1
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
2
|
Chen PD, Liao YY, Cheng YC, Wu HY, Wu YM, Huang MC. Decreased B4GALT1 promotes hepatocellular carcinoma cell invasiveness by regulating the laminin-integrin pathway. Oncogenesis 2023; 12:49. [PMID: 37907465 PMCID: PMC10618527 DOI: 10.1038/s41389-023-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Beta1,4-galactosyltransferases (B4GALTs) play a crucial role in several diseases, including cancer. B4GALT1 is highly expressed in the liver, and patients with mutations in B4GALT1 exhibit hepatopathy. However, the role of B4GALT1 in liver cancer remains unclear. Here, we found that B4GALT1 was significantly downregulated in hepatocellular carcinoma (HCC) tissue compared with the adjacent liver tissue, and low B4GALT1 expression was associated with vascular invasion and poor overall survival in patients with HCC. Additionally, silencing or loss of B4GALT1 enhanced HCC cell migration and invasion in vitro and promoted lung metastasis of HCC in NOD/SCID mice. Moreover, B4GALT1 knockdown or knockout increased cell adhesion to laminin, whereas B4GALT1 overexpression decreased the adhesion. Through a mass spectrometry-based approach and Griffonia simplicifolia lectin II (GSL-II) pull-down assays, we identified integrins α6 and β1 as the main protein substrates of B4GALT1 and their N-glycans were modified by B4GALT1. Further, the increased cell migration and invasion induced by B4GALT1 knockdown or knockout were significantly reversed using a blocking antibody against integrin α6 or integrin β1. These results suggest that B4GALT1 downregulation alters N-glycosylation and enhances the laminin-binding activity of integrin α6 and integrin β1 to promote invasiveness of HCC cells. Our findings provide novel insights into the role of B4GALT1 in HCC metastasis and highlight targeting the laminin-integrin axis as a potential therapeutic strategy for HCC with low B4GALT1 expression.
Collapse
Affiliation(s)
- Po-Da Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ying-Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Cheng
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Marín-Quílez A, Díaz-Ajenjo L, Di Buduo CA, Zamora-Cánovas A, Lozano ML, Benito R, González-Porras JR, Balduini A, Rivera J, Bastida JM. Inherited Thrombocytopenia Caused by Variants in Crucial Genes for Glycosylation. Int J Mol Sci 2023; 24:5109. [PMID: 36982178 PMCID: PMC10049517 DOI: 10.3390/ijms24065109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein glycosylation, including sialylation, involves complex and frequent post-translational modifications, which play a critical role in different biological processes. The conjugation of carbohydrate residues to specific molecules and receptors is critical for normal hematopoiesis, as it favors the proliferation and clearance of hematopoietic precursors. Through this mechanism, the circulating platelet count is controlled by the appropriate platelet production by megakaryocytes, and the kinetics of platelet clearance. Platelets have a half-life in blood ranging from 8 to 11 days, after which they lose the final sialic acid and are recognized by receptors in the liver and eliminated from the bloodstream. This favors the transduction of thrombopoietin, which induces megakaryopoiesis to produce new platelets. More than two hundred enzymes are responsible for proper glycosylation and sialylation. In recent years, novel disorders of glycosylation caused by molecular variants in multiple genes have been described. The phenotype of the patients with genetic alterations in GNE, SLC35A1, GALE and B4GALT is consistent with syndromic manifestations, severe inherited thrombocytopenia, and hemorrhagic complications.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - Lorena Díaz-Ajenjo
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | | | - Ana Zamora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - Rocío Benito
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | - José Ramón González-Porras
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, 30003 Murcia, Spain
| | - José María Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Song W, Isaji T, Nakano M, Liang C, Fukuda T, Gu J. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J 2022; 36:e22149. [PMID: 34981577 DOI: 10.1096/fj.202101520r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-hiroshima, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
5
|
Montasser ME, Van Hout CV, Miloscio L, Howard AD, Rosenberg A, Callaway M, Shen B, Li N, Locke AE, Verweij N, De T, Ferreira MA, Lotta LA, Baras A, Daly TJ, Hartford SA, Lin W, Mao Y, Ye B, White D, Gong G, Perry JA, Ryan KA, Fang Q, Tzoneva G, Pefanis E, Hunt C, Tang Y, Lee L, Sztalryd-Woodle C, Mitchell BD, Healy M, Streeten EA, Taylor SI, O'Connell JR, Economides AN, Della Gatta G, Shuldiner AR. Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. Science 2021; 374:1221-1227. [PMID: 34855475 DOI: 10.1126/science.abe0348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- May E Montasser
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cristopher V Van Hout
