1
|
Mishra A, Vítek P, Barták M, Mishra KB. Antarctic lichens exhibit diverse photobiont distributions and a complex regulation of non-photochemical quenching. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125810. [PMID: 39923706 DOI: 10.1016/j.saa.2025.125810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The structure, function, and molecular mechanisms of lichen survival in harsh habitats like Antarctica and Alpine localities, where environmental extremes change frequently, are highly interesting yet largely underexplored. We used high resolution microscopy, Raman spectroscopy, and chlorophyll a fluorescence to investigate the basic structure and function, i.e., intrathalline distribution and allocation of photobionts, as well as the heat dissipation process in three Antarctic lichens: Dermatocarpon polyphyllizum (DP), Umbilicaria antarctica (UA), and Leptogium puberulum (LP). Microscopic images of their transverse slices revealed visual insights into the heterogeneous distribution of photobionts within their structurally distinct thalli. Raman spectra showed shifts in the carotenoid Raman ν1(CC) band between lichens with algal (DP and UA) and cyanobacterial (LP) photobionts, and interestingly, they revealed biosynthesis of scytonemin, a UV-screening pigment, in cyanolichen LP. We found that increasing actinic irradiance has a nearly equal effect on the shape of chlorophyll fluorescence transients also during dark relaxation in lichens with algal photobionts, but it differed greatly for cyanolichen LP. The dark relaxation kinetics of non-photochemical quenching (NPQ) in experimental lichens differed significantly between lichens with algal photobionts DP and UA; however, this parameter could not be calculated in cyanolichen LP. The components of NPQ revealed that rapidly relaxing energy dependent quenching, ΦqE, is active and protects the thallus of DP predominantly; however, in UA state transition quenching, ΦqT, predominates. The diversity in NPQ across the three examined lichens revealed intriguing aspects of heat dissipation in their photobionts as a mechanism for survival under Antarctica conditions.
Collapse
Affiliation(s)
- Anamika Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petr Vítek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kumud Bandhu Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Kato Y, Ito H, Noguchi T. Reaction Mechanism of the Terminal Plastoquinone Q B in Photosystem II as Revealed by Time-Resolved Infrared Spectroscopy. Biochemistry 2024; 63:2778-2792. [PMID: 39411807 DOI: 10.1021/acs.biochem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The secondary plastoquinone (PQ) electron acceptor QB in photosystem II (PSII) undergoes a two-step photoreaction through electron transfer from the primary PQ electron acceptor QA, converting into plastoquinol (PQH2). However, the detailed mechanism of the QB reactions remains elusive. Here, we investigated the reaction mechanism of QB in cyanobacterial PSII core complexes using two time-revolved infrared (TRIR) methods: dispersive-type TRIR spectroscopy and rapid-scan Fourier transform infrared spectroscopy. Upon the first flash, the ∼140 μs phase is attributed to electron transfer from QA•- to QB, while the ∼2.2 and ∼440 ms phases are assigned to the binding of an internal PQ in a nearby cavity to the vacant QB site and an external PQ traveling to the QB site through channels, respectively, followed by immediate electron transfer. The resultant QB•- is suggested to be in equilibrium with QBH•, which is protonated at the distal oxygen. Upon the second flash, the ∼130 μs and ∼3.3 ms phases are attributed to electron transfer to QBH• and the protonation of QB•- followed by electron transfer, respectively, forming QBH-, which then immediately accepts a proton from D1-H215 at the proximal oxygen to become QBH2. The resultant D1-H215 anion is reprotonated in ∼22 ms via a pathway involving the bicarbonate ligand. The final ∼490 ms phase may reflect the release of PQH2 and its replacement with PQ. The present results highlight the importance of time-resolved infrared spectroscopy in elucidating the mechanism of QB reactions in PSII.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Honami Ito
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
5
|
Hu J, Deng X, Bai C, Li L, Yang X, Lan C, Zhong H, Tan X, Liang F. Mechanism of salt tolerance in the endangered semi-mangrove plant Barringtonia racemosa: anatomical structure and photosynthetic and fluorescence characteristics. 3 Biotech 2024; 14:103. [PMID: 38464614 PMCID: PMC10923768 DOI: 10.1007/s13205-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
To elucidate the mechanisms governing the salt tolerance of the endangered semi-mangrove plant Barringtonia racemosa, the biomass, photosynthetic and fluorescent characteristics, and anatomical structure of B. racemosa were studied under low, medium and high salt stress. The results showed that the stem dry weight, net photosynthetic rate, intercellular CO2 concentration, Fv/Fm, and ΦPSI of B. racemosa decreased under high salt stress, which led to a significant reduction in total dry weight. Stem dry weight was significantly positively correlated with the thickness of palisade tissue and significantly negatively correlated with the thickness of the epidermis of roots and xylem of stems. Therefore, a stable net photosynthetic rate and intercellular CO2 concentration, an increase in Fv/Fm and ΦPSI, an increase in or stable palisade tissue and spongy mesophyll of leaves and an increase in xylem thickness of the stem and epidermis, outer cortex, and stele diameter of roots could contribute to the salt tolerance of B. racemosa.
Collapse
Affiliation(s)
- Ju Hu
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
- Key Laboratory of Mountain Biodiversity Conservation, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000 China
| | - Xu Deng
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
| | - Caihong Bai
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
- Key Laboratory of Mountain Biodiversity Conservation, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000 China
| | - Lin Li
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
| | - Xiuling Yang
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
- Key Laboratory of Mountain Biodiversity Conservation, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000 China
| | - Chunxiao Lan
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
| | - Haiyan Zhong
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
| | - Xiaohui Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001 China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001 China
| | - Fang Liang
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000 China
- Key Laboratory of Mountain Biodiversity Conservation, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000 China
| |
Collapse
|
6
|
Magyar M, Akhtar P, Sipka G, Domonkos I, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. Effects of lipids on the rate-limiting steps in the dark-to-light transition of Photosystem II core complex of Thermostichus vulcanus. FRONTIERS IN PLANT SCIENCE 2024; 15:1381040. [PMID: 38576791 PMCID: PMC10991767 DOI: 10.3389/fpls.2024.1381040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
In our earlier works, we have shown that the rate-limiting steps, associated with the dark-to-light transition of Photosystem II (PSII), reflecting the photochemical activity and structural dynamics of the reaction center complex, depend largely on the lipidic environment of the protein matrix. Using chlorophyll-a fluorescence transients (ChlF) elicited by single-turnover saturating flashes, it was shown that the half-waiting time (Δτ 1/2) between consecutive excitations, at which 50% of the fluorescence increment was reached, was considerably larger in isolated PSII complexes of Thermostichus (T.) vulcanus than in the native thylakoid membrane (TM). Further, it was shown that the addition of a TM lipid extract shortened Δτ 1/2 of isolated PSII, indicating that at least a fraction of the 'missing' lipid molecules, replaced by detergent molecules, caused the elongation of Δτ 1/2. Here, we performed systematic experiments to obtain information on the nature of TM lipids that are capable of decreasing Δτ 1/2. Our data show that while all lipid species shorten Δτ 1/2, the negatively charged lipid phosphatidylglycerol appears to be the most efficient species - suggesting its prominent role in determining the structural dynamics of PSII reaction center.
