1
|
Mancini M, Cerny MEV, Cardoso NS, Verissimo G, Maluf SW. Grape Seed Components as Protectors of Inflammation, DNA Damage, and Cancer. Curr Nutr Rep 2023; 12:141-150. [PMID: 36692807 DOI: 10.1007/s13668-023-00460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Oxidative stress is related to the pathogenesis of several chronic diseases, including inflammatory processes. Free radicals excess increase not only oxidative stress but also genomic instability. Polyphenols are non-enzymatic antioxidants that act as a defense barrier against free radicals and non-radical oxidants. The purpose of this article was to review published articles relating dietary polyphenols contained in grape seed proanthocyanidin extracts with its potential for reversing DNA damage. RECENT FINDINGS Proanthocyanidin components exert pleiotropic actions having several biological, biochemical, and significant pharmacological effects and showed the ability to reduce cytotoxicity and genotoxicity. Grape seed proanthocyanidin extracts showed the ability to reduce cytotoxicity and genotoxicity through the comet assay and the micronucleus technique.
Collapse
Affiliation(s)
- Melissa Mancini
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Eduarda Vieira Cerny
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Natali Silva Cardoso
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Sharbel Weidner Maluf
- Cytogenetics and Genome Stability Laboratory, University Hospital and Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
3
|
Du J, Deng T, Cao B, Wang Z, Yang M, Han J. The application and trend of ultra-weak photon emission in biology and medicine. Front Chem 2023; 11:1140128. [PMID: 36874066 PMCID: PMC9981976 DOI: 10.3389/fchem.2023.1140128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ultra-weak bioluminescence, also known as ultra-weak photon emission (UPE), is one of the functional characteristics of biological organisms, characterized by specialized, low-energy level luminescence. Researchers have extensively studied UPE for decades, and the mechanisms by which UPE is generated and its properties have been extensively investigated. However, there has been a gradual shift in research focus on UPE in recent years toward exploring its application value. To better understand the application and trend of UPE in biology and medicine, we have conducted a review of relevant articles in recent years. Among the several topics covered in this review is UPE research in biology and medicine (including traditional Chinese medicine), primarily focused on UPE as a promising non-invasive tool for diagnosis and oxidative metabolism monitoring as well as a potential tool for traditional Chinese medicine research.
Collapse
Affiliation(s)
- Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Zapata F, Pastor-Ruiz V, Ortega-Ojeda F, Montalvo G, Ruiz-Zolle AV, García-Ruiz C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states - A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112141. [PMID: 33540236 DOI: 10.1016/j.jphotobiol.2021.112141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
In the knowledge that human ultra-weak photon emission (UPE) is mainly due to the metabolic oxidative stress processes that the skin cells undergo in the presence of reactive oxygen species (ROS), external stressors (like UV radiation), but also internal stressors (like diseases or brain activity) might strongly influence the UPE. This manuscript revises the scientific advances focused on the influence of internal factors on the human UPE. According to literature, the UPE seems to be influenced by some diseases (including diabetes, hemiparesis, protoporphyria, or a typical cold), and even by the cerebral intention/relaxation (brain activity/meditation). These allow to consider UPE as a natural and promising non-invasive spectroscopic tool for helping during the diagnosis of a variety of illnesses or stress- / mood-state disorders. Nonetheless, further research is required for answering some still unresolved controversial points.
