1
|
Roberts CT, Raabe N, Wiegand L, Kadar Shahib A, Rastegar M. Diverse Applications of the Anti-Diabetic Drug Metformin in Treating Human Disease. Pharmaceuticals (Basel) 2024; 17:1601. [PMID: 39770443 PMCID: PMC11677501 DOI: 10.3390/ph17121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metformin is a commonly used drug for treating type 2 diabetes. Metformin is an inexpensive drug with low/no side effects and is well tolerated in human patients of different ages. Recent therapeutic strategies for human disease have considered the benefits of drug repurposing. This includes the use of the anti-diabetic drug metformin. Accordingly, the anti-inflammatory, anti-cancer, anti-viral, neuroprotective, and cardioprotective potentials of metformin have deemed it a suitable candidate for treating a plethora of human diseases. As results from preclinical studies using cellular and animal model systems appear promising, clinical trials with metformin in the context of non-diabetes-related illnesses have been started. Here, we aim to provide a comprehensive overview of the therapeutic potential of metformin in different animal models of human disease and its suggested relationship to epigenetics and ailments with epigenetic components.
Collapse
Affiliation(s)
| | | | | | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Marino LV, Paulson S, Ashton JJ, Weeks C, Young A, Pappachan JVP, Swann JR, Johnson MJ, Beattie RM. A scoping review: urinary markers of metabolic maturation in infants with CHD and the relationship to growth. Cardiol Young 2023; 33:1879-1888. [PMID: 36325968 DOI: 10.1017/s1047951122003262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Growth failure in infants born with CHD is a persistent problem, even in those provided with adequate nutrition. OBJECTIVE To summarise the published data describing the change in urinary metabolites during metabolic maturation in infants with CHD and identify pathways amenable to therapeutic intervention. DESIGN Scoping review. ELIGIBILITY CRITERIA Studies using qualitative or quantitative methods to describe urinary metabolites pre- and post-cardiac surgery and the relationship with growth in infants with CHD. SOURCES OF EVIDENCE NICE Healthcare Databases website was used as a tool for multiple searches. RESULTS 347 records were identified, of which 37 were duplicates. Following the removal of duplicate records, 310 record abstracts and titles were screened for inclusion. The full texts of eight articles were reviewed for eligibility, of which only two related to infants with CHD. The studies included in the scoping review described urinary metabolites in 42 infants. A content analysis identified two overarching themes of metabolic variation predictive of neurodevelopmental abnormalities associated with anaerobic metabolism and metabolic signature associated with the impact on gut microbiota, inflammation, energy, and lipid digestion. CONCLUSION The results of this scoping review suggest that there are considerable gaps in our knowledge relating to metabolic maturation of infants with CHD, especially with respect to growth. Surgery is a key early life feature for CHD infants and has an impact on the developing biochemical phenotype with implications for metabolic pathways involved in immunomodulation, energy, gut microbial, and lipid metabolism. These early life fingerprints may predict those individuals at risk for neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Luise V Marino
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust; Faculty of Health Science, University of Southampton, Southampton, UK
| | - Simone Paulson
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton, UK
| | - James J Ashton
- Paediatric Gastroenterology, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Charlotte Weeks
- Paediatric Intensive Care Unit, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Aneurin Young
- Department of Neonatal Medicine, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust and NIHR Southampton Biomedical Research Centre, UK
| | - John V P Pappachan
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Medicine, University of Southampton, Southampton, UK
| | - John R Swann
- Biomolecular Medicine, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark J Johnson
- Neonatal Medicine, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust; Faculty of Medicine, University of Southampton, Southampton, UK
| | - R Mark Beattie
- Paediatric Gastroenterology, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
4
|
Chen Y, Ge M, Kang JJ, Ding YC, Chen YC, Jia ZZ. Comparison between Dual-Energy CT and Quantitative Susceptibility Mapping in Assessing Brain Iron Deposition in Parkinson Disease. AJNR Am J Neuroradiol 2023; 44:410-416. [PMID: 36958800 PMCID: PMC10084894 DOI: 10.3174/ajnr.a7822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND AND PURPOSE Both dual-energy CT and quantitative susceptibility mapping can evaluate iron depositions in the brain. The purpose of this study was to compare these 2 techniques in evaluating brain iron depositions in Parkinson disease. MATERIALS AND METHODS Forty-one patients with Parkinson disease (Parkinson disease group) and 31 age- and sex-matched healthy controls (healthy control group) were included. All participants underwent brain dual-energy CT and quantitative susceptibility mapping. ROIs were set bilaterally in the globus pallidus, substantia nigra, red nucleus, caudate nucleus, and putamen. CT values and magnetic susceptibility values were obtained in each ROI. Differences in CT values and magnetic susceptibility values between the Parkinson disease and healthy control groups were compared, followed by analysis of receiver operating characteristic curves. Correlations between CT values and magnetic susceptibility values were then evaluated. RESULTS The CT values of the bilateral globus pallidus, substantia nigra, and red nucleus were higher in the Parkinson disease group (P < .05). The magnetic susceptibility values of the bilateral globus pallidus and substantia nigra were higher in the Parkinson disease group (P < .05). The CT value of the right globus pallidus in linear fusion images had the highest diagnostic performance (0.912). Magnetic susceptibility values of the bilateral globus pallidus in the Parkinson disease group were positively correlated with CT values at the level of 80 kV(peak), linear fusion images, and SN150 kV(p) (r = 0.466∼0.617; all, P < .05). CONCLUSIONS Both dual-energy CT and quantitative susceptibility mapping could assess excessive brain iron depositions in Parkinson disease, and we found a positive correlation between CT values and magnetic susceptibility values in the bilateral globus pallidus.