Collapse
Affiliation(s)
- Melinda Magyar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Parveen Akhtar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Sipka
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Petar H. Lambrev
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
7
|
Kumari A, Chokheli VA, Lysenko VS, Mandzhieva SS, Minkina TM, Mazarji M, Rajput VD, Shuvaeva VA, Sushkova SS, Barakhov A. Genotoxic and morpho-physiological responses of ZnO macro- and nano-forms in plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9345-9357. [PMID: 36383335 DOI: 10.1007/s10653-022-01428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-On-Don, Russia, 344006.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vítek P, Mishra KB, Mishra A, Veselá B, Findurová H, Svobodová K, Oravec M, Sahu PP, Klem K. Non-destructive insights into photosynthetic and photoprotective mechanisms in Arabidopsis thaliana grown under two light regimes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121531. [PMID: 35863186 DOI: 10.1016/j.saa.2022.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Probing insights into understanding photosynthetic processes via non-invasive means has an added advantage when used in phenotyping or precision agriculture. We employed Raman spectroscopy and fluorescence-based methods to investigate both the changes in the photosynthetic processes and the underlying protective mechanisms on Arabidopsis thaliana wild-type (WT), and ros1, which is a mutant of a repressor of transcriptional gene silencing, both grown under low light (LL: 100 μmol m-2s-1) and high light (HL: 400 μmol m-2s-1) regimes. Raman imaging detected a lower carotenoid intensity after two weeks in those plants grown under HL, compared to those grown under the LL regime; we interpret this as the result of oxidative damage of β-carotene molecules. Further, the data revealed a significant depletion in carotenoids with enhanced phenolics around the midrib and tip of the WT leaves, but not in the ros1. On the contrary, small necrotic zones appeared after two weeks of HL in the ros1 mutant, pointing to the starting oxidative damage. The lower maximum quantum yield of the photochemistry (Fv/Fm) in the WT as well as in the ros1 mutant grown in HL (compared to those in the LL two weeks post-exposure), indicates the HL partially inactivated photosystems. Chlorophyll a fluorescence imaging further showed high non-photochemical quenching (NPQ) in the plants grown under the HL regime for both the WT and the ros1 mutant, but the spatial heterogeneity of NPQ images was much higher in the HL-grown ros1 mutant. Fluorescence screening methods revealed significantly high values of chlorophyll proxies in the WT as well as in the ros1 mutant two weeks after in the HL compared to those under LL. The data generally revealed an increased accumulation of phenolics under HL in both the WT and ros1 mutant plants, but the proxies of anthocyanin and flavonols were significantly lower in the ros1 mutant than in the WT. The comparatively low accumulation of anthocyanin in the ros1 mutant compared to the WT supports the Raman data. We conclude that integrated use of these techniques can be efficiently applied for a better understanding of insights into photosynthetic mechanisms.
Collapse
Affiliation(s)
- P Vítek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K B Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - A Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - B Veselá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - H Findurová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K Svobodová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - M Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - P P Sahu
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - K Klem
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| |
Collapse
|
9
|
Kato Y, Noguchi T. Redox properties and regulatory mechanism of the iron-quinone electron acceptor in photosystem II as revealed by FTIR spectroelectrochemistry. PHOTOSYNTHESIS RESEARCH 2022; 152:135-151. [PMID: 34985636 DOI: 10.1007/s11120-021-00894-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/24/2021] [Indexed: 05/09/2023]
Abstract
Photosystem II (PSII) performs oxidation of water and reduction of plastoquinone through light-induced electron transfer. Electron transfer reactions at individual redox cofactors are controlled by their redox potentials, and the forward and backward electron flows in PSII are regulated by tuning them. It is, thus, crucial to accurately estimate the redox potentials of the cofactors and their shifts by environmental changes to understand the regulatory mechanisms in PSII. Fourier-transform infrared (FTIR) spectroelectrochemistry combined with a light-induced difference technique is a powerful method to investigate the mechanisms of the redox reactions in PSII. In this review, we introduce the methodology and the application of this method in the studies of the iron-quinone complex, which consists of two plastoquinone molecules, QA and QB, and the non-heme iron, on the electron-acceptor side of PSII. It is shown that FTIR spectroelectrochemistry is a useful method not only for estimating the redox potentials but also for detecting the reactions of nearby amino-acid residues coupled with the redox reactions.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
10
|
Magyar M, Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev P, Garab G. Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. PHOTOSYNTHETICA 2022; 60:147-156. [PMID: 39648999 PMCID: PMC11559480 DOI: 10.32615/ps.2022.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 12/10/2024]
Abstract
In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F1 (< Fm) fluorescence level, and to produce the maximum (Fm) level, additional excitations are required, which, however, can only be effective if sufficiently long Δτ waiting times are allowed between the excitations. Biological variations in the half-rise time (Δτ 1/2) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Δτ 1/2 of PSII core complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Δτ 1/2, from ~ 1 ms to ~ 0.2 ms. The importance of the presence of native lipids was confirmed by obtaining similarly short Δτ 1/2 values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center.
Collapse
Affiliation(s)
- M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - W. Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - X. Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - G. Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - J.-R. Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - P.H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
11
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Kato Y, Noguchi T. Effects of Stromal and Lumenal Side Perturbations on the Redox Potential of the Primary Quinone Electron Acceptor Q A in Photosystem II. Biochemistry 2021; 60:3697-3706. [PMID: 34784184 DOI: 10.1021/acs.biochem.1c00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primary quinone electron acceptor QA is a key component in the electron transfer regulation in photosystem II (PSII), and hence accurate estimation of its redox potential, Em(QA-/QA), is crucial in understanding the regulatory mechanism. Although fluorescence detection has been extensively used for monitoring the redox state of QA, it was recently suggested that this method tends to provide a higher Em(QA-/QA) estimate depending on the sample status due to the effect of measuring light [Kato et al. (2019) Biochim. Biophys. Acta 1860, 148082]. In this study, we applied the Fourier transform infrared (FTIR) spectroelectrochemistry, which uses non-reactive infrared light to monitor the redox state of QA, to investigate the effects of stromal- and lumenal-side perturbations on Em(QA-/QA) in PSII. It was shown that replacement of bicarbonate bound to the non-heme iron with formate upshifted Em(QA-/QA) by ∼55 mV, consistent with the previous fluorescence measurement. In contrast, an Em(QA-/QA) difference between binding of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and bromoxynil was found to be ∼30 mV, which is much smaller than the previous estimate, ∼100 mV, by the fluorescence method. This ∼30 mV difference was verified by the decay kinetics of the S2QA- recombination. On the lumenal side, Mn depletion hardly affected the Em(QA-/QA), confirming the previous FTIR result. However, removal of the extrinsic proteins by NaCl or CaCl2 wash downshifted the Em(QA-/QA) by 14-20 mV. These results suggest that electron flow through QA is regulated by changes both on the stromal and lumenal sides of PSII.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
13
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Mishra M, Wungrampha S, Kumar G, Singla-Pareek SL, Pareek A. How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. PHOTOSYNTHESIS RESEARCH 2021; 150:117-135. [PMID: 32632535 DOI: 10.1007/s11120-020-00771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Rice, one of the most important staple food crops in the world, is highly sensitive to soil salinity at the seedling stage. The ultimate yield of this crop is a function of the number of seedlings surviving after transplantation in saline water. Oryza sativa cv. IR64 is a high-yielding salinity-sensitive variety, while Pokkali is a landrace traditionally cultivated by the local farmers in the coastal regions in India. However, the machinery responsible for the seedling-stage tolerance in Pokkali is not understood. To bridge this gap, we subjected young seedlings of these contrasting genotypes to salinity and performed detailed investigations about their growth parameters, ion homeostasis, biochemical composition, and photosynthetic parameters after every 24 h of salinity for three days. Taken together, all the physiological and biochemical indicators, such as proline accumulation, K+/Na+ ratio, lipid peroxidation, and electrolyte leakage, clearly revealed significant differences between IR64 and Pokkali under salinity, establishing their contrasting nature at this stage. In response to salinity, the Fv/Fm ratio (maximum quantum efficiency of Photosystem II as inferred from Chl a fluorescence) and the energy conserved for the electron transport after the reduction of QA (the primary electron acceptor of PSII), to QA-, and reduction of the end electron acceptor molecules towards the PSI (Photosystem I) electron acceptor side was higher in Pokkali than IR64 plants. These observations reflect a direct contribution of photosynthesis towards seedling-stage salinity tolerance in rice. These findings will help to breed high-yielding crops for salinity prone agricultural lands.
