions. Thus, our study points to a new link between ciliogenesis and hyaluronan impacting adipose tissue development.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Romane Higos
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Fatiha Merabtene
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Hady Razak
- Department of General and Endocrine Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Karine Clément
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Assistance Publique-Hopitaux de Paris, Nutrition department, Pitié-Salpetrière Hospital, 75013 Paris, France
| | - Isabelle Dugail
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France.
| |
Collapse
|
2
|
Haartmans MJJ, Claes BSR, Eijkel GB, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal Bioanal Chem 2023; 415:5997-6007. [PMID: 37505238 PMCID: PMC10556153 DOI: 10.1007/s00216-023-04871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The incidence of osteoarthritis (OA) has been expected to increase due to an aging population, as well as an increased incidence of intra-articular (osteo-) chondral damage. Lipids have already been shown to be involved in the inflammatory process of OA. This study aims at revealing region-specific lipid profiles of the infrapatellar fat pad (IPFP) of OA or cartilage defect patients by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which could be used as biomarkers for early OA detection. A higher presence of phospholipids was found in OA patients compared with cartilage defect patients. In addition, a higher abundance of ether-linked phosphatidylethanolamines (PE O-s) containing arachidonic acid was specifically found in OA patients compared with cartilage defect patients. These lipids were mainly found in the connective tissue of the IPFP. Specific lipid species were associated to OA patients compared with cartilage defect patients. PE O-s have been suggested as possible biomarkers for OA. As these were found more abundantly in the connective tissue, the IPFP's intra-tissue heterogeneity might play an important role in biomarker discovery, implying that the amount of fibrous tissue is associated with OA.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Britt S R Claes
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Gert B Eijkel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gabrielle J M Tuijthof
- Biomedical Device Design and Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Haartmans MJJ, Claes BSR, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Sample preparation for lipid analysis of intra-articular adipose tissue by using matrix-assisted laser desorption/ionization imaging. Anal Biochem 2023; 662:115018. [PMID: 36521559 DOI: 10.1016/j.ab.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique enabling the visualization of the spatial distribution of different molecules in tissue biopsies with different pathologies. Sample handling and preparing adipose tissue for MSI is challenging and prone to molecular delocalization due to tissue melting. In this work, we developed a method for matrix-assisted laser desorption/ionization (MALDI)-MSI to study lipids in human infrapatellar fat pad (IPFP), a biomarker source in musculoskeletal pathologies, while preserving molecular spatial distribution. Cryosectioning at 15 μm with a temperature below -30 °C, thaw-mounting, and sublimation, was demonstrated to preserve IPFP's heterogeneous appearance and spatial distribution of lipids.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, Amsterdam Movement Sciences, Department of Orthopedic Surgery and Sports Medicine, Amsterdam, the Netherlands.
| | - Gabrielle J M Tuijthof
- Faculty of Engineering Technology, Biomedical Device Design and Production Technology (BDDP), Twente University, Twente, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Wang Y, Zhao A, Du H, Liu Y, Qi B, Yang X. Theabrownin from Fu Brick Tea Exhibits the Thermogenic Function of Adipocytes in High-Fat-Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11900-11911. [PMID: 34581185 DOI: 10.1021/acs.jafc.1c04626] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study explored whether the antiobesity effect of theabrownin (TB) extracted from Fu brick tea (FBT) was associated with the activation of brown adipose tissue (BAT) or browning of the white adipose tissue (WAT) in mice fed a high-fat diet (HFD). Mice were divided into five groups, which received a normal diet, HFD, or HFD plus TB (200, 400, and 800 mg/kg), respectively. A 12-week administration of TB in a dose-dependent manner reduced the body weight and WAT weight and improved lipid and glucose disorders in the HFD-fed mice (p < 0.05). TB also promoted the expression of thermogenic and mitochondrial genes, whereas inflammation genes were reduced in interscapular BAT (iBAT), inguinal WAT (iWAT), and epididymis white adipose tissue (eWAT), accompanied by improvement in the intestinal homeostasis by improving SCFAs, especially butyric acid levels (p < 0.05), which was related to thermogenic and inflammatory factors of iBAT and iWAT. Mechanistically, TB was shown to efficiently promote thermogenesis by stimulating the AMPK-PGC1α pathway with an increase in uncoupling protein 1 (UCP1). Conclusively, these findings suggest that long-term consumption of TB can enhance BAT activity and WAT browning by activating the AMPK-PGC1α pathway and modulating SCFAs; meanwhile, SCFAs regulating TB improved inflammatory disorder in HFD-fed mice.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Evans HC, Dinh TTN, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, Jousan FD, Nicodemus MC, Memili E. Advancing Semen Evaluation Using Lipidomics. Front Vet Sci 2021; 8:601794. [PMID: 33937366 PMCID: PMC8085260 DOI: 10.3389/fvets.2021.601794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Developing a deeper understanding of biological components of sperm is essential to improving cryopreservation techniques and reproductive technologies. To fully ascertain the functional determinants of fertility, lipidomic methods have come to the forefront. Lipidomics is the study of the lipid profile (lipidome) within a cell, tissue, or organism and provides a quantitative analysis of the lipid content in that sample. Sperm cells are composed of various lipids, each with their unique contribution to the overall function of the cell. Lipidomics has already been used to find new and exciting information regarding the fatty acid content of sperm cells from different species. While the applications of lipidomics are rapidly evolving, gaps in the knowledge base remain unresolved. Current limitations of lipidomics studies include the number of available samples to analyze and the total amount of cells within those samples needed to detect changes in the lipid profiles across different subjects. The information obtained through lipidomics research is essential to systems and cellular biology. This review provides a concise analysis of the most recent developments in lipidomic research. This scientific resource is important because these developments can be used to not only combat the reproductive challenges faced when using cryopreserved semen and artificial reproductive technologies in livestock such as cattle, but also other mammals, such as humans or endangered species.
Collapse
Affiliation(s)
- Holly C. Evans
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Thu T. N. Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Madison L. Hardcastle
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Alicia A. Gilmore
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Muhammet R. Ugur
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Mustafa Hitit
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
- Department of Animal Genetics, Kastamonu University, Kastamonu, Turkey
| | - Frank Dean Jousan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Molly C. Nicodemus
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|