1
|
Aubert O, Dinwoodie OM, Wagner R, Ai X. Epithelial Dysfunction in Congenital Diaphragmatic Hernia: Mechanisms, Models and Emerging Therapies. Cells 2025; 14:687. [PMID: 40422190 PMCID: PMC12109814 DOI: 10.3390/cells14100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disorder whereby improper formation of the diaphragm allows herniation of the internal organs into the thoracic cavity, resulting in pulmonary hypoplasia among other complications. Although epithelial dysfunction is central to CDH pathology, relatively little attention has been paid to the underlying mechanisms orchestrating epithelial malfunction. Proinflammatory signaling downstream of impaired mechanotransduction due to in utero lung compression has been elucidated to drive epithelial cell phenotypes. This has been illustrated by a reduction in nuclear YAP and the upregulation of NF-kB in CDH models. In this review, we draw from recent findings using emerging technologies to examine epithelial cell mechanisms in CDH and discuss the role of compression as a central and, crucially, sufficient driver of CDH phenotypes. In recognition of the limitations of using genetic knockout models to recapitulate such a heterogenic and etiologically complicated disease, we discuss alternative models such as the established nitrofen rat model, air-liquid interface (ALI) cultures, organoids and ex vivo lung explants. Throughout, we acknowledge the importance of involving mechanical compression in the modeling of CDH in order to faithfully recapitulate the disease. Finally, we explore novel therapeutic strategies from stem cell and regenerative therapies to precision medicine and the importance of defining CDH endotypes in order to guide treatments.
Collapse
Affiliation(s)
- Ophelia Aubert
- Department of Pediatric Surgery, University Medical Center Mannheim, 68165 Mannheim, Germany
| | - Olivia M. Dinwoodie
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Richard Wagner
- Department of Pediatric Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
2
|
Swanson KA, Phelps HM, Grant MT, Lang EP, Warner BW, Vrecenak JD. Despite routing to GI and pulmonary tissues, donor cells fail to engraft after intra-amniotic or intravascular cell delivery in a healthy allogeneic mouse model. Transpl Immunol 2025; 89:102200. [PMID: 39961392 DOI: 10.1016/j.trim.2025.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
In utero hematopoietic cell transplantation (IUHCT) exploits tolerogenic fetal immunologic development to facilitate engraftment of donor. Non-hematopoietic donor-derived cells have been described in both in-utero and post-natal models of hematopoietic cell transplantation. However, while epithelial routing has been reported, long-term engraftment following IUHCT has not been well studied. We utilized intra-amniotic (IA) or intravascular (IV) IUHCT to evaluate routing and engraftment within the pulmonary and gastrointestinal (GI) tract. High donor-cell viability is observed in the amniotic fluid 24 h after IA injection (mean 89.1 %). At 24 and 72 h, donor cells were present within the lumens of GI and pulmonary tissues and in the parenchyma of the liver, suggesting that donor cells route effectively to epithelial surfaces and hematogenous targets following IA injection. However, following IA delivery, long-term engraftment was not observed in peripheral blood, and there was no evidence of donor-derived cells in any target tissue including lung, bowel, or liver. Following IV injection, mean peripheral blood chimerism at terminal harvest was 23.86 % (SEM 12.44; Range 0.00-98.90). Following IV delivery, donor-derived cells were noted in the bowel, liver, and lung but not in the epithelium, suggesting these cells are circulating or tissue-resident leukocytes. Despite the routing of donor cells to multiple fetal sites, the IA injection was an extremely inefficient method for long-term engraftment in the hematopoietic niche, in organ parenchyma, or on epithelial surfaces. In contrast, despite IV IUHCT being able to consistently produce hematopoietic engraftment, epithelial engraftment was not observed, suggesting a limited role for IV IHUCT in epithelial disorders.