Collapse
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gautam Kumar
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
16
|
Barták M, Hájek J, Orekhova A, Villagra J, Marín C, Palfner G, Casanova-Katny A. Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties. Microorganisms 2021; 9:microorganisms9040818. [PMID: 33924436 PMCID: PMC8070113 DOI: 10.3390/microorganisms9040818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens' responses to the relative water content (RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%). The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state (Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range of 22-32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%. In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400-800 nm) and indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in the dry state compared to the wet state. The lichen morphology and anatomy data, together with the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological studies in Antarctic lichens.
Collapse
Affiliation(s)
- Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Alla Orekhova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Building A13/119, 625 00 Brno, Czech Republic; (M.B.); (J.H.); (A.O.)
| | - Johana Villagra
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
| | - Catalina Marín
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Götz Palfner
- Laboratory of Mycology and Mycorrhiza, Faculty of Natural Sciences and Oceanography, Campus Concepción, Concepción University, 4030000 Concepción, Chile; (C.M.); (G.P.)
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Rudecindo Ortega #03694, 4780000 Temuco, Chile;
- Correspondence: ; Tel.: +56-96-209-7709
| |
Collapse
|
17
|
Rai-Kalal P, Jajoo A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:341-351. [PMID: 33548801 DOI: 10.1016/j.plaphy.2021.01.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/21/2021] [Indexed: 05/21/2023]
Abstract
The present study is the first attempt to demonstrate the beneficiary effects of seed priming with zinc oxide nanoparticles (ZnO NPs) in wheat cultivar H-I 1544. Wheat seeds primed with ZnO NPs (10 mg/L) showed a significant positive influence on seed germination performance and vigour index as compared to unprimed (control) and hydroprimed seeds. Furthermore, nanopriming also enhanced seed water uptake resulting in enhanced α-amylase activity. Content of photosynthetic pigments in nanoprimed plants (chlorophyll a, chlorophyll b and total chlorophyll content) was significantly enhanced. Chlorophyll a fluorescence measurements were performed 30 days after cultivation of nanoprimed seeds to investigate the effect of nanopriming on plant photosynthetic performance. Results suggested that ZnO NPs affects the overall primary photochemistry by enhancing the performance of water splitting complex at donor side of PSII (Fv/Fo). The numbers of active reaction centres (RC) per chlorophyll molecule were increased in nanoprimed plants followed by increase in the absorption (ABS), efficiency of excitation energy trapping (TR) and electron transport (ET) from active reaction centres. The impact of nanopriming on oxidative status of plants was also studied by measuring the activity enzymes like peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and degree of lipid peroxidation. A prominent decrease in the activity of these enzymes was observed which may be attributed to low reactive oxygen species (ROS) levels in nanoprimed plants as compared to control. This is the first report showing ZnO NPs as a promising seed priming agent to improve germination as well as photosynthetic performance of wheat seeds.
Collapse
Affiliation(s)
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, India; School of Biotechnology, Devi Ahilya University, Indore, India.
| |
Collapse
|
18
|
Miller NT, Vaughn MD, Burnap RL. Electron flow through NDH-1 complexes is the major driver of cyclic electron flow-dependent proton pumping in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148354. [PMID: 33338488 DOI: 10.1016/j.bbabio.2020.148354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023]
Abstract
Cyclic electron flow (CEF) around photosystem I is vital to balancing the photosynthetic energy budget of cyanobacteria and other photosynthetic organisms. The coupling of CEF to proton pumping has long been hypothesized to occur, providing proton motive force (PMF) for the synthesis of ATP with no net cost to [NADPH]. This is thought to occur largely through the activity of NDH-1 complexes, of which cyanobacteria have four with different activities. While a much work has been done to understand the steady-state PMF in both the light and dark, and fluorescent probes have been developed to observe these fluxes in vivo, little has been done to understand the kinetics of these fluxes, particularly with regard to NDH-1 complexes. To monitor the kinetics of proton pumping in Synechocystis sp. PCC 6803, the pH sensitive dye Acridine Orange was used alongside a suite of inhibitors in order to observe light-dependent proton pumping. The assay was demonstrated to measure photosynthetically driven proton pumping and used to measure the rates of proton pumping unimpeded by dark ΔpH. Here, the cyanobacterial NDH-1 complexes are shown to pump a sizable portion of proton flux when CEF-driven and LEF-driven proton pumping rates are observed and compared in mutants lacking some or all NDH-1 complexes. It is also demonstrated that PSII and LEF are responsible for the bulk of light induced proton pumping, though CEF and NDH-1 are capable of generating ~40% of the proton pumping rate when LEF is inactivated.
Collapse
Affiliation(s)
- Neil T Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael D Vaughn
- SpectroLogix LLC, 9050 Executive Park Drive, Knoxville, TN 37923, USA
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
19
|
|
20
|
Kalmatskaya OA, Trubitsin BV, Suslichenko IS, Karavaev VA, Tikhonov AN. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. PHOTOSYNTHESIS RESEARCH 2020; 146:123-141. [PMID: 32594291 DOI: 10.1007/s11120-020-00767-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Using thermoluminescence, PAM-fluorometry, and electron paramagnetic resonance (EPR) for assaying electron transport processes in chloroplasts in situ, we have compared photosynthetic characteristics in Tradescantia fluminensis leaves grown under low light (LL, 50-125 µmol photons m-2 s-1) or high light (HL, 875-1000 µmol photons m-2 s-1) condition. We found differences in the thermoluminescence (TL) spectra of LL- and HL-acclimated leaves. The LL and HL leaves show different proportions of the Q (~ 0 °C) and B (~ 25-30 °C) bands in their TL spectra; the ratios of the "light sums" of the Q and B bands being SQ/SB ≈ 1/1 (LL) and SQ/SB ≈ 1/3 (HL). This suggests the existence of different redox states of electron carriers on the acceptor side of PSII in LL and HL leaves, which may be affected, in particular, by different capacities of their photo-reducible PQ pools. Enhanced content of PQ in chloroplasts of LL leaves may be the reason for an efficient performance of photosynthesis at low irradiance. Kinetic studies of slow induction of Chl a fluorescence and measurements of P700 photooxidation by EPR demonstrate that HL leaves have faster (about 2 times) response to switching on actinic light as compared to LL leaves grown at moderate irradiation. HL leaves also show higher non-photochemical quenching (NPQ) of Chl a fluorescence. These properties of HL leaves (faster response to light and generation of enhanced NPQ) reflect the flexibility of their photosynthetic apparatus, providing sustainability and rapid response to fluctuations of environmental light intensity and solar stress resistance. Analysis of time-courses of the EPR signals of [Formula: see text] induced by far-red (λmax = 707 nm), exciting predominantly PSI, and white light, exciting both PSI and PSII, suggests that there is a contribution of cyclic electron flow around PSI to electron flow through PSI in HL leaves. The data obtained are discussed in terms of photosynthetic apparatus sustainability of HL and LL leaves under variable irradiation conditions.
