1
|
Movassaghi CS, Sun J, Jiang Y, Turner N, Chang V, Chung N, Chen RJ, Browne EN, Lin C, Schweppe DK, Malaker SA, Meyer JG. Recent Advances in Mass Spectrometry-Based Bottom-Up Proteomics. Anal Chem 2025; 97:4728-4749. [PMID: 40000226 DOI: 10.1021/acs.analchem.4c06750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Mass spectrometry-based proteomics is about 35 years old, and recent progress appears to be speeding up across all subfields. In this review, we focus on advances over the last two years in select areas within bottom-up proteomics, including approaches to high-throughput experiments, data analysis using machine learning, drug discovery, glycoproteomics, extracellular vesicle proteomics, and structural proteomics.
Collapse
Affiliation(s)
- Cameron S Movassaghi
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jie Sun
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Natalie Turner
- Departments of Molecular Medicine and Neurobiology, Scripps Research Institute, La Jolla, California 92037, United States
| | - Vincent Chang
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nara Chung
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Ryan J Chen
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Elizabeth N Browne
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Chuwei Lin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
2
|
Spiric J, Schulenborg T, Holzhauser T, Schuler F, Bonertz A, Lauer I, Bartel D, Vieths S, Mahler V, Reuter A. Quality control of allergen products with mass spectrometry part I: Positioning within the EU regulatory framework. Allergy 2024; 79:2088-2096. [PMID: 38425053 DOI: 10.1111/all.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Mass spectrometry (MS) has advanced greatly and many of its applications are ready for utilization within regulatory procedures and could significantly contribute to overcome challenges in standardization of allergen products. It seems sensible to discuss MS within the regulatory framework, before addressing technical questions. While the application to purified proteins is well established from product development to manufacturer's release analytics, its application to complex products such as allergen products is still under development. It needs to be determined where it can complement or replace established methods or where MS offers limited improvement. Despite its technical appeal and versatility, currently MS is mentioned in regulatory guidelines only as one possible measurement method. For example, no specific MS method is given in the European Pharmacopoeia. We discuss applications of MS within the EU regulatory framework. This includes their advantages and disadvantages and their positioning between research, characterization, manufacturer's release analytics and official batch testing. We discuss the qualitative detection of single and multiple allergens as proof of identity, qualitative to semi-quantitative protein profiles for batch to batch consistency testing, and quantification of allergens to state mass units of allergens. MS may also facilitate standardization of allergen products, reference products and reference standards.
Collapse
Affiliation(s)
- Jelena Spiric
- Allergology Division, Central Method Development Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas Schulenborg
- Allergology Division, Central Method Development Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas Holzhauser
- Allergology Division, Central Method Development Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Frank Schuler
- Allergology Division, Allergology Quality Assessment Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Bonertz
- Allergology Division, Allergology Quality Assessment Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Iris Lauer
- Allergology Division, Allergology Quality Assessment Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Detlef Bartel
- Allergology Division, Allergens Product Testing Section, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Vera Mahler
- Allergology Division, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Reuter
- Allergology Division, Central Method Development Section, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
3
|
Bas TG, Duarte V. Biosimilars in the Era of Artificial Intelligence-International Regulations and the Use in Oncological Treatments. Pharmaceuticals (Basel) 2024; 17:925. [PMID: 39065775 PMCID: PMC11279612 DOI: 10.3390/ph17070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This research is based on three fundamental aspects of successful biosimilar development in the challenging biopharmaceutical market. First, biosimilar regulations in eight selected countries: Japan, South Korea, the United States, Canada, Brazil, Argentina, Australia, and South Africa, represent the four continents. The regulatory aspects of the countries studied are analyzed, highlighting the challenges facing biosimilars, including their complex approval processes and the need for standardized regulatory guidelines. There is an inconsistency depending on whether the biosimilar is used in a developed or developing country. In the countries observed, biosimilars are considered excellent alternatives to patent-protected biological products for the treatment of chronic diseases. In the second aspect addressed, various analytical AI modeling methods (such as machine learning tools, reinforcement learning, supervised, unsupervised, and deep learning tools) were analyzed to observe patterns that lead to the prevalence of biosimilars used in cancer to model the behaviors of the most prominent active compounds with spectroscopy. Finally, an analysis of the use of active compounds of biosimilars used in cancer and approved by the FDA and EMA was proposed.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1781421, Chile;
| | | |
Collapse
|
4
|
Villafuerte-Vega RC, Li HW, Bergman AE, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding Rapidly Characterize the Structural Polydispersity and Stability of an Fc-Fusion Protein. Anal Chem 2024; 96:10003-10012. [PMID: 38853531 DOI: 10.1021/acs.analchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Addison E Bergman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
6
|
Sarin D, Krishna K, Nejadnik MR, Suryanarayanan R, Rathore AS. Impact of Excipient Extraction and Buffer Exchange on Recombinant Monoclonal Antibody Stability. Mol Pharm 2024; 21:1872-1883. [PMID: 38422397 PMCID: PMC10988557 DOI: 10.1021/acs.molpharmaceut.3c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The foundation of a biosimilar manufacturer's regulatory filing is the demonstration of analytical and functional similarity between the biosimilar product and the pertinent originator product. The excipients in the formulation may interfere with characterization using typical analytical and functional techniques during this biosimilarity exercise. Consequently, the producers of biosimilar products resort to buffer exchange to isolate the biotherapeutic protein from the drug product formulation. However, the impact that this isolation has on the product stability is not completely known. This study aims to elucidate the extent to which mAb isolation via ultrafiltration-diafiltration-based buffer exchange impacts mAb stability. It has been demonstrated that repeated extraction cycles do result in significant changes in higher-order structure (red-shift of 5.0 nm in fluorescence maxima of buffer exchanged samples) of the mAb and also an increase in formation of basic variants from 19.1 to 26.7% and from 32.3 to 36.9% in extracted innovator and biosimilar Tmab samples, respectively. It was also observed that under certain conditions of tertiary structure disruptions, Tmab could be restabilized depending on formulation composition. Thus, mAb isolation through extraction with buffer exchange impacts the product stability. Based on the observations reported in this paper, we recommend that biosimilar manufacturers take into consideration these effects of excipients on protein stability when performing biosimilarity assessments.
Collapse
Affiliation(s)
- Deepika Sarin
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Kunal Krishna
- School
of Interdisciplinary Research, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - M. Reza Nejadnik
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Raj Suryanarayanan
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anurag S. Rathore
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|