Collapse
Affiliation(s)
- Y Chen
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - M Ge
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - J J Kang
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Y C Ding
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Y C Chen
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Z Z Jia
- From the Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Szklarz M, Gontarz-Nowak K, Matuszewski W, Bandurska-Stankiewicz E. Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11990. [PMID: 36231287 PMCID: PMC9565681 DOI: 10.3390/ijerph191911990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the 21st century the heart is facing more and more challenges so it should be brave and iron to meet these challenges. We are living in the era of the COVID-19 pandemic, population aging, prevalent obesity, diabetes and autoimmune diseases, environmental pollution, mass migrations and new potential pandemic threats. In our article we showed sophisticated and complex regulations of iron metabolism. We discussed the impact of iron metabolism on heart diseases, treatment of heart failure, diabetes and obesity. We faced the problems of constant stress, climate change, environmental pollution, migrations and epidemics and showed that iron is really essential for heart metabolism in the 21st century.
Collapse
|
6
|
Tang S, Zhang G, Ran Q, Nie L, Liu X, Pan Z, He L. Quantitative susceptibility mapping shows lower brain iron content in children with attention-deficit hyperactivity disorder. Hum Brain Mapp 2022; 43:2495-2502. [PMID: 35107194 PMCID: PMC9057088 DOI: 10.1002/hbm.25798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022] Open
Abstract
To investigate the feasibility of quantitative susceptibility mapping in children with attention‐deficit hyperactivity disorder (ADHD), 53 children with ADHD aged 5–16 years were prospectively selected as the study group and 49 healthy children matched with age and gender were selected as the control group. All children underwent magnetic resonance imaging conventional sequence, 3D‐T1, and enhanced T2*‐weighted magnetic resonance angiography (ESWAN) sequence scanning. The iron content of brain regions was obtained through software postprocessing, and the iron content of brain regions of children with ADHD and healthy children was compared and analyzed to find out the characteristics of the iron content of brain regions of children with ADHD. The iron content in frontal lobe, globus pallidus, caudate nucleus, substantia nigra, putamen, and hippocampus of children with ADHD was lower than that of healthy children (p < .05). There was no significant difference in the content of iron in the left and right brain regions of children with ADHD (p > .05). The volume of frontal lobe and hippocampus of children with ADHD was lower than that of healthy children (p < .05). Iron content in brain areas such as globus pallidus, caudate nucleus, hippocampus, and putamen could distinguish children with ADHD (Area under curve [AUC] > 0.5, p < .05). Quantitative susceptibility mapping showed decreased iron content in some brain regions of children with ADHD.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Guanping Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Qiying Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| | - Zhengxia Pan
- Department of Cardiovascular and Thoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, Chongqing, China
| |
Collapse
|
7
|
Arisaka O, Ichikawa G, Koyama S, Sairenchi T. Childhood obesity: rapid weight gain in early childhood and subsequent cardiometabolic risk. Clin Pediatr Endocrinol 2020; 29:135-142. [PMID: 33088012 PMCID: PMC7534524 DOI: 10.1297/cpe.29.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022] Open
Abstract
Dynamic changes in body weight have long been recognized as important indicators of risk
for human health. Many population-based observational studies have shown that rapid weight
gain during infancy, including a catch-up growth phenomenon or adiposity rebound in early
childhood, predisposes a person to the development of obesity, type 2 diabetes, and
cardiovascular diseases later in life. However, a consensus has not been established
regarding which period of weight gain contributes to future risks. This review evaluates
recent evidence on the relationship between early rapid growth and future obesity and
cardiometabolic risk, with a focus on the differential significance of rapid weight gain
in infancy and early childhood. Although there is a need for attention to childhood growth
during early infancy before 1 yr of age as it may be related to future obesity, emerging
evidence strongly suggests that toddlers showing an increase in body mass index (BMI)
before 3 yr of age, a period normally characterized by decreased BMI, are prone to
developing later cardiometabolic risk.
Collapse
Affiliation(s)
- Osamu Arisaka
- Department of Pediatrics, Nasu Red Cross Hospital, Tochigi, Japan.,Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Go Ichikawa
- Department of Pediatrics, Nasu Red Cross Hospital, Tochigi, Japan.,Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Satomi Koyama
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Toshimi Sairenchi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|