1
|
Lai L, Lan H, Huang H, Li T, Ar-Sanork K, Qu JH, Xu D, Jiang Z. Fabrication and evaluation of a dual-zwitterionic functionalized hydrophilic monolith for chromatographic separation. J Chromatogr A 2025; 1751:465917. [PMID: 40199033 DOI: 10.1016/j.chroma.2025.465917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
In this study, the chromatographic performance of a novel dual-zwitterionic hydrophilic stationary phase were investigated. Three zwitterionic HILIC monoliths were prepared using 3-(4-((methacryloyloxy)methyl)-1-methylpiperidin-1-ium-1-yl)propane-1-sulfonate (MAMMPS), 2-methacryloyloxyethyl phosphorylcholine (MPC), and a combination of MAMMPS and MPC (1:1, molar ratio) with N,N'-methylenebisacrylamide (MBA), separately. The monoliths exhibited good repeatability and stability. A high column efficiency of 120,000 plates/m was reached on the novel dual-zwitterionic functionalized poly(MAMMPS@MPC-co-MBA) monolith. Through the analysis and testing with different standards, the poly(MAMMPS@MPC-co-MBA) monolith exhibited the strongest retention capacity for negatively charged benzoic acid derivatives due to its high hydrophilicity and weak electronegativity. In contrast, the poly(MPC-co-MBA) monolith, functionalized with a single zwitterion, facilitated electrostatic interactions with negatively charged analytes. Baseline separation was achieved on all three monoliths for selected nucleobases, nucleosides, phenol derivatives, and amine compounds. However, their retention strength was mainly related to the hydrophilicity of the stationary phases, while hydrogen bonding and electrostatic interactions played secondary roles. Among the monoliths, the poly(MAMMPS-co-MBA) monolith demonstrated the best separation for neutral, acidic, and alkaline compounds. These findings offer valuable insights for the future selection and application of dual-zwitterionic HILIC monoliths for chromatographic separations.
Collapse
Affiliation(s)
- Liang Lai
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Hongying Lan
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Hui Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tong Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Kesara Ar-Sanork
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Huan Qu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Schena T, von Mühlen C. Chromatographic speed classification for liquid chromatography using average theoretical peak time (ATPT). Anal Chim Acta 2024; 1287:342092. [PMID: 38182344 DOI: 10.1016/j.aca.2023.342092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The development of analytical techniques in the field of liquid chromatography has brought new frontiers in performance and analytical speed for the technique. The proper evaluation of the analytical boundaries achieved with those developments was not addressed in the literature, since different liquid chromatography (LC) techniques have not yet received any classification regarding their chromatographic speed. Defining chromatographic analysis speed based simply on analysis time is an outdated concept since it is sample and analyte-dependent. In this context, the application of the Average Theoretical Peak Time concept (ATPT) is proposed as a unified metric for chromatographic speed classification. RESULTS This metric was evaluated using PCA analysis in a group of more than 50 publications, which generated the classification of LC methods in normal, high, hyper, and ultra-high-speed separations using ATPT. Normal speed (ATPT values greater than 18000 ms/peak) was found in HPLC, nano-LC, SFC, and CEC methods. Therefore, high-speed methods (ATPT values between 4000 and 18000 ms/peak) were found in UHPLC techniques, while LC × LC methods presented higher ATPT values between 1000 and 4000 ms/peak being classified as hyper-speed separations. ATPT can also be used as an optimization parameter, since older methods show higher ATPT values, while recent published papers show lower values of this metric. This behavior is justified due to the improvement of the LC methods over the years. SIGNIFICANCE This work fulfills the gap in chromatographic definitions and metrics, regarding analytical speed in one-dimensional and multidimensional liquid chromatographic techniques and shows that ATPT metrics is a robust parameter that can be used to classify the separation speed as well as a metric to evaluate the LC Method optimization. It also corrects the historical application of separation time as a metric for chromatographic speed.