Collapse
Affiliation(s)
| | - Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Igor S Suslichenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
21
|
Transient depletion of transported metabolites in the streaming cytoplasm of Chara upon shading the long-distance transmission pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148257. [PMID: 32621805 DOI: 10.1016/j.bbabio.2020.148257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023]
Abstract
Export of reducing power from chloroplasts to cytoplasm serves to balance the NADPH/ATP ratio that is optimal for CO2 assimilation. Rapid cytoplasmic streaming in characean algae conveys the exported metabolites downstream towards the shaded plastids where envelope transporters may operate for the import of reducing power in accordance with the direction of concentration gradients. Import of reducing equivalents by chloroplasts in the analyzed area transiently enhances the pulse-modulated chlorophyll fluorescence F' controlled by the redox state of photosystem II acceptor QA. When the microfluidic pathway was transferred to darkness while the analyzed cell area remained in dim background light, the amplitude of cyclosis-mediated F' changes dropped sharply and then recovered within 5-10 min. The suppression of long-distance signaling indicates temporal depletion of transmitted metabolites in the streaming cytoplasm. The return to overall background illumination induced an exceptionally large F' response to the first local light pulse admitted to a remote cell region. This indicates the appearance of excess reductants in the streaming cytoplasm at a certain stage of photosynthetic induction. The results suggest highly dynamic exchange of metabolites between stationary chloroplasts lining the microfluidic pathway and the streaming cytoplasm upon light-dark and dark-light transitions. Evidence is obtained that slow stages of chlorophyll fluorescence induction in algae with rapid cytoplasmic streaming directly depend on cyclosis-mediated long-distance delivery of metabolites produced far beyond the analyzed cell area.
Collapse
|
22
|
Deficiency in flavodiiron protein Flv3 promotes cyclic electron flow and state transition under high light in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148318. [PMID: 32979345 DOI: 10.1016/j.bbabio.2020.148318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
Abstract
Photosynthetic organisms adjust their activity to changes in irradiance by different ways, including the operation of cyclic electron flow around photosystem I (PSI) and state transitions that redistribute amounts of light energy absorbed by PSI and PSII. In dark-acclimated wild type cells of Synechocystis PCC 6803, linear electron transport was activated after the first 500 ms of illumination, while cyclic electron flow around PSI was long predominant in the mutant deficient in flavodiiron protein Flv3. Chlorophyll P700 oxidation associated with activation of linear electron flow extended in the Flv3- mutant to several tens of seconds and included a P700+ re-reduction phase. Parallel monitoring of chlorophyll fluorescence and the redox state of P700 indicated that, at low light intensity both in wild type and in the Flv3- mutant, the transient re-reduction step coincided in time with S-M fluorescence rise, which reflected state 2-state 1 transition (Kaňa et al., 2012). Despite variations in the initial redox state of plastoquinone pool, the oxidases-deficient mutant, succinate dehydrogenase-deficient mutant, and wild type cells did not show the S-M rise under high-intensity light until additional Flv3- mutation was introduced in these strains. Thus, the lack of available electron acceptor for PSI was the main cause for the appearance of S-M fluorescence rise under high light. It is concluded that the lack of Flv3 protein promotes cyclic electron flow around PSI and facilitates the subsequent state 2-state 1 transition in the absence of strict relation to the dark-operated pathways of plastoquinone reduction or oxidation.
Collapse
|
23
|
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. ANNALS OF BOTANY 2020; 126:511-537. [PMID: 31641747 PMCID: PMC7489092 DOI: 10.1093/aob/mcz171] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
| | - Dušan Lazár
- Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
- University of Missouri, Columbia, MO, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Kato Y, Ohira A, Nagao R, Noguchi T. Does the water-oxidizing Mn4CaO5 cluster regulate the redox potential of the primary quinone electron acceptor QA in photosystem II? A study by Fourier transform infrared spectroelectrochemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148082. [DOI: 10.1016/j.bbabio.2019.148082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 10/25/2022]
|
25
|
Kalmatskaya OA, Karavaev VA, Tikhonov AN. Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light. PHOTOSYNTHESIS RESEARCH 2019; 142:265-282. [PMID: 31435864 DOI: 10.1007/s11120-019-00663-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/02/2019] [Indexed: 05/26/2023]
Abstract
Tradescantia is a good model for assaying induction events in higher plant leaves. Chlorophyll (Chl) fluorescence serves as a sensitive reporter of the functional state of photosynthetic apparatus in chloroplasts. The fluorescence time-course depends on the leaf growth conditions and actinic light quality. In this work, we investigated slow induction of Chl a fluorescence (SIF) excited by blue light (BL, λmax = 455 nm) or red light (RL, λmax = 630 nm) in dark-adapted leaves of Tradescantia fluminensis acclimated to high light (~ 1000 µmol photons m-2 s-1; HL) or low light (~ 100 µmol photons m-2 s-1; LL). Our special interest was focused on the contribution of the avoidance response to SIF kinetics. Bearing in mind that BL and RL have different impacts on photoreceptors that initiate chloroplast movements within the cell (accumulation/avoidance responses), we have compared the SIF patterns during the action of BL and RL. The time-courses of SIF and kinetics of non-photochemical quenching (NPQ) of Chl a fluorescence revealed a certain difference when leaves were illuminated by BL or RL. In both cases, the yield of fluorescence rose to the maximal level P and then, after the lag-phase P-S-M1, the fluorescence level decreased toward the steady state T (via the intermediate phases M1-M2 and M2-T). In LL-acclimated leaves, the duration of the P-S-M1 phase was almost two times longer that in HL-grown plants. In the case of BL, the fluorescence decay included the transient phase M1-M2. This phase was obscure during the RL illumination. Non-photochemical quenching of Chl a fluorescence has been quantified as [Formula: see text], where [Formula: see text] and [Formula: see text] stand for the fluorescence response to saturating pulses of light applied to dark-adapted and illuminated samples, respectively. The time-courses of such a formally determined NPQ value were markedly different during the action of RL and BL. In LL-grown leaves, BL induced higher NPQ as compared to the action of RL. In HL-grown plants, the difference between the NPQ responses to BL and RL illumination was insignificant. Comparing the peculiarities of Chl a fluorescence induced by BL and RL, we conclude that the avoidance response can provide a marked contribution to SIF and NPQ generation. The dependence of NPQ on the quality of actinic light suggests that chloroplast movements within the cell have a noticeable impact on the formally determined NPQ value. Analyzing kinetics of post-illumination decay of NPQ in the context of solar stress resistance, we have found that LL-acclimated Tradescantia leaves are more vulnerable to strong light than the HL-grown leaves.