Collapse
Affiliation(s)
- Félix Zapata
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Victoria Pastor-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Fernando Ortega-Ojeda
- Department of Physics and Mathematics, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | | | - Carmen García-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
5
|
Philips N, Richardson R, Siomyk H, Bynum D, Gonzalez S. “Skin cancer, polyphenols, and oxidative stress” or Counteraction of oxidative stress, inflammation, signal transduction pathways, and extracellular matrix remodeling that mediate skin carcinogenesis by polyphenols. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin. Sci Rep 2020; 10:21667. [PMID: 33303911 PMCID: PMC7728812 DOI: 10.1038/s41598-020-78884-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is associated with photoaging of the skin as well as with skin cancer, and is therefore, critical to monitor. Ultraweak photon emission (UPE) is extremely weak light generated during the oxidative process in the living body and has been used as a non-invasive and label-free marker for the evaluation of oxidative stress. However, the mechanism of UPE generation is not clear. Therefore, we aimed to elucidate the molecular mechanism underlying UPE generation by analyzing the spectra of UPE generated from biomolecules in the skin during ultraviolet A (UVA) exposure. The spectra of UVA-induced UPE generated from linoleic acid, linolenic acid, elastin, phospholipids, and 5,6-dihydroxyindole-2-carboxylic acid were measured, and the spectrum of human skin tissue was also obtained. The spectral patterns varied for the different biomolecules and the peaks were distinct from those of the skin tissue. These results suggested that the UPE generated from skin tissue is a collection of light emitted by biomolecules. Moreover, we proposed that UPE is generated through a photosensitization reaction and energy transfer. The identified characteristic spectral patterns of UPE can be useful to elucidate UVA-induced oxidative stress in the skin, with implications for prevention and treatment of photoaging and skin diseases.
Collapse
|
7
|
Kent JB, Jin L, Li XJ. Quantifying Biofield Therapy through Biophoton Emission in a Cellular Model. JOURNAL OF SCIENTIFIC EXPLORATION : A PUBLICATION OF THE SOCIETY FOR SCIENTIFIC EXPLORATION 2020; 34:434-454. [PMID: 33223611 PMCID: PMC7676814 DOI: 10.31275/20201691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Biofield therapy has shown positive results over a broad range of pathology from preclinical research to human studies. However, biofield therapy investigation is limited by an inability to quantify the therapeutic effect. This study aimed to measure the effects Reiki had on mice intervertebral disc (IVD) cells compared with sham and to quantify Reiki by measuring photon emission. We treated mice IVD cells with ten-minute sessions of either Reiki or sham on three successive days. During treatment, we placed the cells in a specifically constructed box with an installed photomultiplier tube (PMT). Reiki significantly increased the photon emission of the cells post-treatment compared with Reiki pre-treatment and sham (p < 0.05). Real time PCR (RT PCR) showed an increase in collagen II and aggrecan (p < 0.05). We present a means to quantify biofield therapy by measuring the post-treatment photon emission. We concurrently demonstrate Reiki's effect on the anabolic healing response.
Collapse
Affiliation(s)
- Jeremy B Kent
- Department of Family Medicine, University of Virginia Athletics, University of Virginia Health System, Charlottesville, Virginia USA
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia
| | - Xudong Joshua Li
- Department of Orthopaedic Surgery, University of Virginia Health System
| |
Collapse
|
8
|
Gallep CM, Barlow PW, Burgos RCR, van Wijk EPA. Simultaneous and intercontinental tests show synchronism between the local gravimetric tide and the ultra-weak photon emission in seedlings of different plant species. PROTOPLASMA 2017; 254:315-325. [PMID: 26820150 DOI: 10.1007/s00709-016-0947-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
In order to corroborate the hypothesis that variations in the rate of spontaneous ultra-weak photon emission (UPE) from germinating seedlings are related to local variations of the lunisolar tidal force, a series of simultaneous tests was performed using the time courses of UPE collected from three plant species-corn, wheat and sunflower-and also from wheat samples whose grains were transported between continents, from Brazil to The Netherlands and vice versa. All tests which were run in parallel showed coincident inflections within the UPE time courses not only between seedlings of the same species but also between the different species. In most cases, the UPE inflections were synchronised with the turning points in the local gravimetric tidal variation. Statistical tests using the local Pearson correlation verified these coincidences in the two time series. The results therefore support the hypothesis of a relationship between UPE emissions and, in the oscillations, the local gravimetric tide. This applies to both the emissions from seedlings of different species and to the seedlings raised from transported grain samples of the same species.