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA.,Laboratorio Internacional de Investigatión sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, México
| | | | - Alicia D Howard
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | | | - Biao Shen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Adam E Locke
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Niek Verweij
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Tanima De
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | | | - Luca A Lotta
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Aris Baras
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Thomas J Daly
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Wei Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuan Mao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Bin Ye
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Derek White
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guochun Gong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - James A Perry
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qing Fang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Gannie Tzoneva
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | | | - Charleen Hunt
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yajun Tang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Carole Sztalryd-Woodle
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,US Department of Veterans Affairs, Washington, DC 20420 USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Geriatrics Research and Education Clinical Center, VA Medical Center, Baltimore, MD 21201, USA
| | | | - Elizabeth A Streeten
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Division of Genetics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aris N Economides
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA.,Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | |
Collapse
|
6
|
Conte F, van Buuringen N, Voermans NC, Lefeber DJ. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj 2021; 1865:129898. [PMID: 33878388 DOI: 10.1016/j.bbagen.2021.129898] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Galactose is an essential carbohydrate for cellular metabolism, as it contributes to energy production and storage in several human tissues while also being a precursor for glycosylation. Galactosylated glycoconjugates, such as glycoproteins, keratan sulfate-containing proteoglycans and glycolipids, exert a plethora of biological functions, including structural support, cellular adhesion, intracellular signaling and many more. The biological relevance of galactose is further entailed by the number of pathogenic conditions consequent to defects in galactosylation and galactose homeostasis. The growing number of rare congenital disorders involving galactose along with its recent therapeutical applications are drawing increasing attention to galactose metabolism. In this review, we aim to draw a comprehensive overview of the biological functions of galactose in human cells, including its metabolism and its role in glycosylation, and to provide a systematic description of all known congenital metabolic disorders resulting from alterations of its homeostasis.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nicole van Buuringen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
van den Boogert MA, Crunelle CL, Ali L, Larsen LE, Kuil SD, Levels JH, Schimmel AW, Konstantopoulou V, Guerin M, Kuivenhoven JA, Dallinga‐Thie GM, Stroes ES, Lefeber DJ, Holleboom AG. Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations. J Inherit Metab Dis 2020; 43:611-617. [PMID: 31800099 PMCID: PMC7318693 DOI: 10.1002/jimd.12200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP.
Collapse
Affiliation(s)
| | - Cleo L. Crunelle
- Vrije Universiteit BrusselUniversitair Ziekenhuis Brussel, Department of PsychiatryBrusselsBelgium
| | - Lubna Ali
- Department of Experimental Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lars E. Larsen
- Department of Experimental Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Sacha D. Kuil
- Department of Laboratory Medicine, Laboratory of GeneticEndocrine and Metabolic Disease, Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Johannes H.M. Levels
- Department of Experimental Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Alinda W.M. Schimmel
- Department of Experimental Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | | | - Maryse Guerin
- ICAN ‐ Institute of CardioMetabolism and NutritionHôpital de la PitiéParisFrance
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular GeneticsUniversity Medical Center Groningen, University of GroningenThe Netherlands
| | - Geesje M. Dallinga‐Thie
- Department of Experimental Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Erik S.G. Stroes
- Department of Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Dirk J. Lefeber
- Department of Laboratory Medicine, Laboratory of GeneticEndocrine and Metabolic Disease, Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
- Department of NeurologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| |
