1
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
2
|
Mould RR, Mackenzie AM, Kalampouka I, Nunn AVW, Thomas EL, Bell JD, Botchway SW. Ultra weak photon emission-a brief review. Front Physiol 2024; 15:1348915. [PMID: 38420619 PMCID: PMC10899412 DOI: 10.3389/fphys.2024.1348915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cells emit light at ultra-low intensities: photons which are produced as by-products of cellular metabolism, distinct from other light emission processes such as delayed luminescence, bioluminescence, and chemiluminescence. The phenomenon is known by a large range of names, including, but not limited to, biophotons, biological autoluminescence, metabolic photon emission and ultraweak photon emission (UPE), the latter of which shall be used for the purposes of this review. It is worth noting that the photons when produced are neither 'weak' nor specifically biological in characteristics. Research of UPE has a long yet tattered past, historically hamstrung by a lack of technology sensitive enough to detect it. Today, as technology progresses rapidly, it is becoming easier to detect and image these photons, as well as to describe their function. In this brief review we will examine the history of UPE research, their proposed mechanism, possible biological role, the detection of the phenomenon, and the potential medical applications.
Collapse
Affiliation(s)
- Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alasdair M Mackenzie
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V W Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
- The Guy Foundation, Beaminster, United Kingdom
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W Botchway
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| |
Collapse
|
3
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Vieira WF, Gersten M, Caldieraro MAK, Cassano P. Photobiomodulation for Major Depressive Disorder: Linking Transcranial Infrared Light, Biophotons and Oxidative Stress. Harv Rev Psychiatry 2023; 31:124-141. [PMID: 37171473 DOI: 10.1097/hrp.0000000000000363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Incompletely treated major depressive disorder (MDD) poses an enormous global health burden. Conventional treatment for MDD consists of pharmacotherapy and psychotherapy, though a significant number of patients do not achieve remission with such treatments. Transcranial photobiomodulation (t-PBM) is a promising novel therapy that uses extracranial light, especially in the near-infrared (NIR) and red spectra, for biological and therapeutic effects. The aims of this Review are to evaluate the current clinical and preclinical literature on t-PBM in MDD and to discuss candidate mechanisms for effects of t-PBM in MDD, with specific attention to biophotons and oxidative stress. A search on PubMed and ClinicalTrials.gov identified clinical and preclinical studies using t-PBM for the treatment of MDD as a primary focus. After a systematic screening, only 19 studies containing original data were included in this review (9 clinical and 10 preclinical trials). Study results demonstrate consensus that t-PBM is a safe and potentially effective treatment; however, varying treatment parameters among studies complicate definitive conclusions about efficacy. Among other mechanisms of action, t-PBM stimulates the complex IV of the mitochondrial respiratory chain and induces an increase in cellular energy metabolism. We suggest that future trials include biological measures to better understand the mechanisms of action of t-PBM and to optimize treatment efficiency. Of particular interest going forward will be studying potential effects of t-PBM-an external light source on the NIR spectra-on neural circuitry implicated in depression.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- From Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA (Drs. Vieira, Gersten, Cassano); Department of Psychiatry, Harvard Medical School, Boston, MA (Drs. Vieira, Cassano); Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Sao Paulo, SP, Brazil (Dr. Vieira); Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil (Dr. Caldieraro); Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil (Dr. Caldieraro)
| | | | | | | |
Collapse
|
5
|
Esmaeilpour T, Lotfealian A, Anvari M, Namavar M, Karbalaei N, Shahedi A, Bokkon I, Salari V, Oblak D. Effect of methamphetamine on ultraweak photon emission and level of reactive oxygen species in male rat brain. Neurosci Lett 2023; 801:137136. [PMID: 36804571 DOI: 10.1016/j.neulet.2023.137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
All living cells, including neurons, generate ultra-weak photon emission (UPE) during biological activity, and in particular, in the brain, it has been shown that UPE is correlated with neuronal activity and associated metabolic processes. Various intracellular factors, as well as external factors, can reduce or increase the intensity of UPE. In this study, we have used Methamphetamine (METH) as one potentially effective external factor, which is a substance that has the property of stimulating the central nervous system. METH can impair mitochondrial function by causing toxicity via various pathways, including an increase in the number of mitochondria, hyperthermia, the increased metabolic activity of the brain, and the production of glutamate and excess calcium. In addition to mitochondrial dysfunction, METH alters cellular homeostasis, leading to cell damage and the production of excess ROS. The aim of this study is to measure and compare the UPE intensity and reactive oxygen species (ROS) levels of the prefrontal, motor, and visual cortex before and after METH administration. Twenty male rats were randomly assigned to two groups, the control, and METH groups. In the control group, 2 h after injection of normal saline and without any intervention, and in the experimental group 2 h after IP injection of 20 mg/kg METH, sections were prepared from three areas: prefrontal, motor, and V1-V2 cortex, which were used to evaluate the emission of UPE using a photomultiplier tube (PMT) device and to evaluate the amount of ROS. The results showed that the amount of ROS and UPE in the experimental group in all three areas significantly increased compared to the control group. So, METH increases UPE and ROS in the prefrontal, motor, and visual regions, and there is a direct relationship between UPE intensity and ROS production. Therefore, UPE may be used as a dynamic reading tool to monitor oxidative metabolism in physiological processes related to ROS and METH research. Also, the results of this experiment may create a new avenue to test the hypothesis that the excess in UPE generation may lead to the phenomenon of phosphene and visual hallucinations.