Collapse
Affiliation(s)
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
26
|
Cutolo E, Parvin N, Ruge H, Pirayesh N, Roustan V, Weckwerth W, Teige M, Grieco M, Larosa V, Vothknecht UC. The High Light Response in Arabidopsis Requires the Calcium Sensor Protein CAS, a Target of STN7- and STN8-Mediated Phosphorylation. FRONTIERS IN PLANT SCIENCE 2019; 10:974. [PMID: 31417591 PMCID: PMC6682602 DOI: 10.3389/fpls.2019.00974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/11/2019] [Indexed: 05/18/2023]
Abstract
Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Nargis Parvin
- Department of Plant Nutrition, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of Bonn, Bonn, Germany
| | - Henning Ruge
- Department of Biology I, Ludwig Maximilian University of Munich, Munich, Germany
| | - Niloufar Pirayesh
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Valentin Roustan
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Markus Teige
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Michele Grieco
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veronique Larosa
- Laboratory of Genetics and Physiology of Microalgae, InBios, University of Liège, Liège, Belgium
| | - Ute C. Vothknecht
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model. PHOTOSYNTHESIS RESEARCH 2019; 140:1-19. [PMID: 30810971 DOI: 10.1007/s11120-019-00627-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 05/25/2023]
Abstract
The dark-to-light transitions enable energization of the thylakoid membrane (TM), which is reflected in fast and slow (OJIPSMT or OABCDE) stages of fluorescence induction (FI) and P700 oxidoreduction changes (ΔA810). A Thylakoid Membrane model (T-M model), in which special emphasis has been placed on ferredoxin-NADP+-oxidoreductase (FNR) activation and energy-dependent qE quenching, was applied for quantifying the kinetics of FI and ΔA810. Pea leaves were kept in darkness for 15 min and then the FI and ΔA810 signals were measured upon actinic illumination, applied either directly or after a 10-s light pulse coupled with a subsequent 10-s dark interval. On the time scale from 40 µs to 30 s, the parallel T-M model fittings to both FI and ΔA810 signals were obtained. The parameters of FNR activation and the buildup of qE quenching were found to differ for dark-adapted and preilluminated leaves. At the onset of actinic light, photosystem II (PSII) acceptors were oxidized (neutral) after dark adaptation, while the redox states with closed and/or semiquinone QA(-)QB(-) forms were supposedly generated after preillumination, and did not relax within the 10 s dark interval. In qE simulations, a pH-dependent Hill relationship was used. The rate constant of heat losses in PSII antenna kD(t) was found to increase from the basic value kDconst, at the onset of illumination, to its maximal level kDvar due to lumenal acidification. In dark-adapted leaves, a low value of kDconst of ∼ 2 × 106 s-1 was found. Simulations on the microsecond to 30 s time scale revealed that the slow P-S-M-T phases of the fluorescence induction were sensitive to light-induced FNR activation and high-energy qE quenching. Thus, the corresponding time-dependent rate constants kD(t) and kFNR(t) change substantially upon the release of electron transport on the acceptor side of PSI and during the NPQ development. The transitions between the cyclic and linear electron transport modes have also been quantified in this paper.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov, Moscow State University, Moscow, Russia, 119234.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov, Moscow State University, Moscow, Russia, 119234
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov, Moscow State University, Moscow, Russia, 119234
| | - A B Rubin
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov, Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
28
|
Govindjee. A sixty-year tryst with photosynthesis and related processes: an informal personal perspective. PHOTOSYNTHESIS RESEARCH 2019; 139:15-43. [PMID: 30343396 DOI: 10.1007/s11120-018-0590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
After briefly describing my early collaborative work at the University of Allahabad, that had laid the foundation of my research life, I present here some of our research on photosynthesis at the University of Illinois at Urbana-Champaign, randomly selected from light absorption to NADP+ reduction in plants, algae, and cyanobacteria. These include the fact that (i) both the light reactions I and II are powered by light absorbed by chlorophyll (Chl) a of different spectral forms; (ii) light emission (fluorescence, delayed fluorescence, and thermoluminescence) by plants, algae, and cyanobacteria provides detailed information on these reactions and beyond; (iii) primary photochemistry in both the photosystems I (PS I) and II (PS II) occurs within a few picoseconds; and (iv) most importantly, bicarbonate plays a unique role on the electron acceptor side of PS II, specifically at the two-electron gate of PS II. Currently, the ongoing research around the world is, and should be, directed towards making photosynthesis better able to deal with the global issues (such as increasing population, dwindling resources, and rising temperature) particularly through genetic modification. However, basic research is necessary to continue to provide us with an understanding of the molecular mechanism of the process and to guide us in reaching our goals of increasing food production and other chemicals we need for our lives.
Collapse
|
29
|
Mishra KB, Mishra A, Kubásek J, Urban O, Heyer AG. Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements. PHOTOSYNTHESIS RESEARCH 2019; 139:123-143. [PMID: 30306531 DOI: 10.1007/s11120-018-0588-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/24/2018] [Indexed: 05/23/2023]
Abstract
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
Collapse
Affiliation(s)
- Kumud B Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- Department of Experimental Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Anamika Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jiří Kubásek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70567, Stuttgart, Germany
| |
Collapse
|
30
|
Hamdani S, Khan N, Perveen S, Qu M, Jiang J, Zhu XG. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. PHOTOSYNTHESIS RESEARCH 2019; 139:107-121. [PMID: 30456488 DOI: 10.1007/s11120-018-0589-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 05/25/2023]
Abstract
Non-photochemical quenching (NPQ) of the excited state of chlorophyll a is a major photoprotective mechanism plants utilize to survive under high light. Here, we report the impact of long-term light quality treatment on photosynthetic properties, especially NPQ in rice. We used three LED-based light regimes, i.e., red (648-672 nm), blue (438-460 nm), and "warm" white light (529-624 nm), with the incident photon flux density of 300 µmol photons m-2 s-1, the difference in the absorbed photon flux densities by leaves grown under different light quality being less than 7%. Our results show that blue light, as compared to white light, induced a significant decrease in Fv/Fm, a decreased rate of reduction of P700+ after P700 was completely oxidized; furthermore, blue light also induced higher NPQ with an increased initial speed of NPQ induction, which corresponds to the qE component of NPQ, and a lower maximum quantum yield of PSII, i.e., Y(II). In contrast, rice grown under long-term red light showed decreased Y(II) and increased NPQ, but with no change in Fv/Fm. Furthermore, we found that rice grown under either blue or red light showed decreased transcript abundance of both catalase and ascorbate peroxidase, together with an increased H2O2 content, as compared to rice grown under white light. All these data suggest that even under a moderate incident light level, rice grown under blue or red light led to compromised antioxidant system, which contributed to decreased quantum yield of photosystem II and increased NPQ.