Collapse
Affiliation(s)
- Kerry A Swanson
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Hannah M Phelps
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Matthew T Grant
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Eliza P Lang
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Brad W Warner
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Jesse D Vrecenak
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Doktor F, Antounians L, Figueira RL, Khalaj K, Duci M, Zani A. Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential. Stem Cells Transl Med 2025; 14:szae095. [PMID: 39823257 PMCID: PMC11740888 DOI: 10.1093/stcltm/szae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Miriam Duci
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
4
|
Figueira RL, Khoshgoo N, Doktor F, Khalaj K, Islam T, Moheimani N, Blundell M, Antounians L, Post M, Zani A. Antenatal Administration of Extracellular Vesicles Derived From Amniotic Fluid Stem Cells Improves Lung Function in Neonatal Rats With Congenital Diaphragmatic Hernia. J Pediatr Surg 2024; 59:1771-1777. [PMID: 38519389 DOI: 10.1016/j.jpedsurg.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The severity of pulmonary hypoplasia is a main determinant of outcome for babies with congenital diaphragmatic hernia (CDH). Antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) has been shown to rescue morphological features of lung development in the rat nitrofen model of CDH. Herein, we evaluated whether AFSC-EV administration to fetal rats with CDH is associated with neonatal improvement in lung function. METHODS AFSC-EVs were isolated by ultracentrifugation and characterized by size, morphology, and canonical marker expression. At embryonic (E) day 9.5, dams were gavaged with olive oil (control) or nitrofen to induce CDH. At E18.5, fetuses received an intra-amniotic injection of either saline or AFSC-EVs. At E21.5, rats were delivered and subjected to a tracheostomy for mechanical ventilation (flexiVent system). Groups were compared for lung compliance, resistance, Newtonian resistance, tissue damping and elastance. Lungs were evaluated for branching morphogenesis and collagen quantification. RESULTS Compared to healthy control, saline-treated pups with CDH had fewer airspaces, more collagen deposition, and functionally exhibited reduced compliance and increased airway resistance, elastance, and tissue damping. Conversely, AFSC-EV administration resulted in improvement of lung mechanics (compliance, resistance, tissue damping, elastance) as well as lung branching morphogenesis and collagen deposition. CONCLUSIONS Our studies show that the rat nitrofen model reproduces lung function impairment similar to that of human babies with CDH. Antenatal administration of AFSC-EVs improves lung morphology and function in neonatal rats with CDH. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Rebeca L Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Khoshgoo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tasneem Islam
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nazgol Moheimani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Whitlock AE, Moskowitzova K, Kycia I, Zurakowski D, Fauza DO. Morphometric, Developmental, and Anti-Inflammatory Effects of Transamniotic Stem Cell Therapy (TRASCET) on the Fetal Heart and Lungs in a Model of Intrauterine Growth Restriction. Stem Cells Dev 2023; 32:484-490. [PMID: 37358376 DOI: 10.1089/scd.2023.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Transamniotic stem cell therapy (TRASCET) with mesenchymal stem cells (MSCs) can attenuate placental inflammation and minimize intrauterine growth restriction (IUGR). We sought to determine whether MSC-based TRASCET could mitigate fetal cardiopulmonary effects of IUGR. Pregnant Sprague-Dawley dams were exposed to alternating 12-h hypoxia (10.5% O2) cycles in the last fourth of gestation. Their fetuses (n = 155) were divided into 4 groups. One group remained untreated (n = 42), while three groups received volume-matched intra-amniotic injections of either saline (sham; n = 34), or of syngeneic amniotic fluid-derived MSCs, either in their native state (TRASCET; n = 36) or "primed" by exposure to interferon-gamma and interleukin-1beta before administration in vivo (TRASCET-primed; n = 43). Normal fetuses served as additional controls (n = 30). Multiple morphometric and biochemical analyses were performed at term for select markers of cardiopulmonary development and inflammation previously shown to be affected by IUGR. Among survivors (75%; 117/155), fetal heart-to-body weight ratio was increased in both the sham and untreated groups (P < 0.001 for both) but normalized in the TRASCET and TRASCET-primed groups (P = 0.275, 0.069, respectively). Cardiac b-type natriuretic peptide levels were increased in all hypoxia groups compared with normal (P < 0.001), but significantly decreased from sham and untreated in both TRASCET groups (P < 0.0001-0.005). Heart tumor necrosis factor-alpha levels were significantly elevated in sham and TRASCET groups (P = 0.009, 0.002), but normalized in the untreated and TRASCET-primed groups (P = 0.256, 0.456). Lung transforming growth factor-beta levels were significantly increased in both sham and untreated groups (P < 0.001, 0.003), but normalized in both TRASCET groups (P = 0.567, 0.303). Similarly, lung endothelin-1 levels were elevated in sham and untreated groups (P < 0.001 for both), but normalized in both TRASCET groups (P = 0.367, 0.928). We conclude that TRASCET with MSCs decreases markers of fetal cardiac strain, insufficiency, and inflammation, as well as of pulmonary fibrosis and hypertension in the rodent model of IUGR.
Collapse
Affiliation(s)
- Ashlyn E Whitlock
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kamila Moskowitzova
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|