Collapse
Affiliation(s)
| | - Peter W Barlow
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Rosilene C R Burgos
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
| | - Eduard P A van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands
- Meluna Research, Geldermalsen, The Netherlands
| |
Collapse
|
9
|
Zhao X, van Wijk E, Yan Y, van Wijk R, Yang H, Zhang Y, Wang J. Ultra-weak photon emission of hands in aging prediction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:529-534. [PMID: 27472904 DOI: 10.1016/j.jphotobiol.2016.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
Aging has been one of the several topics intensely investigated during recent decades. More scientists have been scrutinizing mechanisms behind the human aging process. Ultra-weak photon emission is known as one type of spontaneous photon emission that can be detected with a highly sensitive single photon counting photomultiplier tube (PMT) from the surface of human bodies. It may reflect the body's oxidative damage. Our aim was to examine whether ultra-weak photon emission from a human hand is able to predict one's chronological age. Sixty subjects were recruited and grouped by age. We examined four areas of each hand: palm side of fingers, palm side of hand, dorsum side of fingers, and dorsum side of hand. Left and right hand were measured synchronously with two independent PMTs. Mean strength and Fano factor values of photon counts were utilized to compare the UPE patterns of males and females of different age groups. Subsequently, we utilized UPE data from the most sensitive PMT to develop an age prediction model. We randomly picked 49 subjects to construct the model, whereas the remaining 11 subjects were utilized for validation. The results demonstrated that the model was a good regression compared to the observed values (Pearson's r=0.6, adjusted R square=0.4, p=9.4E-7, accuracy=49/60). Further analysis revealed that the average difference between the chronological age and predicted age was only 7.6±0.8years. It was concluded that this fast and non-invasive photon technology is sufficiently promising to be developed for the estimation of biological aging.
Collapse
Affiliation(s)
- Xin Zhao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Eduard van Wijk
- Meluna Research, Geldermalsen, The Netherlands; Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
| | - Yu Yan
- Meluna Research, Geldermalsen, The Netherlands
| | - Roeland van Wijk
- Meluna Research, Geldermalsen, The Netherlands; Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Jian Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.
| |
Collapse
|
10
|
Kobayashi M, Iwasa T, Tada M. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:186-90. [PMID: 27082276 DOI: 10.1016/j.jphotobiol.2016.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
Ultra-weak photon emission (UPE), often designated as biophoton emission, is generally observed in a wide range of living organisms, including human beings. This phenomenon is closely associated with reactive oxygen species (ROS) generated during normal metabolic processes and pathological states induced by oxidative stress. Application of UPE extracting the pathophysiological information has long been anticipated because of its potential non-invasiveness, facilitating its diagnostic use. Nevertheless, its weak intensity and UPE mechanism complexity hinder its use for practical applications. Spectroscopy is crucially important for UPE analysis. However, filter-type spectroscopy technique, used as a conventional method for UPE analysis, intrinsically limits its performance because of its monochromatic scheme. To overcome the shortcomings of conventional methods, the authors developed a polychromatic spectroscopy system for UPE spectral pattern analysis. It is based on a highly efficient lens systems and a transmission-type diffraction grating with a highly sensitive, cooled, charge-coupled-device (CCD) camera. Spectral pattern analysis of the human body was done for a fingertip using the developed system. The UPE spectrum covers the spectral range of 450-750nm, with a dominant emission region of 570-670nm. The primary peak is located in the 600-650nm region. Furthermore, application of UPE source exploration was demonstrated with the chemiluminescence spectrum of melanin and coexistence with oxidized linoleic acid.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577, Japan.
| | - Torai Iwasa
- Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577, Japan
| | - Mika Tada
- Center for General Education, Tohoku Institute of Technology, Sendai 982-8577, Japan
| |
Collapse
|
11
|
Wang X, Yang C, Ihsan A, Luo X, Guo P, Cheng G, Dai M, Chen D, Liu Z, Yuan Z. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells. Toxicology 2016; 341-343:1-16. [PMID: 26802905 DOI: 10.1016/j.tox.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chunhui Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xun Luo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Pu Guo
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Kobayashi K, Okabe H, Kawano S, Hidaka Y, Hara K. Biophoton emission induced by heat shock. PLoS One 2014; 9:e105700. [PMID: 25153902 PMCID: PMC4143285 DOI: 10.1371/journal.pone.0105700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/28/2014] [Indexed: 01/04/2023] Open
Abstract
Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.