Collapse
|
8
|
Staretz-Chacham O, Noyman I, Wormser O, Abu Quider A, Hazan G, Morag I, Hadar N, Raymond K, Birk OS, Ferreira CR, Koifman A. B4GALT1-congenital disorders of glycosylation: Expansion of the phenotypic and molecular spectrum and review of the literature. Clin Genet 2020; 97:920-926. [PMID: 32157688 DOI: 10.1111/cge.13735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
A congenital disorder of glycosylation due to biallelic mutations in B4GALT1 has been previously reported in only three patients with two different mutations. Through homozygosity mapping followed by segregation analysis in an extended pedigree, we identified three additional patients homozygous for a novel mutation in B4GALT1, expanding the phenotypic spectrum of the disease. The patients showed a uniform clinical presentation with intellectual disability, marked pancytopenia requiring chronic management, and novel features including pulmonary hypertension and nephrotic syndrome. Notably, affected individuals exhibited a moderate elevation of Man3GlcNAc4Fuc1 on serum N-glycan analysis, yet two of the patients had a normal pattern of transferrin glycosylation in repeated analysis. The novel mutation is the third disease-causing variant described in B4GALT1, and the first one within its transmembrane domain.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Metabolic Clinic, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel.,Neonatology Unit, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel.,Division of Pediatrics, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Iris Noyman
- Division of Pediatrics, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel.,Pediatric Neurology Unit, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Ohad Wormser
- Genetics Institute, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel.,The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Abed Abu Quider
- Division of Pediatrics, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Guy Hazan
- Division of Pediatrics, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Iris Morag
- Department of Pediatrics, The Edmond and Lily Safra Children's Hospital at Chaim Sheba Medical Center, Sackler School of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo College of Medicine, Rochester, Minnesota, USA
| | - Ohad S Birk
- Genetics Institute, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel.,The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arie Koifman
- Genetics Institute, Soroka University Medical Center, Ben Gurion University, Beer Sheva, Israel
| |
Collapse
|
9
|
Medrano C, Vega A, Navarrete R, Ecay MJ, Calvo R, Pascual SI, Ruiz‐Pons M, Toledo L, García‐Jiménez I, Arroyo I, Campo A, Couce ML, Domingo‐Jiménez MR, García‐Silva MT, González‐Gutiérrez‐Solana L, Hierro L, Martín‐Hernández E, Martínez‐Pardo M, Roldán S, Tomás M, Cabrera JC, Mártinez‐Bugallo F, Martín‐Viota L, Vitoria‐Miñana I, Lefeber DJ, Girós ML, Serrano Gimare M, Ugarte M, Pérez B, Pérez‐Cerdá C. Clinical and molecular diagnosis of non‐phosphomannomutase 2 N‐linked congenital disorders of glycosylation in Spain. Clin Genet 2019; 95:615-626. [DOI: 10.1111/cge.13508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Celia Medrano
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - Ana Vega
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - M. Jesús Ecay
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - Rocío Calvo
- Servicio NeuropediatríaHospital Universitario Carlos Haya Málaga Spain
| | | | - Mónica Ruiz‐Pons
- Servicio de PediatríaHospital Universitario Nuestra Señora de la Candelaria Santa Cruz de Tenerife Spain
| | - Laura Toledo
- Servicio de Neurología InfantilComplejo Hospitalario Materno Insular Las Palmas de Gran Canaria Spain
| | | | - Ignacio Arroyo
- Servicio de NeonatologíaHospital San Pedro de Alcántara Cáceres Spain
| | - Andrea Campo
- Servicio de NeuropediatríaHospital Virgen de la Macarena Sevilla Spain
| | - M. Luz Couce
- Unidad de Enfermedades MetabólicasHospital Clínico Universitario de Santiago, IDIS, CIBERER Santiago de Compostela Spain
| | - M. Rosario Domingo‐Jiménez
- Sección de NeuropediatríaHospital Clínico Universitario Virgen de la Arrixaca, IMIB‐Arrixaca, CIBERER Murcia Spain
| | - M. Teresa García‐Silva
- Unidad de Enfermedades Mitocondriales y Enfermedades Metabólica HereditariasHospital Universitario Doce de Octubre, Universidad Complutense Madrid Spain
| | | | - Loreto Hierro
- Servicio de HepatologíaHospital Universitario La Paz Madrid Spain
| | - Elena Martín‐Hernández
- Unidad de Enfermedades Mitocondriales y Enfermedades Metabólica HereditariasHospital Universitario Doce de Octubre, Universidad Complutense Madrid Spain
| | | | - Susana Roldán
- Servicio de NeuropediatríaHospital Universitario Virgen de la Nieves Granada Spain
| | - Miguel Tomás
- Servicio de NeuropediatríaHospital Universitario La Fé Valencia Spain
| | - Jose C. Cabrera
- Servicio de Neurología InfantilComplejo Hospitalario Materno Insular Las Palmas de Gran Canaria Spain
| | | | - Lucía Martín‐Viota