Collapse
Affiliation(s)
- Saber Hamdani
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Naveed Khan
- Max-Planck Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shahnaz Perveen
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jianjun Jiang
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
31
|
Morris JN, Kovács S, Vass I, Summerfield TC, Eaton-Rye JJ. Environmental pH and a Glu364 to Gln mutation in the chlorophyll-binding CP47 protein affect redox-active TyrD and charge recombination in Photosystem II. FEBS Lett 2018; 593:163-174. [PMID: 30485416 DOI: 10.1002/1873-3468.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
In Photosystem II, loop E of the chlorophyll-binding CP47 protein is located near a redox-active tyrosine, YD , forming a symmetrical analog to loop E in CP43, which provides a ligand to the oxygen-evolving complex (OEC). A Glu364 to Gln substitution in CP47, near YD , does not affect growth in the cyanobacterium Synechocystis sp. PCC 6803; however, deletion of the extrinsic protein PsbV in this mutant leads to a strain displaying a pH-sensitive phenotype. Using thermoluminescence, chlorophyll fluorescence, and flash-induced oxygen evolution analyses, we demonstrate that Glu364 influences the stability of YD and the redox state of the OEC, and highlight the effects of external pH on photosynthetic electron transfer in intact cyanobacterial cells.
Collapse
Affiliation(s)
- Jaz N Morris
- Department of Botany, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | |
Collapse
|
32
|
Stamatakis K, Broussos PI, Panagiotopoulou A, Gast RJ, Pelecanou M, Papageorgiou GC. Light-adaptive state transitions in the Ross Sea haptophyte Phaeocystis antarctica and in dinoflagellate cells hosting kleptoplasts derived from it. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:102-110. [PMID: 30414926 DOI: 10.1016/j.bbabio.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
Abstract
Light state transitions (STs) is a reversible physiological process that oxygenic photosynthetic organisms use in order to minimize imbalances in the electronic excitation delivery to the reaction centers of Photosystems I and II, and thus to optimize photosynthesis. STs have been studied extensively in plants, green algae, red algae and cyanobacteria, but sparsely in algae with secondary red algal plastids, such as diatoms and haptophytes, despite their immense ecological significance. In the present work, we examine whether the haptophyte alga Phaeocystis antarctica, and dinoflagellate cells that host kleptoplasts derived from P. antarctica, both endemic in the Ross Sea, Antarctica, are capable of light adaptive STs. In these organisms, Chl a fluorescence can be excited either by direct light absorption, or indirectly by electronic excitation (EE) transfer from ultraviolet light absorbing mycosporine-like amino acids (MAAs) to Chl a (Stamatakis et al., Biochim. Biophys. Acta 1858 [2017] 189-195). Here we show that, on adaptation to PS II-selective light, dark-adapted P. antarctica cells shift from light state 1 (ST1; more EE ending up in PS II) to light state 2 (ST2; more EE ending up in PS I), as revealed by the spectral distribution of directly-excited Chl a fluorescence and by changes in the macro-organization of pigment-protein complexes evidenced by circular dichroism (CD) spectroscopy. In contrast, no STs are clearly detected in the case of the kleptoplast-hosting dinoflagellate cells, and in the case of indirectly excited Chls a, via MAAs, in P. antarctica cells.
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece.
| | - Panayiotis-Ilias Broussos
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Rebecca J Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Maria Pelecanou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - George C Papageorgiou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| |
Collapse
|
33
|
Dietz KJ, Krause GH, Siebke K, Krieger-Liszkay A. A tribute to Ulrich Heber (1930-2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment. PHOTOSYNTHESIS RESEARCH 2018; 137:17-28. [PMID: 29368118 DOI: 10.1007/s11120-018-0483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO2 tolerance of tree leaves and dehydrating lichens and mosses.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501, Bielefeld, Germany.
| | - G Heinrich Krause
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Katharina Siebke
- Heinz Walz Gesellschaft mit beschränkter Haftung, Eichenring 6, 91090, Effeltrich, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
34
|
Bernát G, Steinbach G, Kaňa R, Misra AN, Prašil O. On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. PHOTOSYNTHESIS RESEARCH 2018; 136:183-198. [PMID: 29090427 DOI: 10.1007/s11120-017-0458-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.
Collapse
Affiliation(s)
- Gábor Bernát
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, Opatovicky mlyn, 379 81, Třeboň, Czech Republic.
| | - Gábor Steinbach
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, Opatovicky mlyn, 379 81, Třeboň, Czech Republic
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Radek Kaňa
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, Opatovicky mlyn, 379 81, Třeboň, Czech Republic
| | - Amarendra N Misra
- Centre for Life Sciences, Central University of Jharkand, Ranchi, 835205, Jharkand, India
- Khallikote Cluster University, Berhampur, 76001, Odisha, India
| | - Ondřej Prašil
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, Opatovicky mlyn, 379 81, Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia in České Budějovice, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
35
|
Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part. FRONTIERS IN PLANT SCIENCE 2018; 9:247. [PMID: 29556244 PMCID: PMC5844964 DOI: 10.3389/fpls.2018.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
A growing body of evidence demonstrates a significant relationship between cellular redox state and circadian rhythms. Each day these two vital components of plant biology influence one another, dictating the pace for metabolism and physiology. Diverse environmental stressors can disrupt this condition and, although plant scientists have made significant progress in re-constructing functional networks of plant stress responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-connected phenomena such as redox state and metabolism, internal and external environments, cellular homeostasis and rhythms can impede predictive understanding of coordinated regulation of plant stress response. The integration of circadian clock effects into predictive network models is likely to increase final yield and better predict plant responses to stress. To achieve such integrated understanding, it is necessary to consider the internal clock not only as a gatekeeper of environmental responses but also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and high-throughput probe of stress coupled to functional genomics and metabolomics will provide insights on the crosstalk across a wide range of stress severity and duration, including potential insights into oxidative stress response and signaling. We suggest the efficiency of photosystem II in light conditions (Fv'/Fm') to be the most dynamic of the fluorescence variables and therefore the most reliable parameter to follow the stress response from early sensing to mortality.
Collapse
Affiliation(s)
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
36
|
Harris D, Bar-Zvi S, Lahav A, Goldshmid I, Adir N. The Structural Basis for the Extraordinary Energy-Transfer Capabilities of the Phycobilisome. Subcell Biochem 2018; 87:57-82. [PMID: 29464557 DOI: 10.1007/978-981-10-7757-9_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Light absorption is the initial step in the photosynthetic process. In all species, most of the light is absorbed by dedicated pigment-protein complexes called light harvesting complexes or antenna complexes. In the case of cyanobacteria and red-algae, photosynthetic organisms found in a wide variety of ecological niches, the major antenna is called the Phycobilisome (PBS). The PBS has many unique characteristics that sets it apart from the antenna complexes of other organisms (bacteria, algae and plants). These differences include the type of light absorbing chromophores, the protein environment of the chromophores, the method of assembly and association and the intercellular location with respect to the photosynthetic reaction centers (RCs). Since the final goal of all antenna complexes is the same - controlled absorption and transfer of the energy of the sun to the RCs, the unique structural and chemical differences of the PBS also require unique energy transfer mechanisms and pathways. In this review we will describe in detail the structural facets that lead to a mature PBS, followed by an attempt to understand the energy transfer properties of the PBS as they have been measured experimentally.