Collapse
Affiliation(s)
- Katsuhiro Kobayashi
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Hirotaka Okabe
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Shinya Kawano
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Yoshiki Hidaka
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| | - Kazuhiro Hara
- The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan
| |
Collapse
|
13
|
Insect spontaneous ultraweak photon emission as an indicator of insecticidal compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:79-84. [PMID: 25108203 DOI: 10.1016/j.jphotobiol.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/06/2014] [Accepted: 07/17/2014] [Indexed: 11/20/2022]
Abstract
The influence of beta-cypermethrin, a commercial insecticide, and Cicuta virosa L. var. latisecta Celak (Umbelliferae:Cicutal), an insecticidal plant, on the spontaneous ultraweak photon emissions from larvae of Spodoptera litura Fabricius and Zophobas morio Fabricius were studied. The increased percentages of spontaneous photon emission intensities from S. litura treated with 0.1 and 1 μg/ml beta-cypermethrin were both lower than those of the control in the 24 post-treatment hours, remarkable difference could also be observed during the same period from Z. morio treated with beta-cypermethrin at 0.156, 0.313 and 0.625 μg/ml. The increased percentages of spontaneous photon emission intensities from the two mentioned insects treated with 10,100 and 1000 μg/ml petroleum ether fraction of C. virosa L. var. latisecta, which displayed little activity against whole insects, could also be changed noticeably. The present study indicated that change in the intensity of spontaneous ultraweak photon emission from insect could be used as a novel method for screening insecticidal compounds with very low content in plant.
Collapse
|
14
|
Prasad A, Rossi C, Lamponi S, Pospíšil P, Foletti A. New perspective in cell communication: potential role of ultra-weak photon emission. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:47-53. [PMID: 24703082 DOI: 10.1016/j.jphotobiol.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/11/2023]
Abstract
Evolution has permitted a wide range of medium for communication between two living organism varying from information transfer via chemical, direct contact or through specialized receptors. Past decades have evidenced the existence of cell-to-cell communication in living system. Several studies have demonstrated the existence of one cell system influencing the other cells by means of electromagnetic radiations investigated by the stimulation of cell division, neutrophils activation, respiratory burst induction and alteration in the developmental stages, etc. The responses were evaluated by methods such as chemiluminescence, ultra-weak photon emission, generation of free oxygen radicals, and level of thiobarbituric acid-reactive substances (TBARS). The cellular communication is hypothesized to occur via several physical phenomenon's, however the current review attempts to provide thorough information and a detailed overview of experimental results on the cell-to-cell communication observed in different living system via ultra-weak photon emission to bring a better understanding and new perspective to the phenomenon.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della, Lastruccia 3, Sesto Fiorentino, FI, Italy.
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Alberto Foletti
- Laboratory of Applied Mathematics and Physics, Department of Innovative Technologies - DTI, University of Applied Sciences of Southern Switzerland-SUPSI, Manno, Switzerland
| |
Collapse
|
15
|
Ives JA, van Wijk EPA, Bat N, Crawford C, Walter A, Jonas WB, van Wijk R, van der Greef J. Ultraweak photon emission as a non-invasive health assessment: a systematic review. PLoS One 2014; 9:e87401. [PMID: 24586274 PMCID: PMC3938423 DOI: 10.1371/journal.pone.0087401] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/29/2013] [Indexed: 01/24/2023] Open
Abstract
We conducted a systematic review (SR) of the peer reviewed scientific literature on ultraweak photon emissions (UPE) from humans. The question was: Can ultraweak photon emissions from humans be used as a non-invasive health assessment? A systematic search was conducted across eight relevant databases: PubMed/MEDLINE, BIOSIS, CINAHL, PSYCHINFO, All of Cochrane EBM databases, GIDEON, DoD Biomedical Research, and clinicaltrials.gov from database inception to October 2011. Of the 1315 studies captured by the search strategy, 56 met the inclusion criteria, out of which 1 was a RCT, 27 were CCT, and 28 were observational and descriptive studies. There were no systematic reviews/meta-analyses that fit the inclusion criteria. In this report, the authors provide an assessment of the quality of the RCT included; describe the characteristics of all the included studies, the outcomes assessed, and the effectiveness of photon emission as a potential health assessment tool. This report demonstrates that the peer reviewed literature on UPE and human UPE measurement in particular is surprisingly large. Most of the human UPE literature is of good to high quality based on our systematic evaluation. However, an evaluation tool for systematically evaluating this type of "bio-evaluation" methodology is not currently available and would be worth developing. Publications in the peer reviewed literature over the last 50 years demonstrate that the use of "off-the-shelf" technologies and well described methodologies for the detection of human photon emissions are being used on a regular basis in medical and research settings. The overall quality of this literature is good and the use of this approach for determining inflammatory and oxidative states of patients indicate the growing use and value of this approach as both a medical and research tool.
