1
|
Maddirevula S, Shagrani M, Ji AR, Horne CR, Young SN, Mather LJ, Alqahtani M, McKerlie C, Wood G, Potter PK, Abdulwahab F, AlSheddi T, van der Woerd WL, van Gassen KLI, AlBogami D, Kumar K, Muhammad Akhtar AS, Binomar H, Almanea H, Faqeih E, Fuchs SA, Scott JW, Murphy JM, Alkuraya FS. Large-scale genomic investigation of pediatric cholestasis reveals a novel hepatorenal ciliopathy caused by PSKH1 mutations. Genet Med 2024; 26:101231. [PMID: 39132680 DOI: 10.1016/j.gim.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in 3 consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the 4 families shared a founder homozygous variant, whereas the third and fourth had different homozygous variants in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ae-Ri Ji
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; The Centre for Phenogenomics, Toronto, ON, Canada
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lucy J Mather
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Colin McKerlie
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Paul K Potter
- Department of Biomedical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa AlSheddi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wendy L van der Woerd
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dalal AlBogami
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kishwer Kumar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ali Syed Muhammad Akhtar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hiba Binomar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel Almanea
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Department of Pediatric Subspecialties, Children Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sabine A Fuchs
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Pinon M, Kamath BM. What's new in pediatric genetic cholestatic liver disease: advances in etiology, diagnostics and therapeutic approaches. Curr Opin Pediatr 2024; 36:524-536. [PMID: 38957097 DOI: 10.1097/mop.0000000000001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To highlight recent advances in pediatric cholestatic liver disease, including promising novel prognostic markers and new therapies. FINDINGS Additional genetic variants associated with the progressive familial intrahepatic cholestasis (PFIC) phenotype and new genetic cholangiopathies, with an emerging role of ciliopathy genes, are increasingly being identified. Genotype severity predicts outcomes in bile salt export pump (BSEP) deficiency, and post-biliary diversion serum bile acid levels significantly affect native liver survival in BSEP and progressive familial intrahepatic cholestasis type 1 (FIC1 deficiency) patients. Heterozygous variants in the MDR3 gene have been associated with various cholestatic liver disease phenotypes in adults. Ileal bile acid transporter (IBAT) inhibitors, approved for pruritus in PFIC and Alagille Syndrome (ALGS), have been associated with improved long-term quality of life and event-free survival. SUMMARY Next-generation sequencing (NGS) technologies have revolutionized diagnostic approaches, while discovery of new intracellular signaling pathways show promise in identifying therapeutic targets and personalized strategies. Bile acids may play a significant role in hepatic damage progression, suggesting their monitoring could guide cholestatic liver disease management. IBAT inhibitors should be incorporated early into routine management algorithms for pruritus. Data are emerging as to whether IBAT inhibitors are impacting disease biology and modifying the natural history of the cholestasis.
Collapse
Affiliation(s)
- Michele Pinon
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | |
Collapse
|
3
|
Hahn JW, Lee H, Shin M, Seong MW, Moon JS, Ko JS. Diagnostic algorithm for neonatal intrahepatic cholestasis integrating single-gene testing and next-generation sequencing in East Asia. J Gastroenterol Hepatol 2024; 39:964-974. [PMID: 38323732 DOI: 10.1111/jgh.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIM Advances in molecular genetics have uncovered causative genes responsible for neonatal cholestasis. Panel-based next-generation sequencing has been used clinically in infants with neonatal cholestasis. We aimed to evaluate the clinical application of single-gene testing and next-generation sequencing and to develop a diagnostic algorithm for neonatal intrahepatic cholestasis. METHODS From January 2010 to July 2021, patients suspected of having neonatal intrahepatic cholestasis were tested at the Seoul National University Hospital. If there was a clinically suspected disease, single-gene testing was performed. Alternatively, if it was clinically difficult to differentiate, a neonatal cholestasis gene panel test containing 34 genes was performed. RESULTS Of the total 148 patients examined, 49 (33.1%) were received a confirmed genetic diagnosis, including 14 with Alagille syndrome, 14 with neonatal intrahepatic cholestasis caused by citrin deficiency, 7 with Dubin-Johnson syndrome, 5 with arthrogryposis-renal dysfunction-cholestasis syndrome, 5 with progressive familial intrahepatic cholestasis type II, 1 with Rotor syndrome, 1 with Niemann-Pick disease type C, 1 with Kabuki syndrome, and 1 with Phenylalanyl-tRNA synthetase subunit alpha mutation. Sixteen novel pathogenic or likely pathogenic variants of neonatal cholestasis were observed in this study. Based on the clinical characteristics and laboratory findings, we developed a diagnostic algorithm for neonatal intrahepatic cholestasis by integrating single-gene testing and next-generation sequencing. CONCLUSIONS Alagille syndrome and neonatal intrahepatic cholestasis caused by citrin deficiency were the most common diseases associated with genetic neonatal cholestasis. Single-gene testing and next-generation sequencing are important and complementary tools for the diagnosis of genetic neonatal cholestasis.
Collapse
Affiliation(s)
- Jong Woo Hahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Heerah Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - MinSoo Shin
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Moon Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Ahmad RN, Zhang LT, Morita R, Tani H, Wu Y, Chujo T, Ogawa A, Harada R, Shigeta Y, Tomizawa K, Wei FY. Pathological mutations promote proteolysis of mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) via mitochondrial caseinolytic peptidase (CLPP). Nucleic Acids Res 2024; 52:1341-1358. [PMID: 38113276 PMCID: PMC10853782 DOI: 10.1093/nar/gkad1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.
Collapse
Affiliation(s)
- Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Long-Teng Zhang
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
5
|
McKiernan P, Bernabeu JQ, Girard M, Indolfi G, Lurz E, Trivedi P. Opinion paper on the diagnosis and treatment of progressive familial intrahepatic cholestasis. JHEP Rep 2024; 6:100949. [PMID: 38192535 PMCID: PMC10772241 DOI: 10.1016/j.jhepr.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis (PFIC) relates to a group of rare, debilitating, liver disorders which typically present in early childhood, but have also been reported in adults. Without early detection and effective treatment, PFIC can result in end-stage liver disease. The aim of the paper was to put forward recommendations that promote standardisation of the management of PFIC in clinical practice. Methods A committee of six specialists came together to discuss the challenges faced by physicians in the management of PFIC. The committee agreed on two key areas where expert guidance is required to optimise care: (1) how to diagnose and treat patients with a clinical presentation of PFIC in the absence of clear genetic test results/whilst awaiting results, and (2) how to monitor disease progression and response to treatment. A systematic literature review was undertaken to contextualise and inform the recommendations. Results An algorithm was developed for the diagnosis and treatment of children with suspected PFIC. The algorithm recommends the use of licensed inhibitors of ileal bile acid transporters as the first-line treatment for patients with PFIC and suggests that genetic testing be used to confirm genotype whilst treatment is initiated in patients in whom PFIC is suspected. The authors recommend referring patients to an experienced centre, and ensuring that monitoring includes measurements of pruritus, serum bile acid levels, growth, and quality of life following diagnosis and during treatment. Conclusions The algorithm presented within this paper offers guidance to optimise the management of paediatric PFIC. The authors hope that these recommendations will help to standardise the management of PFIC in the absence of clear clinical guidelines. Impact and implications This opinion paper outlines a consistent approach to the contemporaneous diagnosis, monitoring, referral and management of children with progressive familial intrahepatic cholestasis. This should assist physicians given the recent developments in genetic diagnosis and the availability of effective drug therapy. This manuscript will also help to raise awareness of current developments and educate health planners on the place for new drug therapies in progressive familial intrahepatic cholestasis.