Collapse
Affiliation(s)
- Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Lotfealian
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Istvan Bokkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Vahid Salari
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.
| | - Daniel Oblak
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
7
|
Salari V, Rodrigues S, Saglamyurek E, Simon C, Oblak D. Are Brain-Computer Interfaces Feasible With Integrated Photonic Chips? Front Neurosci 2022; 15:780344. [PMID: 35069099 PMCID: PMC8777191 DOI: 10.3389/fnins.2021.780344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The present paper examines the viability of a radically novel idea for brain-computer interface (BCI), which could lead to novel technological, experimental, and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine. In closed loop, the machine can stimulate the brain with appropriate signals. In recent years, it has been shown that there is some ultraweak light emission from neurons within or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling pieces of evidence are beginning to emerge that UPE may well play an informational role in neuronal functions. In fact, several experiments point to a direct correlation between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the interior surface of the skull may enable a new form of extraction of the relevant features from the UPE signals. In the current technology landscape, photonic technologies are advancing rapidly and poised to overtake many electrical technologies, due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some very major conjectures, which need to be experimentally verified, and therefore we discuss the controversial parts, feasibility of technology and limitations, and potential impact of this envisaged technology if successfully implemented in the future.
Collapse
Affiliation(s)
- Vahid Salari
- Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
- Quantum Biology Laboratory, Howard University, Washington, DC, United States
| | | | - Erhan Saglamyurek
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Cell-cell death communication by signals passing through non-aqueous environments: A reply. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Piao D. On the stress-induced photon emission from organism: I, will the scattering-limited delay affect the temporal course? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Császár N, Scholkmann F, Salari V, Szőke H, Bókkon I. Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus. Rev Neurosci 2018; 27:291-9. [PMID: 26544101 DOI: 10.1515/revneuro-2015-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022]
Abstract
Phosphenes are experienced sensations of light, when there is no light causing them. The physiological processes underlying this phenomenon are still not well understood. Previously, we proposed a novel biopsychophysical approach concerning the cause of phosphenes based on the assumption that cellular endogenous ultra-weak photon emission (UPE) is the biophysical cause leading to the sensation of phosphenes. Briefly summarized, the visual sensation of light (phosphenes) is likely to be due to the inherent perception of UPE of cells in the visual system. If the intensity of spontaneous or induced photon emission of cells in the visual system exceeds a distinct threshold, it is hypothesized that it can become a conscious light sensation. Discussing several new and previous experiments, we point out that the UPE theory of phosphenes should be really considered as a scientifically appropriate and provable mechanism to explain the physiological basis of phosphenes. In the present paper, we also present our idea that some experiments may support that the cortical phosphene lights are due to the glutamate-related excess UPE in the occipital cortex.