- Servicio de NeuropediatríaHospital Universitario Nuestra señora de la Candelaria Santa Cruz de Tenerife Spain
| | | | - Dirk J. Lefeber
- Department of NeurologyRadboud University Medical Centre Nijmegen the Netherlands
| | - M. Luisa Girós
- Secció d'Errors Congènits del Metabolisme – IBCServei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER Barcelona Spain
| | - Mercedes Serrano Gimare
- Servicio de Neurología PediátricaHospital Universitario San Joan de Deu, CIBERER Barcelona Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| | - Celia Pérez‐Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZ Madrid Spain
| |
Collapse
|
10
|
Kim YM, Seo GH, Jung E, Jang JH, Kim SZ, Lee BH. Characteristic dysmorphic features in congenital disorders of glycosylation type IIb. J Hum Genet 2017; 63:383-386. [PMID: 29235540 DOI: 10.1038/s10038-017-0386-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Over 100 types of congenital disorders of glycosylation (CDG) have been reported and the number is rapidly increasing. However, each type is very rare and is problematic to diagnose. Mannosyl-oligosaccharide glucosidase (MOGS)-CDG (CDG type IIb) is an extremely rare CDG that has only been reported in three patients from two unrelated families. Using targeted exome sequencing, we identified another patient affected by this condition. This patient had increased serum trisialotransferrin levels. Importantly, a review of the features of all four patients revealed the recognizable clinical hallmarks of MOGS-CDG. The distinct dysmorphic features of this condition include long eyelashes, retrognathia, hirsutism, clenched overlapped fingers, hypoventilation, hepatomegaly, generalized edema, and immunodeficiency.
Collapse
Affiliation(s)
- Yoon-Myung Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Go Hun Seo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Green Cross Genome, Yongin, Korea.,Green Cross Laboratories, Yongin, Korea
| | - Sook Za Kim
- Korea Genetic Research Center/ KSZ Children's Hospital, Cheongju, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
12
|
Jansen J, Cirak S, van Scherpenzeel M, Timal S, Reunert J, Rust S, Pérez B, Vicogne D, Krawitz P, Wada Y, Ashikov A, Pérez-Cerdá C, Medrano C, Arnoldy A, Hoischen A, Huijben K, Steenbergen G, Quelhas D, Diogo L, Rymen D, Jaeken J, Guffon N, Cheillan D, van den Heuvel L, Maeda Y, Kaiser O, Schara U, Gerner P, van den Boogert M, Holleboom A, Nassogne MC, Sokal E, Salomon J, van den Bogaart G, Drenth J, Huynen M, Veltman J, Wevers R, Morava E, Matthijs G, Foulquier F, Marquardt T, Lefeber D. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. Am J Hum Genet 2016; 98:310-21. [PMID: 26833332 DOI: 10.1016/j.ajhg.2015.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023] Open
Abstract
Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.
Collapse
|
13
|
van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res 2015; 166:639-649.e1. [PMID: 26307094 DOI: 10.1016/j.trsl.2015.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Diagnostic screening of the congenital disorders of glycosylation (CDG) generally involves isoelectric focusing of plasma transferrin, a robust method easily integrated in medical laboratories. Structural information is needed as the next step, as required for the challenging classification of Golgi glycosylation defects (CDG-II). Here, we present the use of high-resolution nano liquid chromatography-chip (C8)-quadrupole time of flight mass spectrometry (nanoLC-chip [C8]-QTOF MS) for protein-specific glycoprofiling of intact transferrin, which allows screening and direct diagnosis of a number of CDG-II defects. Transferrin was immunopurified from 10 μL of plasma and analyzed by nanoLC-chip-QTOF MS. Charge distribution raw data were deconvoluted by Mass Hunter software to reconstructed mass spectra. Plasma samples were processed from controls (n = 56), patients with known defects (n = 30), and patients with secondary (n = 6) or unsolved (n = 3) cause of abnormal glycosylation. This fast and robust method, established for CDG diagnostics, requires only 2 hours analysis time, including sample preparation and analysis. For CDG-I patients, the characteristic loss of complete N-glycans could be detected with high sensitivity. Known CDG-II defects (phosphoglucomutase 1 [PGM1-CDG], mannosyl (α-1,6-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase [MGAT2-CDG], β-1,4-galactosyltransferase 1 [B4GALT1-CDG], CMP-sialic acid transporter [SLC35A1-CDG], UDP-galactose transporter [SLC35A2-CDG] and mannosyl-oligosaccharide 1,2-alpha-mannosidase [MAN1B1-CDG]) resulted in characteristic diagnostic profiles. Moreover, in the group of Golgi trafficking defects and unsolved CDG-II patients, distinct profiles were observed, which facilitate identification of the specific CDG subtype. The established QTOF method affords high sensitivity and resolution for the detection of complete glycan loss and structural assignment of truncated glycans in a single assay. The speed and robustness allow its clinical diagnostic application as a first step in the diagnostic procedure for CDG defects.