Collapse
Affiliation(s)
- Patrick McKiernan
- Liver Unit and Small Bowel Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jesus Quintero Bernabeu
- Pediatric Hepatology and Liver Transplant Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Muriel Girard
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, and Université Paris Cité, Paris, France
| | - Giuseppe Indolfi
- Paediatric and Liver Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department NEUROFARBA, University of Florence, Florence, Italy
| | - Eberhard Lurz
- Dr. von Hauner Children’s Hospital, LMU Munich University Hospital, Munich, Germany
| | - Palak Trivedi
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
6
|
Ali KM, Zalata KR, Barakat T, Elzeiny SM. Pathologic approach to Neonatal cholestasis with a simple scoring system for biliary atresia. Virchows Arch 2024; 484:93-102. [PMID: 38008855 PMCID: PMC10791702 DOI: 10.1007/s00428-023-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
A liver biopsy is essential for the diagnostic workup of persistent neonatal cholestasis (NC). The differential diagnosis of NC is broad, including obstructive and non-obstructive causes. In addition, histologic features of certain disorders may be non-specific in the early course of the disease. To evaluate liver biopsies using a practical histopathologic approach for NC and to define a simple scoring system for biliary atresia (BA) for routine clinical practice. From June 2006 to December 2021, liver biopsy specimens from infants with persistent NC were examined by two independent pathologists. The cases diagnosed as BA were correlated with clinical, radiologic, and laboratory data to calculate the final score. Four hundred and fifty-nine cases were enrolled in the study. They had a mean age of 63.94 ± 20.62 days and were followed for a median time of 58 (1-191) months. They included 162 (35.3%) cases of BA. On multivariate analysis, portal edema, ductular proliferation, cholangiolitis, and bile duct/ductular plugs were the histopathologic predictors of BA. A liver biopsy did perform well with a 95.1% sensitivity, 91.6% specificity, 86% PPV, and 97.1% NPV. At a cutoff of 5 of the scoring system, diagnosis of BA could be done with a sensitivity of 95.1% and a specificity of 100%. We have shown detailed histopathologic features of BA with more depth to infants aged ≤ 6 weeks. We have developed a simple scoring system using a combination of liver biopsy with non-invasive methods to increase the diagnostic accuracy of BA.
Collapse
Affiliation(s)
- Khadiga M Ali
- Pathology Department, Faculty of Medicine, Mansoura University, Elgomhoria Street, Mansoura, Eldakahliya, 35516, Egypt.
| | - Khaled R Zalata
- Pathology Department, Faculty of Medicine, Mansoura University, Elgomhoria Street, Mansoura, Eldakahliya, 35516, Egypt
| | - Tarik Barakat
- Gastroenterology and Hepatology Unit, Mansoura Faculty of Medicine, Mansoura Children Hospital, Mansoura, Egypt
| | - Sherine M Elzeiny
- Gastroenterology and Hepatology Unit, Mansoura Faculty of Medicine, Mansoura Children Hospital, Mansoura, Egypt
| |
Collapse
|
7
|
Chen CB, Hsu JS, Chen PL, Wu JF, Li HY, Liou BY, Chang MH, Ni YH, Hwu WL, Chien YH, Chou YY, Yang YJ, Lee NC, Chen HL. Combining Panel-Based Next-Generation Sequencing and Exome Sequencing for Genetic Liver Diseases. J Pediatr 2023; 258:113408. [PMID: 37019333 DOI: 10.1016/j.jpeds.2023.113408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVES To determine how advanced genetic analysis methods may help in clinical diagnosis. STUDY DESIGN We report a combined genetic diagnosis approach for patients with clinical suspicion of genetic liver diseases in a tertiary referral center, using tools either tier 1: Sanger sequencing on SLC2SA13, ATP8B1, ABCB11, ABCB4, and JAG1 genes, tier 2: panel-based next generation sequencing (NGS), or tier 3: whole-exome sequencing (WES) analysis. RESULTS In a total of 374 patients undergoing genetic analysis, 175 patients received tier 1 Sanger sequencing based on phenotypic suspicion, and pathogenic variants were identified in 38 patients (21.7%). Tier 2 included 216 patients (39 of tier 1-negative patients) who received panel-based NGS, and pathogenic variants were identified in 60 (27.8%). In tier 3, 41 patients received WES analysis, and 20 (48.8%) obtained genetic diagnosis. Pathogenic variants were detected in 6 of 19 (31.6%) who tested negative in tier 2, and a greater detection rate in 14 of 22 (63.6%) patients with deteriorating/multiorgan disease receiving one-step WES (P = .041). The overall disease spectrum is comprised of 35 genetic defects; 90% of genes belong to the functional categories of small molecule metabolism, ciliopathy, bile duct development, and membrane transport. Only 13 (37%) genetic diseases were detected in more than 2 families. A hypothetical approach using a small panel-based NGS can serve as the first tier with diagnostic yield of 27.8% (98/352). CONCLUSIONS NGS based genetic test using a combined panel-WES approach is efficient for the diagnosis of the highly diverse genetic liver diseases.
Collapse
Affiliation(s)
- Chi-Bo Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiome Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bang-Yu Liou
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan; Medical Microbiome Center, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, Taipei, Taiwan
| | - Yao-Jong Yang
- Department of Pediatrics, National Cheng Kung University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Education & Bioethics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
8
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Gardin A, Mussini C, Héron B, Schiff M, Brassier A, Dobbelaere D, Broué P, Sevin C, Vanier MT, Habes D, Jacquemin E, Gonzales E. A Retrospective Multicentric Study of 34 Patients with Niemann-Pick Type C Disease and Early Liver Involvement in France. J Pediatr 2023; 254:75-82.e4. [PMID: 36265573 DOI: 10.1016/j.jpeds.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To describe the clinical features and course of liver involvement in a cohort of patients with Niemann-Pick type C disease (NP-C), a severe lysosomal storage disorder. STUDY DESIGN Patients with genetically confirmed NP-C (NPC1, n = 31; NPC2, n = 3) and liver involvement before age 6 months were retrospectively included. Clinical, laboratory test, and imaging data were collected until the last follow-up or death; available liver biopsy specimens were studied using anti-CD68 immunostaining. RESULTS At initial evaluation (median age, 17 days of life), all patients had hepatomegaly, 33 had splenomegaly, and 30 had neonatal cholestasis. Portal hypertension and liver failure developed in 9 and 4 patients, respectively. Liver biopsy studies, performed in 16 patients, revealed significant fibrosis in all 16 and CD68+ storage cells in 15. Serum alpha-fetoprotein concentration measured in 21 patients was elevated in 17. Plasma oxysterol concentrations were increased in the 16 patients tested. Four patients died within 6 months of life, including 3 from liver involvement. In patients who survived beyond age 6 months (median follow-up, 6.1 years), cholestasis regressed in all, and portal hypertension regressed in all but 1; 25 patients developed neurologic involvement, which was fatal in 16 patients. CONCLUSIONS Liver involvement in NP-C consisted of transient neonatal cholestasis with hepatosplenomegaly, was associated with liver fibrosis, and was responsible for death in 9% of patients. The combination of liver anti-CD68 immunostaining, serum alpha-fetoprotein measurement, and studies of plasma biomarkers should facilitate early identification of NP-C.
Collapse
Affiliation(s)
- Antoine Gardin
- Pediatric Hepatology and Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, European Reference Network RARE-LIVER, Filière de Santé des Maladies Rares du Foie de l'Enfant et de l'Adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France.