Collapse
|
11
|
Bókkon I, Scholkmann F, Salari V, Császár N, Kapócs G. Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth. Rev Neurosci 2018; 27:411-9. [PMID: 26656799 DOI: 10.1515/revneuro-2015-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/25/2015] [Indexed: 11/15/2022]
Abstract
In 1963, it was suggested [Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703-710.] that molecular cues can direct the development of orderly connections between the eye and the brain (the "chemoaffinity hypothesis"). In the same year, the amazing degree of functional accuracy of the visual pathway in the absence of any external light/photon perception prior to birth [Wiesel, T.N and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003-1017.] was discovered. These recognitions revealed that the wiring of the visual system relies on innate cues. However, how the eye-specific retinogeniculate pathway can be developed before birth without any visual experience is still an unresolved issue. In the present paper, we suggest that Müller cells (functioning as optical fibers), Müller cell cone (i.e. the inner half of the foveola that is created of an inverted cone-shaped zone of Müller cells), discrete retinal noise of rods, and intrinsically photosensitive retinal ganglion cells might have key functions by means of retinal spontaneous ultraweak photon emission in the development of eye-specific retinogeniculate pathways prior to birth.
Collapse
|
12
|
Kurian P, Obisesan TO, Craddock TJA. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 175:109-124. [PMID: 28865316 PMCID: PMC5610651 DOI: 10.1016/j.jphotobiol.2017.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a pathological hallmark of neurodegenerative tauopathic disorders such as Alzheimer's disease and Parkinson's disease-related dementia, which are characterized by altered forms of the microtubule-associated protein (MAP) tau. MAP tau is a key protein in stabilizing the microtubule architecture that regulates neuron morphology and synaptic strength. When MAP tau is degraded in tauopathic disorders, neuron dysfunction results. The precise role of reactive oxygen species (ROS) in the tauopathic disease process, however, is poorly understood. Classically, mitochondrial dysfunction has been viewed as the major source of oxidative stress and has been shown to precede tau and amyloid pathology in various dementias, but the exact mechanisms are not clear. It is known that the production of ROS by mitochondria can result in ultraweak photon emission (UPE) within cells. While of low intensity, surrounding proteins within the cytosol can still absorb these energetic photons via aromatic amino acids (e.g., tryptophan and tyrosine). One likely absorber of these photons is the microtubule cytoskeleton, as it forms a vast network spanning neurons, is highly co-localized with mitochondria, and shows a high density of aromatic amino acids. Functional microtubule networks may traffic this ROS-generated endogenous photon energy for cellular signaling, or they may serve as dissipaters/conduits of such energy to protect the cell from potentially harmful effects. Experimentally, after in vitro exposure to exogenous photons, microtubules have been shown to reorient and reorganize in a dose-dependent manner with the greatest effect being observed around 280nm, in the tryptophan and tyrosine absorption range. In this paper, recent modeling efforts based on ambient temperature experiment are presented, showing that tubulin polymers can feasibly absorb and channel these photoexcitations via resonance energy transfer, on the order of dendritic length scales and neuronal fine structure. Since microtubule networks are compromised in tauopathic diseases such as Alzheimer's and Parkinson's dementias, patients with these illnesses would be unable to support effective channeling of these photons for signaling or dissipation. Consequent emission surplus due to increased UPE production or decreased ability to absorb and transfer may lead to increased cellular oxidative damage, thus hastening the neurodegenerative process.
Collapse
Affiliation(s)
- P Kurian
- National Human Genome Center, Howard University College of Medicine, Washington, DC 20060, USA; Department of Medicine, Howard University College of Medicine, Washington, DC 20060, USA; Computational Physics Laboratory, Howard University, Washington, DC 20059, USA.
| | - T O Obisesan
- Georgetown-Howard Universities Center for Clinical and Translational Science Clinical Research Unit, Howard University College of Medicine, Washington, DC 20060, USA
| | - T J A Craddock
- Department of Psychology & Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Department of Computer Science, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
13
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
14
|
Salari V, Rahnama M, Tuszynski JA. Dissipationless Transfer of Visual Information From Retina to the Primary Visual Cortex in the Human Brain. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Recently, the experiments on photosynthetic systems via “femto-second laser spectroscopy” methods have indicated that a “quantum-coherence” in the system causes a highly efficient transfer of energy to the “reaction center” (efficiency is approximately equal to 100%). A recent experiment on a single neuron has indicated that it can conduct light. Also, a re-emission of light from both photosynthetic systems and single neurons has been observed, which is called “delayed luminescence”. This can be supposed as a possibility for dissipationless transfer of visual information to the human brain. In addition, a long-range Fröhlich coherence in microtubules can be a candidate for efficient transfer of light through “noisy” and complex structures of the human brain. From an informational point of view it is a legitimate question to ask how human brain can receive subtle external quantum information of photons intact when photons are in a quantum superposition and pass through very noisy and complex pathways from the eye to the brain? Here, we propose a coherent model in which quantum states of photons can be rebuilt in the human brain.
