1
|
Soni N, Yadav M, M M, Sharma D, Paul D. Current developments and trends in hybrid extraction techniques for green analytical applications in natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124543. [PMID: 40049075 DOI: 10.1016/j.jchromb.2025.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Natural product extraction has advanced significantly due to the growing need for environmentally friendly and sustainable analytical techniques. The medicinal benefits of natural products are gaining worldwide recognition. This shift emphasizes the need for sustainable extraction methods, as traditional organic solvents can negatively impact biodiversity. This review looks at new green extraction methods such as pressurized liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical fluid extraction. The overview describes the main goals, workings, and extraction principles of these techniques, which are used to extract phytochemicals from various plant sources. Additionally covered is how green solvents, more especially bio-based and deep eutectic solvents, can enhance the sustainability of these techniques. This review examines the developments in synergistic extraction, emphasizing how these hybrid techniques can be used to isolate a variety of natural products, including polyphenols, alkaloids, essential oils, and more. It also emphasizes how crucial these techniques are to the development of high-performance, environmentally friendly analytical platforms for the use of natural products. The recent uses of these extraction techniques are covered in this review. Despite the positive results, standardization, selectivity, scalability, and economic viability issues must be recognized and addressed.
Collapse
Affiliation(s)
- Navratan Soni
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Mukul Yadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Malarvannan M
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - Dhanashree Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal, India- 700054.
| |
Collapse
|
2
|
Chen J, Song Y, Wei X, Duan X, Liu K, Cao W, Li L, Ren G. Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves. Foods 2025; 14:972. [PMID: 40232030 PMCID: PMC11941263 DOI: 10.3390/foods14060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The purpose of this research was to establish an effective method for extracting phenolic compounds from Eucommia ulmoides leaves. Seven different deep eutectic solvents (DESs) were prepared, and ultrasonic-assisted technology was employed to optimize the extraction parameters. Factors such as the DES molar ratio, water content, liquid-to-solid ratio, ultrasonic duration, temperature, and power were systematically investigated. The optimal extraction conditions were determined to include a choline-chloride-to-ethylene-glycol molar ratio of 1:4, 30% water content, a liquid-to-solid ratio of 40:1 mL/g, an ultrasonication time of 48 min, a temperature of 53 °C, and ultrasonication power of 60%. Under these optimized conditions, the yields of phenolic compounds and flavonoids reached 17.16 mg/g and 48.23 mg/g, respectively, which were significantly higher (p < 0.05) than those obtained by traditional extraction methods. These findings indicate that the use of ultrasonic-assisted DES extraction notably improved the content of active compounds and the antioxidant properties of the extracts. Fourier transform infrared spectroscopy and scanning electron microscopy analyses revealed that this method promotes the release of active compounds by disrupting the integrity of the cell walls. This research offers a theoretical foundation and practical guidance for the efficient utilization and advanced processing of E. ulmoides leaves.
Collapse
Affiliation(s)
- Junliang Chen
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| | - Yanhong Song
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| | - Xinyu Wei
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Xu Duan
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| | - Ke Liu
- School of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100107, China;
| | - Weiwei Cao
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| | - Linlin Li
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| | - Guangyue Ren
- School of Food and Biotechnology, Henan University of Science and Technology, Luoyang 471023, China; (J.C.); (Y.S.); (W.C.); (L.L.); (G.R.)