| | - Charlotte Mussini
- Department of Pathology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Bénédicte Héron
- Department of Pediatric Neurology, Reference Center for Lysosomal Diseases, Armand Trousseau-La Roche Guyon Hospital, Assistance Publique-Hôpitaux de Paris, Fédération Hospitalo-Universitaire I2-D2, Sorbonne-Université, Paris, France
| | - Manuel Schiff
- Reference Center for Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Filière G2M, Paris, France; Inserm UMR S1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Anaïs Brassier
- Reference Center for Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Filière G2M, Paris, France
| | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Children's Hospital and Research Team for Rare Metabolic and Developmental Diseases (RADEME), EA 7364 CHRU Lille, Lille, France; MetabERN
| | - Pierre Broué
- Department of Pediatric Hepatology, Reference Center for Inborn Error of Metabolism, Toulouse Children Hospital, Toulouse, France
| | - Caroline Sevin
- Department of Pediatric Neurology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Marie T Vanier
- Inserm U820, Laboratoire Gillet-Mérieux, Hospices Civils de Lyon, Lyon, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, European Reference Network RARE-LIVER, Filière de Santé des Maladies Rares du Foie de l'Enfant et de l'Adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, European Reference Network RARE-LIVER, Filière de Santé des Maladies Rares du Foie de l'Enfant et de l'Adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR S1193, Université Paris-Saclay, Hépatinov, Orsay, France
| | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, European Reference Network RARE-LIVER, Filière de Santé des Maladies Rares du Foie de l'Enfant et de l'Adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR S1193, Université Paris-Saclay, Hépatinov, Orsay, France
| |
Collapse
|
10
|
Gezdirici A, Kalaycik Şengül Ö, Doğan M, Özgüven BY, Akbulut E. Biallelic Novel USP53 Splicing Variant Disrupting the Gene Function that Causes Cholestasis Phenotype and Review of the Literature. Mol Syndromol 2023; 13:471-484. [PMID: 36660033 PMCID: PMC9843568 DOI: 10.1159/000523937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/02/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Hereditary cholestasis is a heterogeneous group of liver diseases that mostly show autosomal recessive inheritance. The phenotype of cholestasis is highly variable. Molecular genetic testing offers an useful approach to differentiate different types of cholestasis because some symptoms and findings overlap. Biallelic variants in USP53 have recently been reported in cholestasis phenotype. Methods In this study, we aimed to characterize clinical findings and biological insights on a novel USP53 splice variant causing cholestasis phenotype and provided a review of the literature. We performed whole-exome sequencing and then confirmed it with Sanger sequencing. In addition, as a result of in silico analyses and cDNA analysis, we showed that the USP53 protein in our patient was shortened. Results We report a novel splice variant (NM_019050.2:c.238-1G>C) in the USP53 gene via whole-exome sequencing in a patient with cholestasis phenotype. This variant was confirmed by Sanger sequencing and was a result of family segregation analysis; it was found to be in a heterozygous state in the parents and the other healthy elder brother of our patient. According to in silico analyses, the change in the splice region resulted in an increase in the length of exon 2, whereas the stop codon after the additional 3 amino acids (VTF) caused the protein to terminate prematurely. Thus, the mature USP53 protein, consisting of 1,073 amino acids, has been reduced to a small protein of 82 amino acids. Conclusion We propose a model for the tertiary structure of USP53 for the first time, and together with all these data, we support the association of biallelic variants of the USP53 gene with cholestasis phenotype. We also present a comparison of previously reported patients with USP53-associated cholestasis phenotype to contribute to the literature.
Collapse
Affiliation(s)
- Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey,*Alper Gezdirici,
| | - Özlem Kalaycik Şengül
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Doğan
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Banu Y. Özgüven
- Department of Pathology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ekrem Akbulut
- Department of Bioengineering, Malatya Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
11
|
Davenport M, Madadi-Sanjani O, Chardot C, Verkade HJ, Karpen SJ, Petersen C. Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper. J Clin Med 2022; 11:6601. [PMID: 36362829 PMCID: PMC9656543 DOI: 10.3390/jcm11216601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 02/13/2024] Open
Abstract
Biliary atresia, a fibro-obliterative disease of the newborn, is usually initially treated by Kasai portoenterostomy, although there are many variations in technique and different options for post-operative adjuvant medical therapy. A questionnaire on such topics (e.g., open vs. laparoscopic; the need for liver mobilisation; use of post-operative steroids; use of post-operative anti-viral therapy, etc.) was circulated to delegates (n = 43) of an international webinar (Biliary Atresia and Related Diseases-BARD) held in June 2021. Respondents were mostly European, but included some from North America, and represented 18 different countries overall. The results of this survey are presented here, together with a commentary and review from an expert panel convened for the meeting on current trends in practice.
Collapse
Affiliation(s)
- Mark Davenport
- Department of Paediatric Surgery, Kings College Hospital, London SE5 9RS, UK
| | - Omid Madadi-Sanjani
- Klinik für Kinderchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christophe Chardot
- Chirurgie Pédiatrique—Transplantation, Hôpital Necker—Enfants Maladies, Université Paris Descartes, 149 Rue de Sèvres, 75015 Paris, France
| | - Henkjan J. Verkade
- Center for Liver, Digestive and Metabolic Diseases, Universitair Medisch Centrum, 9713 AV Groningen, The Netherlands
| | - Saul J. Karpen
- Center for Advanced Pediatrics, 1400 Tullie Circle SE 2nd Floor, Atlanta, GA 30329, USA
| | - Claus Petersen
- Klinik für Kinderchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Quelhas P, Jacinto J, Cerski C, Oliveira R, Oliveira J, Carvalho E, dos Santos J. Protocols of Investigation of Neonatal Cholestasis-A Critical Appraisal. Healthcare (Basel) 2022; 10:2012. [PMID: 36292464 PMCID: PMC9602084 DOI: 10.3390/healthcare10102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Neonatal cholestasis (NC) starts during the first three months of life and comprises extrahepatic and intrahepatic groups of diseases, some of which have high morbimortality rates if not timely identified and treated. Prolonged jaundice, clay-colored or acholic stools, and choluria in an infant indicate the urgent need to investigate the presence of NC, and thenceforth the differential diagnosis of extra- and intrahepatic causes of NC. The differential diagnosis of NC is a laborious process demanding the accurate exclusion of a wide range of diseases, through the skillful use and interpretation of several diagnostic tests. A wise integration of clinical-laboratory, histopathological, molecular, and genetic evaluations is imperative, employing extensive knowledge about each evaluated disease as well as the pitfalls of each diagnostic test. Here, we review the difficulties involved in correctly diagnosing the cause of cholestasis in an affected infant.
Collapse
Affiliation(s)
- Patricia Quelhas
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilha, Portugal
| | - Joana Jacinto
- Medicine Department, University of Beira Interior (UBI), Faculty of Health Sciences, 6201-001 Covilha, Portugal
| | - Carlos Cerski
- Pathology Department of Universidade Federal do Rio Grande do Sul (UFRGS), Pathology Service of Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Rui Oliveira
- Centro de Diagnóstico Histopatológico (CEDAP), 3000-377 Coimbra, Portugal
| | - Jorge Oliveira
- Center for Predictive and Preventive Genetics (CGPP), IBMC, UnIGENe, i3S, University of Porto, 4200-135 Porto, Portugal
| | - Elisa Carvalho
- Department of Gastroenterology and Hepatology, Hospital de Base do Distrito Federal, Hospital da Criança de Brasília, Brasília 70330-150, Brazil
| | - Jorge dos Santos
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilha, Portugal
| |
Collapse
|
13
|
Xiao T, Wang J, Wang H, Mei H, Dong X, Lu Y, Cheng G, Wang L, Hu L, Lu W, Ni Q, Li G, Zhang P, Qian Y, Li X, Peng X, Wang Y, Shen C, Chen G, Dou YL, Cao Y, Chen L, Kang W, Li L, Pan X, Wei Q, Zhuang D, Chen DM, Yin Z, Wang J, Yang L, Wu B, Zhou W. Aetiology and outcomes of prolonged neonatal jaundice in tertiary centres: data from the China Neonatal Genome Project. Arch Dis Child Fetal Neonatal Ed 2022; 108:fetalneonatal-2021-323413. [PMID: 35851034 DOI: 10.1136/archdischild-2021-323413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the distribution of aetiologies and outcomes in neonates with prolonged neonatal jaundice. DESIGN An observational study. SETTING Multiple tertiary centres from the China Neonatal Genome Project. PATIENTS Term infants with jaundice lasting more than 14 days or preterm infants with jaundice lasting more than 21 days were recruited between 1 June 2016 and 30 June 2020. MAIN OUTCOME MEASURES Aetiology and outcomes were recorded from neonates with prolonged unconjugated hyperbilirubinaemia (PUCHB) and prolonged conjugated hyperbilirubinaemia (PCHB). RESULTS A total of 939 neonates were enrolled, and known aetiologies were identified in 84.1% of neonates (790 of 939). Among 411 neonates with PCHB, genetic disorders (27.2%, 112 of 411) were the leading aetiologies. There were 8 deceased neonates, 19 neonates with liver failure and 12 with neurodevelopmental delay. Among 528 neonates with PUCHB, a genetic aetiology was identified in 2 of 219 neonates (0.9%) who showed disappearance of jaundice within 4 weeks of age and in 32 of 309 neonates (10.4%) with persistent jaundice after 4 weeks of age. A total of 96 of 181 neonates (53.0%) who received genetic diagnoses had their clinical diagnosis modified as a result of the genetic diagnoses. CONCLUSION Known aetiologies were identified in approximately 80% of neonates in our cohort, and their overall outcomes were favourable. Genetic aetiology should be considered a priority in neonates with PCHB or the persistence of jaundice after 4 weeks of age. Moreover, genetic data can modify the clinical diagnosis and guide disease management, potentially improving outcomes.
