1
|
Lin Y, Zheng J, Zhao X, Zheng B, Li Y, Yang W, Han B, Tang H, Zhang M. Anemarrhenae rhizoma combined with Trichosanthis radix ameliorated type 2 diabetes in rats via the PI3K-Akt signalling pathway based on network pharmacology analysis. Nat Prod Res 2025:1-5. [PMID: 40122102 DOI: 10.1080/14786419.2025.2481616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
By combining network pharmacological analysis and animal model experiments, the research aims to understand the pharmacological profile and mechanisms of Anemarrhenae rhizoma (Zhimu) and Trichosanthis radix (Tianhuafen) herb-pair (AT) in type 2 diabetes mellitus (T2DM) treatment. The results of GO and KEGG enrichment analyses suggested that AT exerted pharmacological effects on T2DM by regulating PI3K/Akt signalling pathway. Finally, molecular docking confirmed a strong binding affinity between AT with the core target proteins. Further in vitro experiments have confirmed that AT treatment significantly reduced body weight, blood glucose, and insulin levels, also blocking the activation of the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jinde Zheng
- Department of Neurology, Xianju People's Hospital, Taizhou, China
| | - Xinyi Zhao
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Bei Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ying Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Wenjuan Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Bing Han
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Hanxiao Tang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Meiling Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Pharmacodynamic Material Basis Research of Chinese Medicine, Hangzhou, China
| |
Collapse
|
2
|
Shi F, Fan M, Li H, Li S, Wang S. Xanthone Dimers in Angiosperms, Fungi, Lichens: Comprehensive Review of Their Sources, Structures, and Pharmacological Properties. Molecules 2025; 30:967. [PMID: 40005277 PMCID: PMC11858044 DOI: 10.3390/molecules30040967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Xanthone dimers, a distinctive class of natural metabolites renowned for their unique structures, are abundantly present in a diverse array of angiosperms, fungi, and lichens. These compounds not only exhibit remarkable diversity but also possess a broad spectrum of biological activities. In this comprehensive review spanning from 1966 to 2024, we synthesized the relevant literature to delve into the natural occurrence, biological potency, molecular structure and chemical diversity of xanthone dimers. The aim of this review is to serve as an insightful reference point for future scientific inquiries into xanthone dimers and their potential applications.
Collapse
Affiliation(s)
- Fengzhi Shi
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Min Fan
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Haifeng Li
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China
| | - Shiwei Li
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| | - Shuang Wang
- College of Pharmacy, Dali University, Dali 671000, China; (F.S.); (M.F.); (H.L.)
| |
Collapse
|
3
|
Zhang H, Wang L, Wang X, Deng L, He B, Yi X, Li J. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur J Pharmacol 2024; 977:176724. [PMID: 38851559 DOI: 10.1016/j.ejphar.2024.176724] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Mangiferin is a Chinese herbal extract with multiple biological activities. Mangiferin can penetrate the blood‒brain barrier and has potential in the treatment of nervous system diseases. These findings suggest that mangiferin protects the neurological function in ischemic stroke rats by targeting multiple signaling pathways. However, little is known about the effect and mechanism of mangiferin in alleviating poststroke cognitive impairment. METHODS Cerebral ischemia/reperfusion (I/R) rats were generated via middle cerebral artery occlusion. Laser speckle imaging was used to monitor the cerebral blood flow. The I/R rats were intraperitoneally (i.p.) injected with 40 mg/kg mangiferin for 7 consecutive days. Neurological scoring, and TTC staining were performed to evaluate neurological function. Behavioral experiments, including the open field test, elevated plus maze, sucrose preference test, and novel object recognition test, were performed to evaluate cognitive function. Metabolomic data from brain tissue with multivariate statistics were analyzed by gas chromatography‒mass spectrometry and liquid chromatography‒mass spectrometry. RESULTS Mangiferin markedly decreased neurological scores, and reduced infarct areas. Mangiferin significantly attenuated anxiety-like and depression-like behaviors and enhanced learning and memory in I/R rats. According to the metabolomics results, 13 metabolites were identified to be potentially regulated by mangiferin, and the differentially abundant metabolites were mainly involved in lipid metabolism. CONCLUSIONS Mangiferin protected neurological function and relieved poststroke cognitive impairment by improving lipid metabolism abnormalities in I/R rats.
Collapse
Affiliation(s)
- Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Xia Yi
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| |
Collapse
|
4
|
Xiang G, Guo S, Xing N, Du Q, Qin J, Gao H, Zhang Y, Wang S. Mangiferin, a Potential Supplement to Improve Metabolic Syndrome: Current Status and Future Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:355-386. [PMID: 38533569 DOI: 10.1142/s0192415x24500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Qin
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Huimin Gao
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| | - Yi Zhang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Shaohui Wang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| |
Collapse
|
5
|
Li L, Dong Y, Liu X, Wang M. Mangiferin for the Management of Liver Diseases: A Review. Foods 2023; 12:2469. [PMID: 37444207 DOI: 10.3390/foods12132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.
Collapse
Affiliation(s)
- Lisi Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100086, China
| |
Collapse
|