Collapse
Affiliation(s)
- Dvir Harris
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shira Bar-Zvi
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Lahav
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itay Goldshmid
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Adir
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
37
|
Najafpour MM, Madadkhani S, Akbarian S, Zand Z, Hołyńska M, Kompany-Zareh M, Tatsuya T, Singh JP, Chae KH, Allakhverdiev SI. Links between peptides and Mn oxide: nano-sized manganese oxide embedded in a peptide matrix. NEW J CHEM 2018. [DOI: 10.1039/c8nj02119h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a poly-peptide/Mn oxide nanocomposite as a model for the water-oxidizing catalyst in Photosystem II.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Somayyeh Akbarian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Marburg D-35032
- Germany
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Tomo Tatsuya
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
38
|
Urban L, Aarrouf J, Bidel LPR. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. FRONTIERS IN PLANT SCIENCE 2017; 8:2068. [PMID: 29312367 PMCID: PMC5735977 DOI: 10.3389/fpls.2017.02068] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 05/21/2023]
Abstract
Water deficit (WD) is expected to increase in intensity, frequency and duration in many parts of the world as a consequence of global change, with potential negative effects on plant gas exchange and growth. We review here the parameters that can be derived from measurements made on leaves, in the field, and that can be used to assess the effects of WD on the components of plant photosynthetic rate, including stomatal conductance, mesophyll conductance, photosynthetic capacity, light absorbance, and efficiency of absorbed light conversion into photosynthetic electron transport. We also review some of the parameters related to dissipation of excess energy and to rerouting of electron fluxes. Our focus is mainly on the techniques of gas exchange measurements and of measurements of chlorophyll a fluorescence (ChlF), either alone or combined. But we put also emphasis on some of the parameters derived from analysis of the induction phase of maximal ChlF, notably because they could be used to assess damage to photosystem II. Eventually we briefly present the non-destructive methods based on the ChlF excitation ratio method which can be used to evaluate non-destructively leaf contents in anthocyanins and flavonols.
Collapse
Affiliation(s)
- Laurent Urban
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon, Avignon, France
| | - Jawad Aarrouf
- UMR 95 Qualisud/Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon, Avignon, France
| | | |
Collapse
|
39
|
Munday JC, Papageorgiou GC. Frederick Yi-Tung Cho (1939-2011) : His PhD days in Biophysics, the Photosynthesis Lab, and his patents in engineering physics. PHOTOSYNTHESIS RESEARCH 2017; 132:227-234. [PMID: 28523606 DOI: 10.1007/s11120-017-0391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We present here a Tribute to Frederick Yi-Tung Cho (1939-2011), an innovative and ingenious biophysicist and an entrepreneur. He was one of the 4 earliest PhD students [see: Cederstrand (1965)-Carl Nelson Cederstrand; coadvisor: Eugene Rabinowitch; Papageorgiou (1968)-George C. Papageorgiou (coauthor of this paper); and Munday (1968)-John C. Munday Jr. (also a coauthor of this paper)] of one of us (Govindjee) in Biophysics at the University of Illinois at Urbana-Champaign (UIUC) during the late 1960s (1963-1968). Fred was best known, in the photosynthesis circle for his pioneering work on low temperature (down to liquid helium temperature, 4 K) absorption and fluorescence spectroscopy of photosynthetic systems; he showed temperature independence of excitation energy transfer from (i) chlorophyll (Chl) b to Chl a and (ii) from Chl a 670 to Chl a 678; and temperature dependence of energy transfer from the phycobilins to Chl a and from Chl a 678 to its suggested trap. After doing research in biophysics of photosynthesis, Fred shifted to do research in solid-state physics/engineering in the Government Electronics Division (Group) of the Motorola Company, Scottsdale, Arizona, from where he published research papers in that area and had several patents granted. We focus mainly on his days at the UIUC in context of the laboratory in which he worked. We also list some of his papers and most of his patents in engineering physics. His friends and colleagues have correctly described him as an innovator and an ingenious scientist of the highest order. On the personal side, he was a very easy-going and amiable individual.
Collapse
Affiliation(s)
- John C Munday
- College of Arts and Sciences, Regent University, Virginia Beach, VA, 23464, USA
| | - George C Papageorgiou
- Institute of Biosciences and Applications, National Center of Scientific Research ''Demokritos'', 15310, Athens, Greece
| |
Collapse
|
40
|
Tseng YC, Chu SW. High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. PLANT METHODS 2017; 13:43. [PMID: 28546824 PMCID: PMC5442853 DOI: 10.1186/s13007-017-0194-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 05/18/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Chlorophyll fluorescence (CF) is a key indicator to study plant physiology or photosynthesis efficiency. Conventionally, CF is characterized by fluorometers, which only allows ensemble measurement through wide-field detection. For imaging fluorometers, the typical spatial and temporal resolutions are on the order of millimeter and second, far from enough to study cellular/sub-cellular CF dynamics. In addition, due to the lack of optical sectioning capability, conventional imaging fluorometers cannot identify CF from a single cell or even a single chloroplast. RESULTS AND DISCUSSION Here we demonstrated a fluorometer based on confocal imaging, that not only provides high contrast images, but also allows CF measurement with spatiotemporal resolution as high as micrometer and millisecond. CF transient (the Kautsky curve) from a single chloroplast is successfully obtained, with both the temporal dynamics and the intensity dependences corresponding well to the ensemble measurement from conventional studies. The significance of confocal imaging fluorometer is to identify the variation among individual chloroplasts, e.g. the temporal position of the P-S-M phases, and the half-life period of P-T decay in the Kautsky curve, that are not possible to analyze with wide-field techniques. A linear relationship is found between excitation intensity and the temporal positions of P-S-M peaks/valleys in the Kautsky curve. Based on the CF transients, the photosynthetic quantum efficiency is derived with spatial resolution down to a single chloroplast. In addition, an interesting 6-order increase in excitation intensity is found between wide-field and confocal fluorometers, whose pixel integration time and optical sectioning may account for this substantial difference. CONCLUSION Confocal imaging fluorometers provide micrometer and millisecond CF characterization, opening up unprecedented possibilities toward detailed spatiotemporal analysis of CF transients and its propagation dynamics, as well as photosynthesis efficiency analysis, on the scale of organelles, in a living plant.
Collapse
Affiliation(s)
- Yi-Chin Tseng
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da’an District, Taipei City, 10617 Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da’an District, Taipei City, 10617 Taiwan
- Molecular Imaging Center, National Taiwan University, No. 81, Changxing Street, Da’an District, Taipei, 10672 Taiwan
| |
Collapse
|
41
|
Kula M, Kalaji HM, Skoczowski A. Culture density influence on the photosynthetic efficiency of microalgae growing under different spectral compositions of light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:290-298. [PMID: 28113130 DOI: 10.1016/j.jphotobiol.2017.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
A density in algal suspension causes a significant change in the intensity and spectral composition of light reaching individual cells. Measurements of chlorophyll fluorescence allow us to observe any general changes in the bioenergetic status of photosynthesis. The aim of the study was to determine the effect of cultivation density on the PSII photochemical efficiency of three species of algae (Chlorella vulgaris, Botryococcus braunii and Chlorella emersonii), each with a different rate of growth - high, medium and low - respectively. The cell density of algae in suspension differentiated through the cultivation time (2, 4, and 8days) and the spectral composition of light. The results showed that the density of cultivation led to change in the photosynthetic apparatus of algae. The differences described between each day of cultivation (2, 4, and 8) in the kinetics of chlorophyll a fluorescence intensity in cells of the algal strains under study probably resulted from the different phases of growth of these cultures. In addition the results showed the beneficial effect of far red light on the photosynthetic apparatus and the growth of biomass in investigated algal strains.