Collapse
Affiliation(s)
- Tiantian Xiao
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jin Wang
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huijun Wang
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Hongfang Mei
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xinran Dong
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Laishuan Wang
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Qi Ni
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Gang Li
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Ping Zhang
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Yanyan Qian
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Xu Li
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Xiaomin Peng
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Yao Wang
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Chun Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Ya-Lan Dou
- Department of Clinical Epidemiology and Clinical Trial Unit, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Yun Cao
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Li
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Xinnian Pan
- Department of Neonatology, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiufen Wei
- Department of Neonatology, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Deyi Zhuang
- Department of Pediatrics, Xiamen Children's Hospital, Xiamen, China
| | - Dong-Mei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Zhaoqing Yin
- Department of Neonatology, The People's Hospital of Dehong, Yunnan, China
| | - Jianshe Wang
- The Centre for Pediatric Liver Diseases, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Centre for Molecular Medicine, Children's Hospital of Fudan University,National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
14
|
Penon-Portmann M, Westbury SK, Li L, Pluthero FG, Liu RJY, Yao HHY, Geng RSQ, Warner N, Muise AM, Lotz-Esquivel S, Howell-Ramirez M, Saborío-Chacon P, Fernández-Rojas S, Saborio-Rocafort M, Jiménez-Hernández M, Wang-Zuniga C, Cartín-Sánchez W, Shieh JT, Badilla-Porras R, Kahr WHA. Platelet VPS16B is dependent on VPS33B expression, as determined in two siblings with arthrogryposis, renal dysfunction, and cholestasis syndrome. J Thromb Haemost 2022; 20:1712-1719. [PMID: 35325493 DOI: 10.1111/jth.15711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platelet α-granule biogenesis in precursor megakaryocytes is critically dependent on VPS33B and VPS16B, as demonstrated by the platelet α-granule deficiency seen in the rare multisystem disorder arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome associated with biallelic pathogenic variants in VPS33B and VIPAS39 (encoding VPS16B). VPS33B and VPS16B are ubiquitously expressed proteins that are known to interact and play key roles in protein sorting and trafficking between subcellular locations. However, there remain significant gaps in our knowledge of the nature of these interactions in primary cells from patients with ARC syndrome. OBJECTIVES To use primary cells from patients with ARC syndrome to better understand the interactions and roles of VPS33B and VPS16B in platelets and precursor megakaryocytes. PATIENTS/METHODS The proband and his male sibling were clinically suspected to have ARC syndrome. Confirmatory genetic testing and platelet phenotyping, including electron microscopy and protein expression analysis, was performed with consent in a research setting. RESULTS We describe the first case of ARC syndrome identified in Costa Rica, associated with a novel homozygous nonsense VPS33B variant that is linked with loss of expression of both VPS33B and VPS16B in platelets. CONCLUSION These results indicate that stable expression of VPS16B in platelets, their precursor megakaryocytes, and other cells is dependent on VPS33B. We suggest that systematic evaluation of primary cells from patients with a range of VPS33B and VIPAS39 variants would help to elucidate the interactions and functions of these proteins.
Collapse
Affiliation(s)
- Monica Penon-Portmann
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Department of Pediatrics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ling Li
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Program in Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
- Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| | - Stephanie Lotz-Esquivel
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Clínica Multidisciplinaria de Enfermedades Raras y Huérfanas, Departamento de Medicina Interna, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Marianela Howell-Ramirez
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Pablo Saborío-Chacon
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Sara Fernández-Rojas
- Servicio de Nefrología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Manuel Saborio-Rocafort
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Programa Nacional de Tamizaje Neonatal, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Mildred Jiménez-Hernández
- Programa Nacional de Tamizaje Neonatal, Caja Costarricense de Seguro Social, San José, Costa Rica
- Laboratorio Nacional de Tamizaje Neonatal y Alto Riesgo, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Carolina Wang-Zuniga
- Servicio de Dermatología, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
| | - Walter Cartín-Sánchez
- Laboratorio de Estudios Especializados e Investigación, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Joseph T Shieh
- Department of Pediatrics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Ramses Badilla-Porras
- Servicio de Genética Médica y Metabolismo, Departamento de Pediatría, Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", Caja Costarricense de Seguro Social (CCSS) & Sistema de Estudios de Posgrado, Universidad de Costa Rica, San José, Costa Rica
- Laboratorio Nacional de Tamizaje Neonatal y Alto Riesgo, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Walter H A Kahr
- Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Hospital for Sick Children, Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Ibrahim SH, Kamath BM, Loomes KM, Karpen SJ. Cholestatic liver diseases of genetic etiology: Advances and controversies. Hepatology 2022; 75:1627-1646. [PMID: 35229330 DOI: 10.1002/hep.32437] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatric GastroenterologyMayo ClinicRochesterMinnesotaUSA
| | - Binita M Kamath
- The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kathleen M Loomes
- The Children's Hospital of Philadelphia and Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| |
Collapse
|
16
|
Targeted-Capture Next-Generation Sequencing in Diagnosis Approach of Pediatric Cholestasis. Diagnostics (Basel) 2022; 12:diagnostics12051169. [PMID: 35626323 PMCID: PMC9140938 DOI: 10.3390/diagnostics12051169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Cholestasis is a frequent and severe condition during childhood. Genetic cholestatic diseases represent up to 25% of pediatric cholestasis. Molecular analysis by targeted-capture next generation sequencing (NGS) has recently emerged as an efficient diagnostic tool. The objective of this study is to evaluate the use of NGS in children with cholestasis. Methods: Children presenting cholestasis were included between 2015 and 2020. Molecular sequencing was performed by targeted capture of a panel of 34 genes involved in cholestasis and jaundice. Patients were classified into three categories: certain diagnosis; suggested diagnosis (when genotype was consistent with phenotype for conditions without any available OMIM or ORPHANET-number); uncertain diagnosis (when clinical and para-clinical findings were not consistent enough with molecular findings). Results: A certain diagnosis was established in 169 patients among the 602 included (28.1%). Molecular studies led to a suggested diagnosis in 40 patients (6.6%) and to an uncertain diagnosis in 21 patients (3.5%). In 372 children (61.7%), no molecular defect was identified. Conclusions: NGS is a useful diagnostic tool in pediatric cholestasis, providing a certain diagnosis in 28.1% of the patients included in this study. In the remaining patients, especially those with variants of uncertain significance, the imputability of the variants requires further investigations.
Collapse
|
17
|
MYO5B Gene Mutations: A Not Negligible Cause of Intrahepatic Cholestasis of Infancy With Normal Gamma-Glutamyl Transferase Phenotype. J Pediatr Gastroenterol Nutr 2022; 74:e115-e121. [PMID: 35129155 DOI: 10.1097/mpg.0000000000003399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Progressive familial intrahepatic cholestasis is an expanding group of autosomal recessive intrahepatic cholestatic disorders. Recently, next-generation sequencing allowed identifying new genes responsible for new specific disorders. Two biochemical phenotypes have been identified according to gamma-glutamyltransferase (GGT) activity. Mutations of the myosin 5B gene (MYO5B) are known to cause microvillus inclusion disease. Recently, different mutations in MYO5B gene have been reported in patients with low-GGT cholestasis. METHODS A multicenter retrospective and prospective study was conducted in 32 children with cryptogenic intrahepatic cholestasis. Clinical, biochemical, histological, and treatment data were analyzed in these patients. DNA from peripheral blood was extracted, and all patients were studied by whole exome sequencing followed by Sanger sequencing. RESULTS Six patients out of 32 had mutations in the MYO5B gene. Of these six patients, the median age at disease onset was 0.8 years, and the median length of follow-up was 4.2 years. The most common signs were pruritus, poor growth, hepatomegaly, jaundice, and hypocholic stools. Two patients also showed intestinal involvement. Transaminases and conjugated bilirubin were moderately increased, serum bile acids elevated, and GGT persistently normal. At anti-Myo5B immunostaining, performed in liver biopsy of two patients, coarse granules were evident within the cytoplasm of hepatocytes while bile salt export pump was normally expressed at the canalicular membrane. Six variants in homozygosity or compound heterozygosity in the MYO5B gene were identified, and three of them have never been described before. All nucleotide alterations were located on the myosin motor domain except one missense variant found in the isoleucine-glutamine calmodulin-binding motif. CONCLUSIONS We identified causative mutations in MYO5B in 18.7% of a selected cohort of patients with intrahepatic cholestasis confirming a relevant role for the MYO5B gene in low-GGT cholestasis.