Collapse
Affiliation(s)
- John A. Ives
- Samueli Institute, Alexandria, Virginia, United States of America
| | - Eduard P. A. van Wijk
- Netherlands Metabolomics Centre, Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Meluna Research, Amersfoort, The Netherlands
| | - Namuun Bat
- Samueli Institute, Alexandria, Virginia, United States of America
| | - Cindy Crawford
- Samueli Institute, Alexandria, Virginia, United States of America
| | - Avi Walter
- Samueli Institute, Alexandria, Virginia, United States of America
| | - Wayne B. Jonas
- Samueli Institute, Alexandria, Virginia, United States of America
| | - Roeland van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Meluna Research, Amersfoort, The Netherlands
| | - Jan van der Greef
- Netherlands Metabolomics Centre, Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands
- Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| |
Collapse
|
16
|
Philips N, Siomyk H, Bynum D, Gonzalez S. Skin Cancer, Polyphenols, and Oxidative Stress. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Tang R, Dai J. Biophoton signal transmission and processing in the brain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:71-5. [PMID: 24461927 DOI: 10.1016/j.jphotobiol.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
18
|
Van Wijk R, Van Wijk EPA, van Wietmarschen HA, van der Greef J. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: a review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:39-46. [PMID: 24359911 DOI: 10.1016/j.jphotobiol.2013.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/07/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
Abstract
For decades, the relationship between ultra-weak photon emission (UPE) and the health state of the body is being studied. With the advent of systems biology, attention shifted from the association between UPE and reactive oxygen species towards UPE as a reflection of changed metabolic networks. Essential for this shift in thinking is the development of novel photon count statistical methods that more reflect the dynamics of the systems organization. Additionally, efforts to combine and correlate UPE data with other types of measurements such as metabolomics be key to understand the complexity of the human body. This review describes the history and developments in the area of human UPE research from a technical - methodological perspective, an experimental perspective and a theoretical perspective. There is ample evidence that human UPE research will allow a better understanding of the body as a complex dynamical system. The future lies in the further development of an integrated UPE and metabolomics platform for a personalized monitoring of changes of the system towards health or disease.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands.
| | - Eduard P A Van Wijk
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Meluna Research, Geldermalsen, The Netherlands; Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands; Samueli Institute, 1737 King Street, Suite 600, Alexandria, VA 22314, USA
| | - Herman A van Wietmarschen
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; TNO Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Jan van der Greef
- Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living Systems, Leiden University, Leiden, The Netherlands; Division of Analytical Biosciences, LACDR, Leiden University, Leiden, The Netherlands; TNO Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| |
Collapse
|
19
|
Ou-Yang H. The application of ultra-weak photon emission in dermatology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:63-70. [PMID: 24275519 DOI: 10.1016/j.jphotobiol.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
Ultra-weak photo emission (UPE) is a phenomenon closely associated with life and provides us a rare window to look into oxidative reactions in life directly without the aid of other agents. Dozens of independent studies have investigated UPE in skin in the last 2 decades. Skin serves as a convenient target for the application of UPE. As the outmost layer of our body, skin is also subjected to the influences from environmental factors such as ultraviolet light. Therefore UPE measurement can help us better understand the interaction between skin and the outside world. A variety of dermatological interventions may benefit from UPE studies. In particular, those treatments aiming to manage the oxidative status of the skin can be monitored directly by UPE measurements. In recent years, UPE has already been used as a valuable in vivo tool to assist the selection of better skin care ingredients and products. The knowledge gained by UPE studies of skin may also help generate new insights and new targets for future treatments. This review emphasizes in vivo and clinical measurement of UPE in skin. The applications of UPE in skin research related to antioxidants and sunscreens are discussed.