Collapse
Affiliation(s)
- Monique van Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Gerry Steenbergen
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Hayward Genetics Center, Tulane University Medical School, New Orleans, La
| | - Ron A Wevers
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M, Hipgrave-Ederveen A, Grunewald S, Peanne R, Saada A, Edvardson S, Grønborg S, Ruijter G, Kattentidt-Mouravieva A, Brum JM, Freckmann ML, Tomkins S, Jalan A, Prochazkova D, Ondruskova N, Hansikova H, Willemsen MA, Hensbergen PJ, Matthijs G, Wevers RA, Veltman JA, Morava E, Lefeber DJ. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. ACTA ACUST UNITED AC 2014; 137:1030-8. [PMID: 24566669 DOI: 10.1093/brain/awu019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N-glycans, in agreement with deficient mannosidase activity. The speed and robustness of the method allowed subsequent screening in a cohort of 100 patients with congenital disorder of glycosylation type II, which revealed the characteristic glycosylation profile of MAN1B1-congenital disorder of glycosylation in 11 additional patients. Abnormal hybrid type N-glycans were also observed in the glycoprofiles of total serum proteins, of enriched immunoglobulins and of alpha1-antitrypsin in variable amounts. Sanger sequencing revealed MAN1B1 mutations in all patients, including severe truncating mutations and amino acid substitutions in the alpha-mannosidase catalytic site. Clinically, this group of patients was characterized by intellectual disability and delayed motor and speech development. In addition, variable dysmorphic features were noted, with truncal obesity and macrocephaly in ∼65% of patients. In summary, MAN1B1 deficiency appeared to be a frequent cause in our cohort of patients with unsolved congenital disorder of glycosylation type II. Our method for analysis of intact transferrin provides a rapid test to detect MAN1B1-deficient patients within congenital disorder of glycosylation type II cohorts and can be used as efficient diagnostic method to identify MAN1B1-deficient patients in intellectual disability cohorts. In addition, it provides a functional confirmation of MAN1B1 mutations as identified by next-generation sequencing in individuals with intellectual disability.
Collapse
Affiliation(s)
- Monique Van Scherpenzeel
- 1 Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wolthuis DFGJ, Janssen MC, Cassiman D, Lefeber DJ, Morava E, Morava-Kozicz E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 2014; 14:217-24. [PMID: 24524732 DOI: 10.1586/14737159.2014.890052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital disorders of N-glycosylation (CDG) form a rapidly growing group of more than 20 inborn errors of metabolism. Most patients are identified at the pediatric age with multisystem disease. There is no systematic review on the long-term outcome and clinical presentation in adult patients. Here, we review the adult phenotype in 78 CDG patients diagnosed with 18 different forms of N-glycosylation defects. Characteristics include intellectual disability, speech disorder and abnormal gait. After puberty, symptoms might remain non-progressive and patients may lead a socially functional life. Thrombosis and progressive symptoms, such as peripheral neuropathy, scoliosis and visual demise are specifically common in PMM2-CDG. Especially in adult patients, diagnostic glycosylation screening can be mildly abnormal or near-normal, hampering diagnosis. Features of adult CDG patients significantly differ from the pediatric phenotype. Non-syndromal intellectual disability, or congenital malformations in different types of CDG and decreasing sensitivity of screening might be responsible for the CDG cases remaining undiagnosed until adulthood.
Collapse
Affiliation(s)
- David F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA, 70112, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Department of Parasitology, Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
17
|
Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta Gen Subj 2012; 1820:1306-17. [DOI: 10.1016/j.bbagen.2012.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
|
18
|
Abstract
Glycosylation is an essential process by which sugars are attached to proteins and lipids. Complete lack of glycosylation is not compatible with life. Because of the widespread function of glycosylation, inherited disorders of glycosylation are multisystemic. Since the identification of the first defect on N-linked glycosylation in the 1980s, there are over 40 different congenital protein hypoglycosylation diseases. This review will include defects of N-linked glycosylation, O-linked glycosylation and disorders of combined N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Susan E Sparks
- Department of Pediatrics, Levine Children's Hospital at Carolinas Medical Center, Charlotte, NC, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|