Collapse
|
18
|
Ito S, Togawa T, Imagawa K, Ito K, Endo T, Sugiura T, Saitoh S. Real-life Progression of the Use of a Genetic Panel in to Diagnose Neonatal Cholestasis. JPGN REPORTS 2022; 3:e196. [PMID: 37168916 PMCID: PMC10158323 DOI: 10.1097/pg9.0000000000000196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/26/2022] [Indexed: 05/11/2023]
Abstract
The study aimed to construct an advanced gene panel to ascertain the genetic etiology of patients with neonatal/infantile intrahepatic cholestasis (NIIC), and test patients with NIIC in a clinical setting.
Collapse
Affiliation(s)
- Shogo Ito
- From the Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Togawa
- From the Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuo Imagawa
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koichi Ito
- From the Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Endo
- Department of Pediatrics, Nagoya City University East Medical Center, Nagoya, Japan
| | - Tokio Sugiura
- From the Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- From the Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Ranucci G, Della Corte C, Alberti D, Bondioni MP, Boroni G, Calvo PL, Cananzi M, Candusso M, Clemente MG, D'Antiga L, Degrassi I, De Ville De Goyet J, Di Dato F, Di Giorgio A, Vici CD, Ferrari F, Francalanci P, Fuoti M, Fusaro F, Gaio P, Grimaldi C, Iascone M, Indolfi G, Iorio R, Maggiore G, Mandato C, Matarazzo L, Monti L, Mosca F, Nebbia G, Nuti F, Paolella G, Pinon M, Roggero P, Sciveres M, Serranti D, Spada M, Vajro P, Nicastro E. Diagnostic approach to neonatal and infantile cholestasis: A position paper by the SIGENP liver disease working group. Dig Liver Dis 2022; 54:40-53. [PMID: 34688573 DOI: 10.1016/j.dld.2021.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022]
Abstract
Neonatal and infantile cholestasis (NIC) can represent the onset of a surgically correctable disease and of a genetic or metabolic disorder worthy of medical treatment. Timely recognition of NIC and identification of the underlying etiology are paramount to improve outcomes. Upon invitation by the Italian National Institute of Health (ISS), an expert working grouped was formed to formulate evidence-based positions on current knowledge about the diagnosis of NIC. A systematic literature search was conducted to collect evidence about epidemiology, etiology, clinical aspects and accuracy of available diagnostic tests in NIC. Evidence was scored using the GRADE system. All recommendations were approved by a panel of experts upon agreement of at least 75% of the members. The final document was approved by all the panel components. This position document summarizes the collected statements and defines the best-evidence diagnostic approach to cholestasis in the first year of life.
Collapse
Affiliation(s)
- Giusy Ranucci
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital AORN, Naples, Italy
| | - Claudia Della Corte
- Hepatology, Gastroenterology, Nutrition and Liver transplantation Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Maria Pia Bondioni
- Pediatric Radiology, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Mara Cananzi
- Unit of Gastroenterology, Digestive Endoscopy, Hepatology and Care of Children with Liver Transplantation, University Hospital of Padova, Padova, Italy
| | - Manila Candusso
- Hepatology, Gastroenterology, Nutrition and Liver transplantation Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maria Grazia Clemente
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Lorenzo D'Antiga
- Hepatology, Gastroenterology and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Irene Degrassi
- Service of Paediatric Hepatology, Department of Paediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jean De Ville De Goyet
- Pediatric Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, ISMETT UPMC, Palermo, Italy
| | - Fabiola Di Dato
- Department di Translational Medical Science, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo Di Giorgio
- Hepatology, Gastroenterology and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Carlo Dionisi Vici
- Division of Metabolism and Metabolic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maurizio Fuoti
- Pediatric Gastroenterology and Endoscopy Unit Children's Hospital, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Fusaro
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Gaio
- Unit of Gastroenterology, Digestive Endoscopy, Hepatology and Care of Children with Liver Transplantation, University Hospital of Padova, Padova, Italy
| | - Chiara Grimaldi
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Raffaele Iorio
- Department di Translational Medical Science, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Maggiore
- Hepatology, Gastroenterology, Nutrition and Liver transplantation Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Claudia Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital AORN, Naples, Italy
| | | | - Lidia Monti
- Department of Radiology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Nebbia
- Service of Paediatric Hepatology, Department of Paediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Nuti
- Service of Paediatric Hepatology, Department of Paediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Paolella
- Service of Paediatric Hepatology, Department of Paediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Paola Roggero
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Sciveres
- Pediatric Hepatology and Liver Transplantation, ISMETT UPMC, Palermo, Italy
| | - Daniele Serranti
- Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Italy
| | - Emanuele Nicastro
- Hepatology, Gastroenterology and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Jeyaraj R, Bounford KM, Ruth N, Lloyd C, MacDonald F, Hendriksz CJ, Baumann U, Gissen P, Kelly D. The Genetics of Inherited Cholestatic Disorders in Neonates and Infants: Evolving Challenges. Genes (Basel) 2021; 12:1837. [PMID: 34828443 PMCID: PMC8621872 DOI: 10.3390/genes12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Many inherited conditions cause cholestasis in the neonate or infant. Next-generation sequencing methods can facilitate a prompt diagnosis in some of these cases; application of these methods in patients with liver diseases of unknown cause has also uncovered novel gene-disease associations and improved our understanding of physiological bile secretion and flow. By helping to define the molecular basis of certain cholestatic disorders, these methods have also identified new targets for therapy as well patient subgroups more likely to benefit from specific therapies. At the same time, sequencing methods have presented new diagnostic challenges, such as the interpretation of single heterozygous genetic variants. This article discusses those challenges in the context of neonatal and infantile cholestasis, focusing on difficulties in predicting variant pathogenicity, the possibility of other causal variants not identified by the genetic screen used, and phenotypic variability among patients with variants in the same genes. A prospective, observational study performed between 2010-2013, which sequenced six important genes (ATP8B1, ABCB11, ABCB4, NPC1, NPC2 and SLC25A13) in an international cohort of 222 patients with infantile liver disease, is given as an example of potential benefits and challenges that clinicians could face having received a complex genetic result. Further studies including large cohorts of patients with paediatric liver disease are needed to clarify the spectrum of phenotypes associated with, as well as appropriate clinical response to, single heterozygous variants in cholestasis-associated genes.
Collapse
Affiliation(s)
- Rebecca Jeyaraj
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK;
| | - Kirsten McKay Bounford
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - Nicola Ruth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Carla Lloyd
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Fiona MacDonald
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s Hospital, Birmingham B15 2TG, UK;
| | - Christian J. Hendriksz
- Steve Biko Academic Unit, Level D3 New Pretoria Academic Hospital, Malherbe Street, Pretoria 0002, South Africa;
| | - Ulrich Baumann
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Paediatric Gastroenterology and Hepatology, Hannover Medical School, 30625 Hannover, Germany
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Deirdre Kelly
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| |
Collapse
|
21
|
Neonatal cholestasis and Niemann-pick type C disease: A literature review. Clin Res Hepatol Gastroenterol 2021; 45:101757. [PMID: 34303826 DOI: 10.1016/j.clinre.2021.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Neonatal cholestasis (NC) is one of the most serious diseases in newborns and infants and results from metabolic disorders, such as Niemann-Pick type C (NPC), among other causes. OBJECTIVE We evaluated the incidence of NPC in our NC plus lysosomal storage disease (LSD) suspicious neonates and infants series. METHODS The study included children (≤3 years old) with a history of NC together with a suspicion of LSD, referred from Spanish Hospitals during the period 2011-2020. Screening for NPC was done by plasma biomarker assay (chitotriosidase activity and 7-ketocholesterol), and Sanger sequencing for NPC1 and NPC2 genes. RESULTS We screened NPC disease in 17 patients with NC plus organomegaly and that were LSD suspicious, finding 5 NPC patients (29.4%) and 2 carriers. CONCLUSIONS Our results emphasize the need to study NPC when NC and visceral enlargement arise in a newborn or infant.