Collapse
Affiliation(s)
- M Kula
- Polish Academy of Sciences, Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - H M Kalaji
- SI TECHNOLOGY, Górczewska 226C/26, 01-460 Warsaw, Poland; Department of Plant Physiology, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A Skoczowski
- The Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland.
| |
Collapse
|
42
|
Kaňa R, Govindjee. Role of Ions in the Regulation of Light-Harvesting. FRONTIERS IN PLANT SCIENCE 2016; 7:1849. [PMID: 28018387 PMCID: PMC5160696 DOI: 10.3389/fpls.2016.01849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 03/03/2024]
Abstract
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the CzechiaTřeboň, Czechia
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South BohemiaČeské Budějovice, Czechia
| | - Govindjee
- Center of Biophysics and Quantitative Biology, Department of Biochemistry, Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
43
|
Shimakawa G, Akimoto S, Ueno Y, Wada A, Shaku K, Takahashi Y, Miyake C. Diversity in photosynthetic electron transport under [CO 2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O 2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO 2-limited photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 130:293-305. [PMID: 27026083 DOI: 10.1007/s11120-016-0253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Ayumi Wada
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
44
|
Acuña AM, Kaňa R, Gwizdala M, Snellenburg JJ, van Alphen P, van Oort B, Kirilovsky D, van Grondelle R, van Stokkum IHM. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. PHOTOSYNTHESIS RESEARCH 2016; 130:237-249. [PMID: 27016082 PMCID: PMC5054063 DOI: 10.1007/s11120-016-0248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/28/2023]
Abstract
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
Collapse
Affiliation(s)
- Alonso M Acuña
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Radek Kaňa
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Michal Gwizdala
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Joris J Snellenburg
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Pascal van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Bart van Oort
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Rienk van Grondelle
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Stirbet A. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S-M fluorescence rise. PHOTOSYNTHESIS RESEARCH 2016; 130:193-213. [PMID: 26995191 DOI: 10.1007/s11120-016-0243-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
In higher plants, algae, and cyanobacteria, chlorophyll (Chl) a fluorescence induction (ChlFI) has a fast (under a second) increasing OJIP phase and a slow (few minutes) PS(M)T phase, where O is for origin, the minimum fluorescence, J and I for intermediate levels, P for peak, S for a semi-steady state, M for a maximum (which is sometimes missing), and T for the terminal steady-state level. We have used a photosynthesis model of Ebenhöh et al. (Philos Trans R Soc B, 2014, doi: 10.1098/rstb.2013.0223 ) in an attempt to simulate the slow PS(M)T phase and to determine the origin of the S-M rise in Chlamydomonas (C.) reinhardtii cells. Our experiments in silico show that a slow fluorescence S-M rise (as that observed, e.g., by Kodru et al. (Photosynth Res 125:219-231, 2015) can be simulated only if the photosynthetic samples are initially in a so-called "state 2," when the absorption cross section (CS) of Photosystem II (PSII) is lower than that of PSI, and Chl a fluorescence is low (see, e.g., a review by Papageorgiou and Govindjee (J Photochem Photobiol B 104:258-270, 2011). In this case, simulations show that illumination induces a state 2 (s2) to state 1 (s1) transition (qT21), and a slow S-M rise in the simulated ChlFI curve, since the fluorescence yield is known to be higher in s1, when CS of PSII is larger than that of PSI. Additionally, we have analyzed how light intensity and several photosynthetic processes influence the degree of this qT21, and thus the relative amplitude of the simulated S-M phase. A refinement of the photosynthesis model is, however, necessary in order to obtain a better fit of the simulation data with the measured ChlFI curves.
Collapse
|
46
|
Mishra KB, Mishra A, Novotná K, Rapantová B, Hodaňová P, Urban O, Klem K. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. PLANT METHODS 2016; 12:46. [PMID: 27872654 PMCID: PMC5109828 DOI: 10.1186/s13007-016-0145-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/26/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for high-throughput screening. RESULTS To improve the throughput monitoring of plants, we have exploited their light-adaptive strategy, and investigated possibilities of measuring ChlF transients under low ambient irradiance. We found that the ChlF transients and associated parameters of two contrasting Arabidopsis thaliana accessions, Rsch and Co, give almost similar information, when measured either after ~20 min dark-adaptation or in the presence of half of the adaptive growth-irradiance. The fluorescence parameters, effective quantum yield of PSII photochemistry (ΦPSII) and fluorescence decrease ratio (RFD) resulting from this approach enabled us to differentiate accessions that is often not possible by well-established dark-adapted fluorescence parameter maximum quantum efficiency of PSII photochemistry (FV/FM). Further, we screened ChlF transients in rosettes of well-watered and drought-stressed six A. thaliana accessions, under half of the adaptive growth-irradiance, without any prior dark-adaptation. Relative water content (RWC) in leaves was also assayed and compared to the ChlF parameters. As expected, the RWC was significantly different in drought-stressed from that in well-watered plants in all the six investigated accessions on day-10 of induced drought; the maximum reduction in the RWC was obtained for Rsch (16%), whereas the minimum reduction was for Co (~7%). Drought induced changes were reflected in several features of ChlF transients; combinatorial images obtained from pattern recognition algorithms, trained on pixels of image sequence, improved the contrast among drought-stressed accessions, and the derived images were well-correlated with their RWC. CONCLUSIONS We demonstrate here that ChlF transients and associated parameters measured even in the presence of low ambient irradiance preserved its features comparable to that of measured after dark-adaptation and discriminated the accessions having differential geographical origin; further, in combination with combinatorial image analysis tools, these data may be readily employed for early sensing and mapping effects of drought on plant's physiology via easy and fully non-invasive means.
Collapse
Affiliation(s)
- Kumud B. Mishra
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Anamika Mishra
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Kateřina Novotná
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Barbora Rapantová
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petra Hodaňová
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Institute, The Czech Academy of Sciences, v. v. i, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
47
|
Wang X, Wang L, Shangguan Z. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply. PLoS One 2016; 11:e0165733. [PMID: 27802318 PMCID: PMC5089754 DOI: 10.1371/journal.pone.0165733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022] Open
Abstract
Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.
Collapse
Affiliation(s)
- Xiubo Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| | - Lifang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
48
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 647] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
49
|
Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc Natl Acad Sci U S A 2015; 113:620-5. [PMID: 26715751 DOI: 10.1073/pnas.1520211113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB (-)/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB (-)/QB), in combination with the known large upshift of Em(QA (-)/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA (-).
Collapse
|
50
|
Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics. J Theor Biol 2015; 380:220-37. [PMID: 26025316 DOI: 10.1016/j.jtbi.2015.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 01/30/2023]
Abstract
Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points.
Collapse
|