| |
Collapse
|
3
|
Zhang Y, Zhu X, Wang- Y. Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124136. [PMID: 38467098 DOI: 10.1016/j.saa.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Rapid and scientific quality evaluation is a hot topic in the research of food and medicinal plants. With the increasing popularity of derivative products from Eucommia ulmoides leaves, quality and safety have attracted public attention. The present study utilized multi-source data and traditional machine learning to conduct geographical traceability and content prediction research on Eucommia ulmoides leaves. Explored the impact of different preprocessing methods and low-level data fusion strategy on the performance of classification and regression models. The classification analysis results indicated that the partial least squares discriminant analysis (PLS-DA) established by low-level fusion of two infrared spectroscopy techniques based on first derivative (FD) preprocessing was most suitable for geographical traceability of Eucommia ulmoides leaves, with an accuracy rate of up to 100 %. Through regression analysis, it was found that the preprocessing methods and data blocks applicable to the four chemical components were inconsistent. The optimal partial least squares regression (PLSR) model based on aucubin (AU), geniposidic acid (GPA), and chlorogenic acid (CA) had a residual predictive deviation (RPD) value higher than 2.0, achieving satisfactory predictive performance. However, the PLSR model based on quercetin (QU) had poor performance (RPD = 1.541) and needed further improvement. Overall, the present study proposed a strategy that can effectively evaluate the quality of Eucommia ulmoides leaves, while also providing new ideas for the quality evaluation of food and medicinal plants.
Collapse
Affiliation(s)
- Yanying Zhang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Xinyan Zhu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang-
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
4
|
Tapia-Quirós P, Granados M, Sentellas S, Saurina J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168716. [PMID: 38036116 DOI: 10.1016/j.scitotenv.2023.168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
5
|
Zhao X, Qu Q, Zhang Y, Zhao P, Qiu J, Zhang X, Duan X, Song X. Research Progress of Eucommia ulmoides Oliv and Predictive Analysis of Quality Markers Based on Network Pharmacology. Curr Pharm Biotechnol 2024; 25:860-895. [PMID: 38902931 DOI: 10.2174/0113892010265000230928060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 06/22/2024]
Abstract
Du Zhong is a valuable Chinese medicinal herb unique to China. It is a national second- class precious protected tree, known as "plant gold", which has been used to treat various diseases since ancient times. The main active ingredients are lignans, phenylprophetons, flavonoids, iridoids and steroids and terpenoids, which have pharmacological effects such as lowering blood pressure, enhancing immunity, regulating bone metabolism, protecting nerve cells, protecting liver and gallbladder and regulating blood lipids. In this paper, a comprehensive review of Eucommia ulmoides Oliv. was summarized from the processing and its compositional changes, applications, chemical components, pharmacological effects, and pharmacokinetics, and the Q-marker of Eucommia ulmoides Oliv. is preliminarily predicted from the aspects of traditional efficacy, medicinal properties and measurability of chemical composition, and the pharmacodynamic substance basis and potential Q-marker of Eucommia ulmoides Oliv. are further analyzed through network pharmacology. It is speculated that quercetin, kaempferol, β-sitosterol, chlorogenic acid and pinoresinol diglucoside components are selected as quality markers of Eucommia ulmoides Oliv., which provide a basis for the quality control evaluation and follow-up research and development of Eucommia ulmoides Oliv.
Collapse
Affiliation(s)
- Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Peiyuan Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jinqing Qiu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xi Duan
- Laboratory Department, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
6
|
Yang D, Zhu Z, Yao Q, Chen C, Chen F, Gu L, Jiang Y, Chen L, Zhang J, Wu J, Gao X, Wang J, Li G, Zhao Y. ccTCM: A quantitative component and compound platform for promoting the research of traditional Chinese medicine. Comput Struct Biotechnol J 2023; 21:5807-5817. [PMID: 38213899 PMCID: PMC10781882 DOI: 10.1016/j.csbj.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Traditional Chinese medicine (TCM) databases play a vital role in bridging the gap between TCM and modern medicine, as well as in promoting the popularity of TCM. Elucidating the bioactive ingredients of Chinese medicinal materials is key to TCM modernization and new drug discovery. However, one drawback of current TCM databases is the lack of quantitative data on the constituents of Chinese medicinal materials. Herein, we present ccTCM, a web-based platform designed to provide a component and compound-content-based resource on TCM and analysis services for medical experts. In terms of design features, ccTCM combines resource distribution, similarity analysis, and molecular-mechanism analysis to accelerate the discovery of bioactive ingredients in TCM. ccTCM contains 273 Chinese medicinal materials commonly used in clinical settings, covering 29 functional classifications. By searching and comparing, we finally adopted 2043 studies, from which we collected the compounds contained in each TCM with content greater than 0.001 %, and a total of 1449 were extracted. Subsequently, we collected 40,767 compound-target pairs by integrating multiple databases. Taken together, ccTCM is a versatile platform that can be used by TCM scientists to perform scientific and clinical TCM studies based on quantified ingredients of Chinese medicinal materials. ccTCM is freely accessible at http://www.cctcm.org.cn.