Collapse
|
22
|
Pack M. Model Organisms Help Define the ABCs of Neonatal Cholestasis. Gastroenterology 2021; 161:35-37. [PMID: 33865839 DOI: 10.1053/j.gastro.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Michael Pack
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Santos Silva E, Moreira Silva H, Catarino C, Dias CC, Santos-Silva A, Lopes AI. Neonatal cholestasis: development of a diagnostic decision algorithm from multivariate predictive models. Eur J Pediatr 2021; 180:1477-1486. [PMID: 33410939 DOI: 10.1007/s00431-020-03886-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
Despite the recent advances involving molecular studies, the neonatal cholestasis (NC) diagnosis still relays on the expertise of medical teams. Our aim was to develop models of etiological diagnosis and unfavourable prognosis which may support a rationale diagnostic approach. We retrospectively analysed 154 patients born between January 1985 and October 2019. The cohort was divided into two main groups: (A) transient cholestasis and (B) other diagnosis (with subgroups) and also in two groups of outcomes: (I) unfavourable and (II) favourable. Multivariate logistic regression analysis identified the lower gestational age as the only variable independently associated with an increased risk of transient cholestasis and signs and/or symptoms of sepsis with infectious or metabolic diseases. Gamma-glutamyl transferase serum levels > 300 IU/L had a positive predictive value for both diagnosis of biliary atresia and for alpha-1-antitrypsin deficiency (A1ATD) and for unfavourable prognosis. A model of diagnosis for A1ATD (n = 34) showed an area under the ROC curve = 0.843 [confidence interval (CI): 0.773-0.912].Conclusion: This study identified some predictors of diagnosis and prognosis which helped to build a diagnostic decision algorithm. The unusually large subgroup of patients with A1ATD in this cohort emphasizes its predictive diagnostic model. What Is Known • The etiological diagnosis of neonatal cholestasis (NC) requires a step-by-step guided approach, and diagnostic models have been developed only for biliary atresia. • Current algorithms neither address the epidemiology changes nor the application of the new molecular diagnostic tools. What Is New • This study provides diagnostic predictive models for patients with A1ATD, metabolic/infectious diseases, and transient cholestasis, and two models of unfavourable prognosis for NC. • A diagnostic decision algorithm is proposed based on this study, authors expertise and the literature.
Collapse
Affiliation(s)
- Ermelinda Santos Silva
- Gastroenterology Unit, Paediatrics Division, Child and Adolescent Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Largo da Maternidade, n° 45, 4050-651, Porto, Portugal. .,Integrated Master in Medicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal. .,UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal.
| | - Helena Moreira Silva
- Gastroenterology Unit, Paediatrics Division, Child and Adolescent Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Largo da Maternidade, n° 45, 4050-651, Porto, Portugal
| | - Cristina Catarino
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Cláudia Camila Dias
- MEDCIDS (Departamento de Medicina da Comunidade, Informação e Decisão em Saúde) and CINTESIS (Centro de Investigação em Tecnologias e em Serviços de Saúde), Faculdade de Medicina da Universidade do Porto, Rua Dr Plácido da Costa, s/n, 4200-450, Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Ana-Isabel Lopes
- Paediatric Gastroenterology Unit, Paediatrics Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av. Prof. Egas Moniz, 1600-190, Lisboa, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
24
|
Di Giorgio A, Bartolini E, Calvo PL, Cananzi M, Cirillo F, Della Corte C, Dionisi-Vici C, Indolfi G, Iorio R, Maggiore G, Mandato C, Nebbia G, Nicastro E, Pinon M, Ranucci G, Sciveres M, Vajro P, D'Antiga L. Diagnostic Approach to Acute Liver Failure in Children: A Position Paper by the SIGENP Liver Disease Working Group. Dig Liver Dis 2021; 53:545-557. [PMID: 33775575 DOI: 10.1016/j.dld.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a clinical condition characterized by the abrupt onset of coagulopathy and biochemical evidence of hepatocellular injury, leading to rapid deterioration of liver cell function. In children, ALF has been characterized by raised transaminases, coagulopathy, and no known evidence of pre-existing chronic liver disease; unlike in adults, the presence of hepatic encephalopathy is not required to establish the diagnosis. Although rare, ALF has a high mortality rate without liver transplantation (LT). Etiology of ALF varies with age and geographical location, although it may remain indeterminate in a significant proportion of cases. However, identifying its etiology is crucial to undertake disease-specific management and evaluate indication to LT. In this position statement, the Liver Disease Working Group of the Italian Society of Gastroenterology, Hepatology and Nutrition (SIGENP) reviewed the most relevant studies on pediatric ALF to provide recommendations on etiology, clinical features and diagnostic work-up of neonates, infants and children presenting with ALF. Recommendations on medical management and transplant candidacy will be discussed in a following consensus conference.
Collapse
Affiliation(s)
- A Di Giorgio
- Paediatric Liver, GI and Transplantation, ASST-Hospital Papa Giovanni XXIII, Piazza OMS1, Bergamo 24127, Italy.
| | - E Bartolini
- Department Neurofarba, University of Florence and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - P L Calvo
- Paediatric Gastroenterology Unit, Regina Margherita Children's Hospital Azienda Ospedaliera-Universitaria Citta della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - M Cananzi
- Unit of Pediatric Gastroenterology and Hepatology, Dpt. of Women's and Children's Health, University Hospital of Padova, Italy
| | - F Cirillo
- Paediatric Department and Transplantation, Ismett, Palermo, Italy
| | - C Della Corte
- Paediatric Gastroenterology, Hepatology, Nutrition and Liver Transplantation, IRCCS Bambino Gesù Paediatric Hospital, Rome, Italy
| | - C Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - G Indolfi
- Department Neurofarba, University of Florence and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - R Iorio
- Paediatric Liver Unit, Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - G Maggiore
- Paediatric Gastroenterology, Hepatology, Nutrition and Liver Transplantation, IRCCS Bambino Gesù Paediatric Hospital, Rome, Italy
| | - C Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - G Nebbia
- Pediatric Liver Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Nicastro
- Paediatric Liver, GI and Transplantation, ASST-Hospital Papa Giovanni XXIII, Piazza OMS1, Bergamo 24127, Italy
| | - M Pinon
- Paediatric Gastroenterology Unit, Regina Margherita Children's Hospital Azienda Ospedaliera-Universitaria Citta della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - G Ranucci
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - M Sciveres
- Paediatric Department and Transplantation, Ismett, Palermo, Italy
| | - P Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Section of Pediatrics, University of Salerno, Baronissi (Salerno), Italy
| | - L D'Antiga
- Paediatric Liver, GI and Transplantation, ASST-Hospital Papa Giovanni XXIII, Piazza OMS1, Bergamo 24127, Italy
| |
Collapse
|
25
|
Role of percutaneous liver biopsy in infantile cholestasis: cohort from Arabs. BMC Gastroenterol 2021; 21:118. [PMID: 33711954 PMCID: PMC7953702 DOI: 10.1186/s12876-021-01699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/18/2021] [Indexed: 11/11/2022] Open
Abstract
Background Investigators from different parts of the world are calling for a re-evaluation of the role of liver biopsy (LB) in the evaluation of infantile cholestasis (IC), especially in the light of emerging non-invasive diagnostic technologies. Therefore, this retrospective single-center study was conducted to determine the impact of LB on the diagnosis and management of IC in a cohort from Arabs. Methods From 2007 until 2019, 533 cases of IC were referred for evaluation. All infants who underwent LB were included in the study. We categorized the yield of LB into: (1) defined specific diagnosis; (2) excluded an important diagnosis. A single pathologist reviewed and made the histology report. Results 122 LB specimens met the inclusion criteria. The main indication for LB was a high suspicion of biliary atresia (BA) [high gamma-glutamyl transferase (GGT) cholestasis and pale stool] in 46 cases (37.8%). Liver biopsy had sensitivity of 86.4%, specificity (66.7%), PPV (70.4%), NPV (84.2%) in diagnosing BA. LB had a direct impact on clinical management in 52 cases (42.6%): (1) The true diagnosis was suggested by LB in 36 cases; (2) LB excluded BA and avoided intraoperative cholangiogram in 16 cases with high suspicion of BA. Among the 76 cases with low suspicion of BA, LB suggested the true diagnosis or helped to initiate specific management in 8 cases only (10.5%). In contrast, molecular testing confirmed the diagnosis in 48 (63%). Conclusion LB continues to be an important tool in the workup of cases with a high suspicion of BA. The low yield of LB in cases with low suspicion of BA calls for a re-evaluation of its role in these cases in whom early incorporation of cholestasis sequencing gene panels can have a better diagnostic yield.