Collapse
|
15
|
Kapócs G, Scholkmann F, Salari V, Császár N, Szőke H, Bókkon I. Possible role of biochemiluminescent photons for lysergic acid diethylamide (LSD)-induced phosphenes and visual hallucinations. Rev Neurosci 2017; 28:77-86. [PMID: 27732562 DOI: 10.1515/revneuro-2016-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractToday, there is an increased interest in research on lysergic acid diethylamide (LSD) because it may offer new opportunities in psychotherapy under controlled settings. The more we know about how a drug works in the brain, the more opportunities there will be to exploit it in medicine. Here, based on our previously published papers and investigations, we suggest that LSD-induced visual hallucinations/phosphenes may be due to the transient enhancement of bioluminescent photons in the early retinotopic visual system in blind as well as healthy people.
Collapse
Affiliation(s)
- Gábor Kapócs
- 1Social Home for Psychiatric Patients, H-9970, Szentgotthard, Hungary
- 2Institute of Behavioral Sciences, Semmelweis University, H-1089, Budapest, Hungary
| | - Felix Scholkmann
- 3Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- 4Research Office for Complex Physical and Biological Systems (ROCoS), CH-8038 Zurich, Switzerland
| | - Vahid Salari
- 5Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran (Islamic Republic of)
- 6School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran (Islamic Republic of)
| | - Noémi Császár
- 7Psychoszomatic OutPatient Department, H-1037, Budapest, Hungary
- 8Gaspar Karoly University Psychological Institute, H-1091 Budapest, Hungary
| | - Henrik Szőke
- 9Doctors School of Health Sciences, University of Pécs, H-7621 Pécs, Hungary
| | - István Bókkon
- 7Psychoszomatic OutPatient Department, H-1037, Budapest, Hungary
- 10Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA 01854, United States of America
| |
Collapse
|
16
|
Murugan NJ, Karbowski LM, Persinger MA. Synergistic interactions between temporal coupling of complex light and magnetic pulses upon melanoma cell proliferation and planarian regeneration. Electromagn Biol Med 2016; 36:141-148. [PMID: 27463225 DOI: 10.1080/15368378.2016.1202838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synergisms between a physiologically patterned magnetic field that is known to enhance planarian growth and suppress proliferation of malignant cells in culture and three light emitting diode (LED) generated visible wavelengths (blue, green, red) upon planarian regeneration and melanoma cell numbers were discerned. Five days of hourly exposures to either a physiologically patterned (2.5-5.0 μT) magnetic field, one of three wavelengths (3 kLux) or both treatments simultaneously indicated that red light (680 nm), blue light (470 nm) or the magnetic field significantly facilitated regeneration of planarian compared to sham field exposed planarian. Presentation of both light and magnetic field conditions enhanced the effect. Whereas the blue and red light diminished the growth of malignant (melanoma) cells, the effect was not as large as that produced by the magnetic field. Only the paired presentation of the blue light and magnetic field enhanced the suppression. On the other hand, the changes following green light (540 nm) exposure did not differ from the control condition and green light presented with the magnetic field eliminated its effects for both the planarian and melanoma cells. These results indicate specific colors affect positive adaptation that is similar to weak, physiologically patterned frequency modulated (8-24 Hz) magnetic fields and that the two forms of energy can synergistically summate or cancel.