Collapse
Affiliation(s)
- Hao Ou-Yang
- Johnson & Johnson Consumer Company Worldwide, 199 Grandview Road, Skillman, NJ 08558, United States.
| |
Collapse
|
20
|
Attributes characterizing spontaneous ultra-weak photon signals of human subjects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 129:6-16. [PMID: 24141288 DOI: 10.1016/j.jphotobiol.2013.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/07/2023]
Abstract
Sixty visible range photon signals spontaneously emitted from the dorsal side of both hands of fifteen human subjects are analyzed with the aim of finding their attributes. The signals are of 30 min duration and detected in bins of 50 ms by two synchronized photo multipliers sensitive in the range (290-630 nm). Each signal is a time series of 36,000 elements. The attributes of its signal are determined from the statistical properties of time series. The mean and variance of time series determine the attributes signal strength and intercept (p₀) and slope (p₁) of the Fano Factor curve. The photon count distribution of the time series determines squeezed state parameters |α|, r, θ and ϕ, squeezed state index (SSI), and sum of the squares of residue (SSR). The correlation between simultaneously detected signals determines intercept (c₀) and slope (c₁) of their correlation curve. The variability of attributes is studied by calculating them in smaller intervals covering the entire signal. The profile of attribute at 12 sites in a subject is more informative and biologically relevant.
Collapse
|
21
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
22
|
Chemiluminescence from UVA–exposed skin: Separating photo-induced chemiluminescence from photophysical light emission. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:140-6. [DOI: 10.1016/j.jphotobiol.2012.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 01/17/2023]
|
23
|
Prasad A, Pospíšil P. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:085004. [PMID: 23224187 DOI: 10.1117/1.jbo.17.8.085004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.
Collapse
Affiliation(s)
- Ankush Prasad
- Palacký University, Faculty of Science, Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | |
Collapse
|
24
|
Petersen AB, Philipsen PA, Wulf HC. An explorative study of non-invasive ultra-weak photon emission and the anti-oxidative influence of oral zinc sulphate in light-sensitive patients with erythropoietic protoporphyria. Skin Res Technol 2011; 18:405-12. [DOI: 10.1111/j.1600-0846.2011.00586.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 01/04/2023]
Affiliation(s)
- Anita Birgit Petersen
- Department of Dermatology; Copenhagen University Hospital; Bispebjerg Hospital; Copenhagen; Denmark
| | - Peter Alshede Philipsen
- Department of Dermatology; Copenhagen University Hospital; Bispebjerg Hospital; Copenhagen; Denmark
| | - Hans Christian Wulf
- Department of Dermatology; Copenhagen University Hospital; Bispebjerg Hospital; Copenhagen; Denmark
| |
Collapse
|
25
|
Prasad A, Pospišil P. Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. JOURNAL OF BIOPHOTONICS 2011; 4:840-849. [PMID: 22012922 DOI: 10.1002/jbio.201100073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
In the human skin, reactive oxygen species (ROS) produced continuously during oxidative metabolic processes (cellular respiration, oxidative burst) are essential for various cellular processes such as defense against infection, cellular signaling and apoptosis. On the other hand, when the formation of ROS exceeds a capacity of the non-enzymatic and the enzymatic antioxidant defense system, ROS cause the damage to the human skin known to initiate premature skin aging and skin cancer. In this study, two-dimensional spontaneous ultra-weak photon emission from the human skin has been measured using a highly sensitive charged coupled device (CCD) camera. It is demonstrated here that two-dimensional ultra-weak photon emission from the human skin increases with the topical application of exogenous ROS in the following order: hydrogen peroxide (H₂O₂) < superoxide anion radical (O₂•⁻) < hydroxyl radical (HO•). We propose here that the two-dimensional ultra-weak photon emission can be used as a non-invasive tool for the spatial and temporal monitoring of oxidative stress in the human skin.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | |
Collapse
|