Collapse
|
26
|
Fang Y, Yu J, Lou J, Peng K, Zhao H, Chen J. Clinical and Genetic Spectra of Inherited Liver Disease in Children in China. Front Pediatr 2021; 9:631620. [PMID: 33763395 PMCID: PMC7982861 DOI: 10.3389/fped.2021.631620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Children presenting with chronic liver disease or acute liver failure often have an underlying genetic disorder. The aim of this study was to analyze the clinical and genetic spectra of inherited liver disease in children in a tertiary hospital. Methods: A total of 172 patients were classified into three groups according to their clinical presentation: cholestasis (Group A), liver enzyme elevation (Group B), and hepato/splenomegaly (Group C). Next-generation sequencing (NGS) was performed on all patients recruited in this study. The genotypic and phenotypic spectra of disease in these patients were reviewed. Results: The median age at enrollment of the 172 patients was 12.0 months (IQR: 4.9, 42.5 months), with 52.3% males and 47.7% females. The overall diagnostic rate was 55.8% (96/172) in this group. The diagnostic rates of whole-exome sequencing (WES) and targeted gene panel sequencing (TGPS) were 47.2% and 62.0%, respectively (no significant difference, p = 0.054). We identified 25 genes related to different phenotypes, including 46 novel disease-related pathogenic mutations. The diagnostic rates in the three groups were 46.0% (29/63), 48.6% (34/70), and 84.6% (33/39). ATP7B, SLC25A13, and G6PC were the top three genes related to monogenic liver disease in this study. Conclusion: WES and TGPS show similar diagnostic rates in the diagnosis of monogenic liver disease. NGS has an important role in the diagnosis of monogenetic liver disease and can provide more precise medical treatment and predict the prognosis of these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chen
- National Clinical Research Center for Child Health, Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Cho SJ, Perito ER, Shafizadeh N, Kim GE. Dialogs in the assessment of neonatal cholestatic liver disease. Hum Pathol 2021; 112:102-115. [PMID: 33359238 DOI: 10.1016/j.humpath.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022]
Abstract
Neonatal cholestatic liver disease is rarely encountered by pathologists outside of specialized pediatric centers and navigating the long list of potential diseases can be daunting. However, the differential diagnosis can be rapidly narrowed through open conversations between the pathologist and pediatric gastroenterologist. The dialog should ideally begin before obtaining the liver biopsy and continue through the rendering of the final pathologic diagnosis. Such dialogs are necessary to first ensure the proper handling of the precious sample and then to allow for synthesis of the clinical, laboratory, imaging, and genetic data in the context of the histologic features seen in the liver biopsy. In this review, we aim to provide a broad template on which such dialogs may be based and pitfalls that may be encountered on both the clinical and pathologic sides. This review will focus on non-biliary atresia etiologies of neonatal cholestasis, including select infectious, genetic, and metabolic entities.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily R Perito
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Grace E Kim
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
[Clinical characteristics and gene variants of patients with infantile intrahepatic cholestasis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33476544 PMCID: PMC7818162 DOI: 10.7499/j.issn.1008-8830.2009079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To explore the clinical characteristics and genetic findings of patients with infantile intrahepatic cholestasis. METHODS The clinical data were collected in children who were admitted to the Department of Gastroenterology in Children's Hospital, Capital Institute of Pediatrics from June 2017 to June 2019 and were suspected of inherited metabolic diseases. Next generation sequencing based on target gene panel was used for gene analysis in these children. Sanger sequencing technology was used to verify the genes of the members in this family. RESULTS Forty patients were enrolled. Pathogenic gene variants were identified in 13 patients (32%), including SLC25A13 gene variation in 3 patients who were diagnosed with citrin deficiency, JAG1 gene variation in 3 patients who were diagnosed with Alagille syndrome, ABCB11 gene variation in 3 patients who were diagnosed with progressive familial intrahepatic cholestasis type 2, HSD3B7 gene variation in 1 patient who was diagnosed with congenital bile acid synthesis defect type 1, AKR1D1 gene variation in 1 patient who was diagnosed with congenital bile acid synthesis defect type 1, NPC1 gene variation in 1 patient who was diagnosed with Niemann-Pick disease, and CFTR gene variation in 1 patient who was diagnosed with cystic fibrosis. CONCLUSIONS The etiology of infantile intrahepatic cholestasis is complex. Next generation sequencing is helpful in the diagnosis of infantile intrahepatic cholestasis.
Collapse
|
29
|
Oliveira AG, Fiorotto R. Novel approaches to liver disease diagnosis and modeling. Transl Gastroenterol Hepatol 2021; 6:19. [PMID: 33824923 PMCID: PMC7829068 DOI: 10.21037/tgh-20-109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lack of a prompt and accurate diagnosis remains on top of the list of challenges faced by patients with rare liver diseases. Although rare liver diseases affect a significant percentage of the population as a group, when taken singularly they represent unique diseases and the approaches used for diagnosis of common liver diseases are insufficient. However, the development of new methods for the acquisition of molecular and clinical data (i.e., genomic, proteomics, metabolomics) and computational tools for their analysis and integration, together with advances in modeling diseases using stem cell-based technology [i.e., induced pluripotent stem cells (iPSCs) and tissue organoids] represent a promising and powerful tool to improve the clinical management of these patients. This is the goal of precision medicine, a novel approach of modern medicine that aims at delivering a specific treatment based on disease-specific biological insights and individual profile. This review will discuss the application and advances of these technologies and how they represent a new opportunity in hepatology.
Collapse
Affiliation(s)
- André G. Oliveira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
30
|
Altamimi E, Khanfar M, Rabab'h O, Dardas Z, Srour L, Mustafa L, Azab B. Effect of Genetic Testing on Diagnosing Gastrointestinal Pediatric Patients with Previously Undiagnosed Diseases. APPLICATION OF CLINICAL GENETICS 2020; 13:221-231. [PMID: 33364809 PMCID: PMC7751587 DOI: 10.2147/tacg.s275992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 11/23/2022]
Abstract
Purpose Four consanguineous Jordanian families with affected members of unknown gastrointestinal related diseases were recruited to assess the utility and efficiency of whole exome sequencing (WES) in reaching the definitive diagnosis. Patients and Methods Members from four consanguineous Jordanian families were recruited in this study. Laboratory and imaging tests were used for initial diagnosis, followed by performing WES to test all affected members for the detection of causative variants. Sanger sequencing was used for validation. Results We had a 100% success rate identifying each case presented in this study. Conclusion This is the first study applying a WES testing approach in the diagnosis of pediatric diseases in Jordan. Our results strongly suggest the need to implement WES as an evident diagnostic tool in the clinical setting, as it will subsequently allow for proper disease management and genetic counseling.
Collapse
Affiliation(s)
- Eyad Altamimi
- Department of Pediatrics and Neonatology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mariam Khanfar
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar Rabab'h
- Center of Cognition and Neuroethics, University of Michigan-Flint, Flint, MI, USA
| | - Zain Dardas
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, University of Jordan, Amman, Jordan.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Luma Srour
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Lina Mustafa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, University of Jordan, Amman, Jordan.,Human and Molecular Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Pietrobattista A, Veraldi S, Candusso M, Basso MS, Liccardo D, Della Corte C, Mosca A, Alterio T, Sacchetti E, Catesini G, Deodato F, Boenzi S, Dionisi-Vici C. The contribution of plasma oxysterols in the challenging diagnostic work-up of infantile cholestasis. Clin Chim Acta 2020; 507:181-186. [PMID: 32353361 DOI: 10.1016/j.cca.2020.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
|
32
|
Goldberg A, Mack CL. Inherited Cholestatic Diseases in the Era of Personalized Medicine. Clin Liver Dis (Hoboken) 2020; 15:105-109. [PMID: 32257121 PMCID: PMC7128029 DOI: 10.1002/cld.872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/04/2023] Open
Abstract
http://aasldpubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2046-2484/video/15-3-reading-mack a video presentation of this article.