Collapse
Affiliation(s)
- Nirosha J Murugan
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| | - Lukasz M Karbowski
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| | - Michael A Persinger
- a Biomolecular Sciences Program, Department of Behavioural Neuroscience , Laurentian University , Sudbury , Canada
| |
Collapse
|
17
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
18
|
Choi JR, Kim D, Menouar S, Sever R, Abdalla MS. Classical analysis of time behavior of radiation fields associated with biophoton signals. Technol Health Care 2016; 24 Suppl 2:S577-85. [PMID: 27163320 DOI: 10.3233/thc-161184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Propagation of photon signals in biological systems, such as neurons, accompanies the production of biophotons. The role of biophotons in a cell deserves special attention because it can be applied to diverse optical systems. OBJECTIVE This work has been aimed to investigate the time behavior of biophoton signals emitted from living systems in detail, by introducing a Hamiltonian that describes the process. The ratio of the energy loss during signal dissipation will also be investigated. METHOD To see the adiabatic properties of the biophoton signal, we introduced an adiabatic invariant of the system according to the method of its basic formulation. RESULTS The energy of the released biophoton dissipates over time in a somewhat intricate way when t is small. However, after a sufficient long time, it dissipates in proportion (1+λ_0t)^2 to where λ_0 is a constant that is relevant to the degree of dissipation. We have confirmed that the energy of the biophoton signal oscillates in a particular way while it dissipates. CONCLUSION This research clarifies the characteristics of radiation fields associated with biophotons on the basis of Hamiltonian dynamics which describes phenomenological aspects of biophotons signals.
Collapse
Affiliation(s)
- Jeong Ryeol Choi
- Department of Radiologic Technology, Daegu Health College, Daegu, Korea
| | - Daeyeoul Kim
- National Institute for Mathematical Sciences, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon, Korea
| | - Salah Menouar
- Laboratory of Optoelectronics and Compounds, Departement of Physics, Faculty of Science, University of Ferhat Abbas Setif, Setif, Algeria
| | - Ramazan Sever
- Department of Physics, Middle East Technical University, Ankara, Turkey
| | - M Sebawe Abdalla
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Salari V, Valian H, Bassereh H, Bókkon I, Barkhordari A. Ultraweak photon emission in the brain. J Integr Neurosci 2015; 14:419-29. [PMID: 26336891 DOI: 10.1142/s0219635215300012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.
Collapse
Affiliation(s)
- V Salari
- 1 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.,2 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - H Valian
- 3 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Bassereh
- 3 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - I Bókkon
- 4 Psychoszomatic OutPatient Department of the National Center for Spinal Disorders, Hungary.,5 Vision Research Institute, 25 Rita St, Lowell, MA 01854, USA
| | - A Barkhordari
- 6 Department of Physics, Graduate University of Advanced Technology, Mahan, Kerman, Iran
| |
Collapse
|
20
|
Scholkmann F. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci 2015; 14:135-53. [DOI: 10.1142/s0219635215300115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Tang R, Dai J. Biophoton signal transmission and processing in the brain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:71-5. [PMID: 24461927 DOI: 10.1016/j.jphotobiol.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
22
|
Bókkon I, Mallick BN, Tuszynski JA. Near death experiences: a multidisciplinary hypothesis. Front Hum Neurosci 2013; 7:533. [PMID: 24062655 PMCID: PMC3769617 DOI: 10.3389/fnhum.2013.00533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022] Open
Abstract
Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship.
Collapse
Affiliation(s)
- István Bókkon
- Neuroscience Department, Vision Research Institute Lowell, MA, USA
| | | | | |
Collapse
|
23
|
Persinger MA, Dotta BT, Saroka KS. Bright light transmits through the brain: Measurement of photon emissions and frequency-dependent modulation of spectral electroencephalographic power. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/wjns.2013.31002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Solutions for real values in Minkowski four-dimensional space may link macro- and micro-quantum processes in the brain. Neurosci Biobehav Rev 2012; 36:2334-8. [DOI: 10.1016/j.neubiorev.2012.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022]
|
25
|
Dotta BT, Saroka KS, Persinger MA. Increased photon emission from the head while imagining light in the dark is correlated with changes in electroencephalographic power: support for Bókkon's biophoton hypothesis. Neurosci Lett 2012; 513:151-4. [PMID: 22343311 DOI: 10.1016/j.neulet.2012.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 11/25/2022]
Abstract
Bókkon's hypothesis that photons released from chemical processes within the brain produce biophysical pictures during visual imagery has been supported experimentally. In the present study measurements by a photomultiplier tube also demonstrated significant increases in ultraweak photon emissions (UPEs) or biophotons equivalent to about 5×10(-11)W/m(2) from the right sides of volunteer's heads when they imagined light in a very dark environment compared to when they did not. Simultaneous variations in regional quantitative electroencephalographic spectral power (μV(2)/Hz) and total energy in the range of ∼10(-12)J from concurrent biophoton emissions were strongly correlated (r=0.95). The calculated energy was equivalent to that associated with action potentials from about 10(7) cerebral cortical neurons. We suggest these results support Bókkon's hypothesis that specific visual imagery is strongly correlated with ultraweak photon emission coupled to brain activity.