Collapse
Affiliation(s)
- Dongqing Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yucui Jiang
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyuan Zhang
- Department of Treatise on Febrile Diseases, School of Traditional Chinese Medicine & Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Wu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junqin Wang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun Li
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Chen X, Yang Z, Xu Y, Liu Z, Liu Y, Dai Y, Chen S. Progress and prediction of multicomponent quantification in complex systems with practical LC-UV methods. J Pharm Anal 2023; 13:142-155. [PMID: 36908853 PMCID: PMC9999300 DOI: 10.1016/j.jpha.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Complex systems exist widely, including medicines from natural products, functional foods, and biological samples. The biological activity of complex systems is often the result of the synergistic effect of multiple components. In the quality evaluation of complex samples, multicomponent quantitative analysis (MCQA) is usually needed. To overcome the difficulty in obtaining standard products, scholars have proposed achieving MCQA through the "single standard to determine multiple components (SSDMC)" approach. This method has been used in the determination of multicomponent content in natural source drugs and the analysis of impurities in chemical drugs and has been included in the Chinese Pharmacopoeia. Depending on a convenient (ultra) high-performance liquid chromatography method, how can the repeatability and robustness of the MCQA method be improved? How can the chromatography conditions be optimized to improve the number of quantitative components? How can computer software technology be introduced to improve the efficiency of multicomponent analysis (MCA)? These are the key problems that remain to be solved in practical MCQA. First, this review article summarizes the calculation methods of relative correction factors in the SSDMC approach in the past five years, as well as the method robustness and accuracy evaluation. Second, it also summarizes methods to improve peak capacity and quantitative accuracy in MCA, including column selection and two-dimensional chromatographic analysis technology. Finally, computer software technologies for predicting chromatographic conditions and analytical parameters are introduced, which provides an idea for intelligent method development in MCA. This paper aims to provide methodological ideas for the improvement of complex system analysis, especially MCQA.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhe Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Corresponding author. Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Liu Z, Ma W, Chen B, Pan H, Zhu M, Pang X, Zhang Q. Deep eutectic solvents in the extraction of active compounds from Eucommia Ulmoides Oliv. leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Li XY, Fu YJ, Fu YF, Wei W, Xu C, Yuan XH, Gu CB. Simultaneous quantification of fourteen characteristic active compounds in Eucommia ulmoides Oliver and its tea product by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS). Food Chem 2022; 389:133106. [PMID: 35504080 DOI: 10.1016/j.foodchem.2022.133106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
Various kinds of bioactive compounds contribute to versatile health-promoting properties of Eucommia ulmoides Oliver (E. ulmoides). In present study, we developed a UPLC-QqQ-MS/MS method for simultaneous quantification of fourteen characteristic active compounds, including 3 lignans, 4 iridoids, 3 flavonoids and 4 phenolics in E. ulmoides and its tea product for the first time. The running time of the method is 6.5 min. It has good linearity, sensitivity, precision, accuracy, and stability. Using this high-throughput method, the distributions of fourteen characteristic active compounds in E. ulmoides and its tea product were clarified. Also, it was found that E. ulmoides tea exhibited superiority in contents of chlorogenic acid as compared with natural resources. Overall, the study provided a rapid, reliable, and efficient analysis method, which could be applied for the quality evaluation of E. ulmoides natural resources and their relative products in the field of food and medicine.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Yue-Feng Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Wei Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Cheng Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Xiao-Han Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, PR China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China.
| |
Collapse
|