Collapse
Affiliation(s)
- Alyssa Goldberg
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & NutritionChildren's Hospital Colorado, Digestive Health Institute–Pediatric Liver Center, University of Colorado School of MedicineAuroraCO
| | - Cara L. Mack
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & NutritionChildren's Hospital Colorado, Digestive Health Institute–Pediatric Liver Center, University of Colorado School of MedicineAuroraCO,Hewit/Andrews Chair in Pediatric Liver DiseasesUniversity of Colorado School of MedicineAuroraCO
| |
Collapse
|
33
|
Co-existence of ABCB11 and DCDC2 disease: Infantile cholestasis requires both next-generation sequencing and clinical-histopathologic correlation. Eur J Hum Genet 2020; 28:840-844. [PMID: 32203204 DOI: 10.1038/s41431-020-0613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
A boy exhibiting conjugated hyperbilirubinemia from birth, with elevated serum gamma-glutamyl transpeptidase activity (GGT), developed liver failure unusually early (7mo); GGT concomitantly normalized. ABCB4 disease was suspected, but no ABCB4 lesion was found. The boy was instead homozygous for ABCB11 variant c.1213 T>C (p.(Cys405Arg)), which is predicted to affect protein function. Both ABCB4 and ABCB11 were normally expressed in the explanted liver, with intralobular cholestasis; however, large-duct sclerosing cholangiopathy and ductal-plate malformation also were present. The primary-cilium constituent doublecortin domain containing 2 (DCDC2) was not expressed. Co-existence of ABCB11 disease and DCDC2 disease was proposed. Further testing identified homozygosity for the canonical-receptor splice-site variant c.294-2A>G (p.?) in DCDC2. Our report emphasizes the need to integrate clinical, histological, and genetic data in patients with neonatal cholestasis.
Collapse
|
34
|
Sciveres M, Cirillo F, Jacquemin E, Maggiore G. Diagnostic protocol of neonatal and infantile cholestasis: can it be improved? J Pediatr 2020; 216:247. [PMID: 31606154 DOI: 10.1016/j.jpeds.2019.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Marco Sciveres
- Pediatric Hepatology and Pediatric Liver Transplantation, ISMETT, University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Francesco Cirillo
- Pediatric Hepatology and Pediatric Liver Transplantation, ISMETT, University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, National Reference Center for Rare Pediatric Liver Diseases and Filfoie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Faculty of Medicine Paris-Sud, University Paris-Sud, Paris, France; Saclay and INSERM UMR-S1174 and Hepatinov, Orsay, France
| | - Giuseppe Maggiore
- Department of Medical Sciences, Section of Pediatrics University of Ferrara and Pediatric Hepatology and Liver Transplantation, ISMETT-University of Pittsburgh Medical Center Italy, Palermo, Italy
| |
Collapse
|
35
|
Santos Silva E, Almeida A, Frutuoso S, Martins E, Valente MJ, Santos-Silva A, Lopes AI. Neonatal Cholestasis Over Time: Changes in Epidemiology and Outcome in a Cohort of 154 Patients From a Portuguese Tertiary Center. Front Pediatr 2020; 8:351. [PMID: 32695736 PMCID: PMC7338938 DOI: 10.3389/fped.2020.00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction: In the last two decades there have been advances in the diagnosis and management of neonatal cholestasis, which may have changed its epidemiology, diagnostic accuracy, outcomes, and survival. Our goal was to characterize these changes over time in our setting. Methods: Retrospective cohort study in a tertiary center, enrolling patients born between January 1985 and October 2019. The cohort was divided into two periods, before (A; n = 67) and after (B; n = 87) the year 2000; and in two groups, according to patient's outcome (favorable, unfavorable). Overall survival and survival with and without orthotopic liver transplant (OLT) were evaluated in the two periods (A and B) and in different subgroups of underlying entities. Results: We found that the age of cholestasis recognition decreased significantly from period A to period B [median 43 days and 22 days, respectively, (p < 0.001)]; the changes in epidemiology were relevant, with a significant decrease in alpha-1-antitrypsin deficiency (p < 0.001) and an increase in transient cholestasis (p = 0.004). A next-generation sequencing (NGS) panel available since mid-2017 was applied to 13 patients with contributory results in 7, but, so far, only in 2 patients led to conclusive diagnosis of underlying entities. The number of cases of idiopathic cholestasis did not vary significantly. Over time there was no significant change in the outcome (p = 0.116). Overall survival and survival without OLT had no significant improvement during the period of observation (in periods A and B, 86 vs. 88%, and 85 vs. 87%, respectively). However, in period B, with OLT we achieved the goal of 100% of survival rate. Conclusions: Our data suggest that transient cholestasis became a very important subset of neonatal cholestasis, requiring specific guidance. The NGS panels can provide important inputs on disease diagnosis but, if applied without strict criteria and expertise, they can open a Pandora's box due to misinterpretation. Despite all the advances in accurate diagnosis and timely management-including early recognition of cholestasis-the improvement in patient outcomes and survival were still not significant.
Collapse
Affiliation(s)
- Ermelinda Santos Silva
- Paediatric Gastroenterology Unit, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal.,Integrated Master in Medicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UCIBIO-REQUIMTE, Laboratory of Biochemistry, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Alexandra Almeida
- Neonatology Unit, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Simão Frutuoso
- Neonatology Unit, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Esmeralda Martins
- Integrated Master in Medicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Metabolic Diseases Reference Center, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria João Valente
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Lopes
- Paediatric Gastroenterology Unit, Hospital Universitário de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Lipiński P, Ciara E, Jurkiewicz D, Pollak A, Wypchło M, Płoski R, Cielecka-Kuszyk J, Socha P, Pawłowska J, Jankowska I. Targeted Next-Generation Sequencing in Diagnostic Approach to Monogenic Cholestatic Liver Disorders-Single-Center Experience. Front Pediatr 2020; 8:414. [PMID: 32793533 PMCID: PMC7393978 DOI: 10.3389/fped.2020.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: To evaluate the clinical utility of panel-based NGS in the diagnostic approach of monogenic cholestatic liver diseases. Study design: Patients with diagnosis of chronic cholestatic liver disease of an unknown etiology underwent NGS of targeted genes panel. Group 1 included five patients (prospectively recruited) hospitalized from January to December 2017 while group 2 included seventeen patients (retrospectively recruited) hospitalized from 2010 to 2017 presenting with low-GGT PFIC phenotype (group 2a, 11 patients) or indeterminant cholestatic liver cirrhosis (group 2b, 6 patients). Results: Among 22 patients enrolled into the study, 21 various pathogenic variants (including 11 novel) in 5 different genes (including ABCB11, ABCB4, TJP2, DGUOK, CYP27A1) were identified. The molecular confirmation was obtained in 15 out of 22 patients (68%). In group 1, two out of five patients presented with low-GGT cholestasis, and were diagnosed with BSEP deficiency. Out of three patients presenting with high-GGT cholestasis, one patient was diagnosed with PFIC-3, and the remaining two were not molecularly diagnosed. In group 2a, seven out of eleven patients, were diagnosed with BSEP deficiency and two with TJP-2 deficiency. In group 2b, three out of six patients were molecularly diagnosed; one with PFIC-3, one with CYP27A1 deficiency, and one with DGUOK deficiency. Conclusions: Panel-based NGS appears to be a very useful tool in diagnosis of monogenic cholestatic liver disorders in cases when extrahepatic causes have been primarily excluded. NGS presented the highest diagnosis rate to identify the molecular background of cholestatic liver diseases presenting with a low-GGT PFIC phenotype.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Jurkiewicz
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Maria Wypchło
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|