Collapse
Affiliation(s)
- B T Dotta
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | | | | |
Collapse
|
26
|
Rahnama M, Tuszynski JA, Bókkon I, Cifra M, Sardar P, Salari V. Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 2012; 10:65-88. [PMID: 21425483 DOI: 10.1142/s0219635211002622] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 01/07/2023] Open
Abstract
In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation of photon guiding properties of a single neuron. We have investigated the interaction of mitochondrial biophotons with microtubules from a quantum mechanical point of view. Our theoretical analysis indicates that the interaction of biophotons and microtubules causes transitions/fluctuations of microtubules between coherent and incoherent states. A significant relationship between the fluctuation function of microtubules and alpha-EEG diagrams is elaborated on in this paper. We argue that the role of biophotons in the brain merits special attention.
Collapse
Affiliation(s)
- Majid Rahnama
- Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | | | | | | |
Collapse
|
27
|
Bókkon I, Salari V, Tuszynski JA. Emergence of intrinsic representations of images by feedforward and feedback processes and bioluminescent photons in early retinotopic areas. J Integr Neurosci 2012; 10:47-64. [PMID: 21425482 DOI: 10.1142/s0219635211002610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022] Open
Abstract
Recently, we put forward a redox molecular hypothesis involving the natural biophysical substrate of visual perception and imagery. Here, we explicitly propose that the feedback and feedforward iterative operation processes can be interpreted in terms of a homunculus looking at the biophysical picture in our brain during visual imagery. We further propose that the brain can use both picture-like and language-like representation processes. In our interpretation, visualization (imagery) is a special kind of representation i.e., visual imagery requires a peculiar inherent biophysical (picture-like) mechanism. We also conjecture that the evolution of higher levels of complexity made the biophysical picture representation of the external visual world possible by controlled redox and bioluminescent nonlinear (iterative) biochemical reactions in the V1 and V2 areas during visual imagery. Our proposal deals only with the primary level of visual representation (i.e. perceived "scene").
Collapse
Affiliation(s)
- I Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Hungary.
| | | | | |
Collapse
|
28
|
Salari V, Tuszynski J, Bokkon I, Rahnama M, Cifra M. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/329/1/012006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Dotta BT, Buckner CA, Lafrenie RM, Persinger MA. Photon emissions from human brain and cell culture exposed to distally rotating magnetic fields shared by separate light-stimulated brains and cells. Brain Res 2011; 1388:77-88. [PMID: 21396353 DOI: 10.1016/j.brainres.2011.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
Light flashes delivered to one aggregate of cells evoked increased photon emission in another aggregate of cells maintained in the dark in another room if both aggregates shared the same temporospatial configuration of changing rate, circular magnetic fields. During the presentation of the same shared circumcerebral magnetic fields increases in photon emission occurred beside the heads of human volunteers if others in another room saw light flashes. Both cellular and human photon emissions during the light flashes did not occur when the shared magnetic fields were not present. The summed energy emissions from the dark location during light stimulation to others was about 10(-11) W/m(2) and calculated to be in the order of 10(-20) J per cell which is coupled to membrane function. These results support accumulating data that under specific conditions changes in photon emissions may reflect intercellular and interbrain communications with potential quantum-like properties.
Collapse
Affiliation(s)
- Blake T Dotta
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | | | | | | |
Collapse
|
30
|
Bókkon I, Vimal RLP, Wang C, Dai J, Salari V, Grass F, Antal I. Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:192-9. [PMID: 21463953 DOI: 10.1016/j.jphotobiol.2011.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/24/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, Bókkon, Dai and Antal (2011) [10] presented the first experimental proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat's whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by non-bleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negative afterimages is related retinal mechanisms, cortical neurons have also essential contribution in the interpretation and modulation of negative afterimages.
Collapse
Affiliation(s)
- I Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|