Collapse
Affiliation(s)
- Tiago Schena
- Faculty of Technology, Universidade Estadual do Rio de Janeiro (UERJ), Presidente Dutra highway, km 298, Resende, (RJ), 27537-000, Brazil; LECO Instruments, Av. Das Nações Unidas, 12399 - Cj121B, São Paulo, (SP), 04578-000, Brazil.
| | - Carin von Mühlen
- Faculty of Technology, Universidade Estadual do Rio de Janeiro (UERJ), Presidente Dutra highway, km 298, Resende, (RJ), 27537-000, Brazil.
| |
Collapse
|
4
|
de Paula Lima I, Polycarpo Valle S, de Oliveira MAL, de Carvalho Marques FF, Antonio Simas Vaz F. Monolithic stationary phases preparation for use in chromatographic and electromigration techniques: the state-of-the-art. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
6
|
Bernardo-Bermejo S, Marina ML, Castro-Puyana M. A rapid electrokinetic chromatography method using short-end injection for the enantioselective separation of tryptophan. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Chiral Monolithic Silica-Based HPLC Columns for Enantiomeric Separation and Determination: Functionalization of Chiral Selector and Recognition of Selector-Selectand Interaction. Molecules 2021; 26:molecules26175241. [PMID: 34500675 PMCID: PMC8434329 DOI: 10.3390/molecules26175241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.
Collapse
|
8
|
Sun F, Bai L, Li M, Yu C, Liu H, Qiao X, Yan H. Fabrication of edge-curled petals-like covalent organic frameworks and their properties for extracting indole alkaloids from complex biological samples. J Pharm Anal 2020; 12:96-103. [PMID: 35573883 PMCID: PMC9073138 DOI: 10.1016/j.jpha.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, a functionalized covalent-organic framework (COF) was first synthesized using porphyrin as the fabrication unit and showed an edge-curled, petal-like and well-ordered structure. The synthesized COF was then introduced to prepare porous organic polymer monolithic materials (POPMs). Two composite POPM/COF monolithic materials with rod shapes, referred to as sorbent A and sorbent B, were prepared in stainless steel tubes using different monomers. Sorbents A and B exhibited relatively uniform porous structures and enhanced specific surface areas of 153.14 m2/g and 80.01 m2/g, respectively. The prepared composite monoliths were used as in-tube solid-phase extraction (SPE) sorbents combined with HPLC for the on-line extraction and quantitative analytical systems. Indole alkaloids (from Catharanthus roseus G. Don and Uncaria rhynchophylla (Miq.) Miq. Ex Havil.) contained in mouse plasma were extracted and quantitatively analyzed using the online system. The two composite multifunctional monoliths showed excellent clean-up ability for complex biological matrices, as well as superior selectivity for target indole alkaloids. Method validation showed that the RSD values of the repeatability (n=6) were ≤ 3.46%, and the accuracy expressed by the spiked recoveries was in the ranges of 99.38%–100.91% and 96.39%–103.50% for vinca alkaloids and Uncaria alkaloids, respectively. Furthermore, sorbents A and B exhibited strong reusability, with RSD values ≤ 5.32%, which were based on the peak area of the corresponding alkaloids with more than 100 injections. These results indicate that the composite POPM/COF rod-shaped monoliths are promising media as SPE sorbents for extracting trace compounds in complex biological samples. Edge-curled petals-like COF was synthesized using porphyrin as the fabrication unit. In-tube monolithic POMP/COF composite SPE sorbents with rod-shape were fabricated. The in-tube sorbents were used to extract hence indole alkaloids from complex samples. The two homemade sorbents show strong reusability of more than 100 times.
Collapse
Affiliation(s)
- Fanrong Sun
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Mingxue Li
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Changqing Yu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding, 071002, Hebei, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
- Corresponding author. College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
9
|
Sensitive Electrochemical Detection of Tryptophan Using a Hemin/G-Quadruplex Aptasensor. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we design an electrochemical aptasensor with an enzyme-free amplification method to detect tryptophan (Trp). For the amplified electrochemical signal, the screen-printed electrode was modified with dendritic gold nanostructures (DGNs)/magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid (Fe3O4@SiO2/DABCO) to increase the surface area as well as electrical conductivity, and the hemin/G-quadruplex aptamer was immobilized. The presence of Trp improved the catalytic characteristic of hemin/G-quadruplex structure, which resulted in the efficient catalysis of the H2O2 reduction. As the concentration of Trp increased, the intensity of H2O2 reduction signal increased, and Trp was measured in the range of 0.007–200 nM with a detection limit of 0.002 nM. Compared with previous models, our sensor displayed higher detection sensitivity and specificity for Trp. Furthermore, we demonstrated that the proposed aptasensor successfully determined Trp in human serum samples, thereby proving its practical applicability.
Collapse
|